
Where we have finished
...there we shall continue...

namespace x{
class y{

public static void Main()

{ System.Console.WriteLine("This is a

program doing something...");

for(;;);

}
}

}

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Constants

As in Pascal, constants are supported, but in a bit indirect
way.

Step aside: Modifiers are modifying something (variable,
function) and they behave in several different ways. We have
seen some of them...

public, static, there are many more, e.g., virtual,
unsigned, protected,... we will see them incrementally.

Constants are operated by modifier const. Example:
const int x=1; //nobody can modify x later!

const double pi=3.1415926535898;

//nobody wants to change pi

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Further control structures

We already know if, while and for,

missing equivalents of repeat ... until and
case ... of ...

The former is replaced by do body while(condition);

Compared to Pascal, cycle is iterated while the condition is
true!

case ... of is replaced by very similar construction
switch(expression)

{ case: body break;

case: body break;

...

default: body}

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Example
do ... while(...)

int i=0;

do

Console.WriteLine("I should have learnt

better!");

i++;

while(i<1000);

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Example switch

int i;...

switch(i){
case 0: Console.WriteLine("It is zero!");

break;

case 1: case 2: Console.Write("It is 1");

Console.WriteLine("or 2");

break;

default:

Console.WriteLine("Neither of 1, 2, 3");

}

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Functions and their parameters

We already know how to define function:
static int add(int a, int b)...

By default, the argument is passed either by value or by
reference (numeric- and reference-oriented types).

We can enforce numeric-oriented type to be passed by
reference using modifier ref:

static void sum(int a, int b, ref int c)...

Often we use passing by reference just to return a result. Thus
C# supports passing an argument by result.

Semantically identical to passing by reference, just at the
beginning the variable does not need to (i.e., is not) defined.

This time we use keyword out:
static void sum(int arg1, int arg2, out int

res)...

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Further specialities of object programming I/II
instance-creating, a.k.a., what means word static in front of Main

Classes are like data-types while objects resemble individual
variables.

Where are those objects by now?

We are still ignoring possibility of their creation – we have
only classes.

Also a class exists and it may have attributes and methods!

These methods don’t have implicit access to attributes of a
particular object!

And the attributes are created only once for the whole class.

So we obtain something like global variables.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Further specialities of object programming II/II
instance-creating, a.k.a., what means word static in front of Main

Function Main is static, i.e., it ”lives”in the class (not in
particular object)!

Thus the whole program ”lives”in the class we defined (and
not in some object).

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Item protection
inside the object or class

Some items (attributes) it is better to protect from
incompetent use.

Inside the object (class) we believe one another,...

... outside the object we may believe mainly our ancestors
(later).

Keywords private, public and protected define which
items can be accessed only from the object (class), by
everyone or by our ancestors (classes that inherited from us),
respectively.

Example:
public static void Main(){...}
private int x=1;//inaccessible from outside

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Larger example

class x{
public int a; private int b;

}
class y{

public static void Main(){
x.a=10;//this is OK,

Console.WriteLine(x.b);

//this is K.O.

}

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Input processing
...pars prima

Function names similar to Pascal, implementation completely
different.

These function are in (static) class Console which is in
namespace System.

System.Console.Read() and
System.Console.ReadLine().

Functions for reading the input are returning a (read) value:

char x=Console.Read();

ReadLine returns string (up to the end of line/input).

How to read something else?

Write it yourself...

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Or find some library functions...
conversion

int x=int.Parse(Console.ReadLine());

int y=Convert.ToInt32(Console.ReadLine());

Class Convert can be used for converting into more
data-types.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Writing the output

Function System.Console.WriteLine

is overloaded, i.e., may print out many data-types.

At the moment we learn just to use the first argument,

i.e., each piece of output we (temporarily) output separately.

Later we learn something very similar to Pascal, but not yet.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Euclid’s algorithm

using System;

static void Main(string[] args)

{ Console.WriteLine("Gimmi two numbers:");

int a=int.Parse(Console.ReadLine());

int b=int.Parse(Console.ReadLine());

while(a!=b)

if(a>b) a-=b;

else b-=a;

Console.Write("GCD is: ");

Console.WriteLine(a);

}

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

