
Defining your own Data Type Compiler-directives Files

Overview

Defining our own data-types (enumerated data-types),

Control structures case ... of ...,

Basic sorting algorithms,

Compiler directives,

Files (text files),

Basic sorting algorithms.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Defining your own Data Type Compiler-directives Files

How to pass an array as a parameter?

In Classical Pascal we have to define our own data-type
(show why the naive approach does not work).

Turbo Pascal (and also Free Pascal) support open-array
parameters.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Defining your own Data Type Compiler-directives Files

Defining your own data type:

Keyword type permits us to define a new data-type.

trivial use: type int=integer;

use: type x=array[1..10] of integer;

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Defining your own Data Type Compiler-directives Files

Example

program nnn;

type arr=array[1..10] of integer;

var p:arr;

procedure output(a:arr);

var i:integer;

begin

for i:=1 to 10 do

writeln(a[i]);

end;

begin

...output(p);

end.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Defining your own Data Type Compiler-directives Files

Open-array parameters

Available in Turbo Pascal and Free Pascal.

We say that the argument is an array of a particular type, but
we omit limits.

Example: procedure output(a:array of integer);

The argument is an array indexed from 0 to N.

The value N can be determined using a function high.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Defining your own Data Type Compiler-directives Files

Example using open-array parameters

procedure output(a:array of integer);

var i:integer;

begin

for i:=0 to high(a) do

writeln(a[i]);

end;

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Defining your own Data Type Compiler-directives Files

Further possibilities
how to use user-defined data-types

We want to calculate the days of a week. How we do that?

We define constants: Monday=1, Tuesday=2,...

But I’ll change the numbering: Monday=0, Tuesday=1,...

Then an American comes and enumerates: Sunday=1,
Monday=2,...

Thus we define a special data-type indexed with days of a
week,

the numbers get assigned by the compiler.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Defining your own Data Type Compiler-directives Files

Enumerated data-type

Gets defined in the type-section,

individual values are in the brackets separated by commas.

Example: type daysofweek=(monday,tuesday,

wednesday, thursday,friday, saturday, sunday);

Or we may directly define a variable of enumerated type:
var cal:(monday,tuesday,wednesday,thursday,

friday, saturday,sunday);

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Defining your own Data Type Compiler-directives Files

Example

Let us implement a simple ”calendar” for the year 2013, i.e.,
we output the date and day of week.

For the sake of simplicity let’s consider that each month
consists of 30 days...

Source code can be found on the web
(kam.mff.cuni.cz/˜perm/programovani/NPRG030/enum.pas).

We see that the write function cannot output enumerated
data-types.

What should we do in order to write out the names of the
days?

Either we use large if-clause or case variable of ...

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Defining your own Data Type Compiler-directives Files

Structure case ... of ...

It helps us to create many branches (in a program) depending
on the value of a variable.
Syntax:
case variable name of

value1: statement or blok
value2: statement or blok
else statement or blok

end;

Only the branch labeled by current value of the variable gets
executed. The else-branch gets executed otherwise (for other
values).

The else-clause is not compulsory!

If the last clause is a block, we write the keyword end twice
(the former closes the block, the latter finishes the case block.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Defining your own Data Type Compiler-directives Files

Example – calendar

can be found at
kam.mff.cuni.cz/~perm/programovani/NPRG030/case of.pas.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Defining your own Data Type Compiler-directives Files

Compiler-directives

Compiler tests many issues, e.g.:

whether we are not violating array boundaries,

whether the stack does not overflow,

whether the input/output error occured...

Usually it is a good idea to keep these tests switched on but
sometimes we ”know what we are doing”.

Then we can switch them off (but only if it is essential).

We can do that using the compiler-directives.

These directives look like a comment, i.e., they are in the
braces,

just the ”comment” begins with the string-character ($).
Then we place (usually 1-character long) name and a switch
+/−.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Defining your own Data Type Compiler-directives Files

Compiler-directives

Example: {$R−} – switch the range-checking off.

The most important:

$Q – overflow-checking,
$R – range-checking,
$I – input-output tests,
The full list can be found in the manual (some directives are
compiler-dependent).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Defining your own Data Type Compiler-directives Files

Files
and functions related to them

This time we show handling of text files (binary files appear
later).

A text file is represented by a variable of type Text.

This variable gets assigned to a given file by the
Assign-function,

then we open the file using Reset, Rewrite or Append,

after that we read (using Read and Readln functions). This
time we give the Text-type variable as the first argument,

writing into the file is done in the same way by calling Write

or Writeln functions.

Finally we close the file using the Close-function.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Defining your own Data Type Compiler-directives Files

Files
and functions related to them – syntax (1)

var f:Text;

Assign(f,’file.txt’); – assing the variable f with
file.txt.

Reset(f); – open the file represented by f (for reading).

Rewrite(f); – open f if it exists, destroy (erase) its contain.

Append(f); – open f for appending (writing behind its
current end).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Defining your own Data Type Compiler-directives Files

Files
and functions related to them – syntax (2)

Writeln(f,’We are writing to the file’); – output
the text into the file.

Read(f,a); – Read from the file variable a.

Close(f); – Close the file (we won’t use it anymore).

eof(f); – function returning boolean depending on whether
we are (already) at the end of the file.

eof; – function announcing the end of standard input
(usually from keyboard).

There are many further function Rename, Erase,...

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Defining your own Data Type Compiler-directives Files

Problems with files

It can happen that a file we try to open with Reset does not
exist.

This causes an input/output error.

To avoid this we can either destroy the file (calling Rewrite –
this always creates a file): but this is usually very
counter-productive! Alternatively, we use an appropriate
compiler-directive (to switch the input/output error off) and if
an error occurs, we find out about it by calling the
IOResult-function.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Defining your own Data Type Compiler-directives Files

Example

Assign(f,’file.txt’);

{$I−} {Switch the tests on input/output errors off}
Reset(f);

{$I+} {Switch IO-error on again}
if IOResult<>0 then

begin writeln(’A problem!’); halt;

end;

while not eof(f) do begin

readln(f,s);

writeln(s);

end;

Beware that IOResult is a function and thus after calling it, the
error-value gets replaced by 0. Thus we have to store it into a
variable (for further use).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

	Defining your own Data Type
	Compiler-directives
	Files

