Arrays

Arrays

m ... when we need to store many elements of the same type
(e.g., 1 000 of integer numbers),

m they get defined in the section of variables (i.e., var)),

m they get defined using the keyword array, followed by an
interval that defines its bounds, and the underlying data-type.
m Example: var a: array [1..100] of integer;
file_example:array[5..50] of string;

m Individual members are accessed using square brackets:
Example:
al1]:=10;
file_example[6] :="xxx’;
{Beware:} file example[1]:=’out of bounds!’;

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Arrays

Sieve of Eratosthenes

var primes: array[2..1000] of boolean; i,j:integer;
begin

for i:=2 to 1000 do primes]i]:=true;

for i:=2 to 1000 do

begin

if primes[i] then
begin writeln(i," is a prime’);

1=2;
while(j<=1000) do
begin
primes[i*j]:=false;
J=itL
end;

end;

aena
Martin Pergel, perm@kam.mff.cuni.cz

Programovani |



Arrays

Searching in an array

m Unsorted array = simple upper and lower bound (pass
through the whole array until found),
m sorted array:

m unary search (browse through the array like through a book),

m binary search (start in the middle, in each step halve the
input),

® quadratic search, generalized quadratic search...

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Arrays

Unary search

m Simple algorithm, simple analysis, its complexity:

m O(n).

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Arrays

Binary search

m What's the complexity of the algorithm? When do we have to
add an extra step?

m O(log n).

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Arrays

Further examples

of array manipulation algorithms and complexity analysis:

Matrix-multiplication:

Naive algorithm — Easily implementable, simple
complexity-analysis.

Strassen’s algorithm — hard to implement, hard to analyze,
hard to understand, but it has a better complexity.
Coppersmith-Vinograd's algorithm — yet even more
complicated with yet better complexity.

Finding the largest zero-submatrix:

Naive algorithm: O(n®)

Any ideas how to beat this complexity?

Exercise (think about it at home, a solution will be shown
later).

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Horner's Method

Horner's Method

m We want to convert a number stored as a string into an
integer.

m Naive approach: We may start from the least important digit,
keep track of an exponent by 10 and sum up.

m ... or we use Horner's method and start with the most
important digit.

m We find its value and proceed (inductively):
Multiply so far obtained result by 10 and add (sum up with)
the newly loaded digit.

Number apa,—1a,—2...39 in decimal (position) system means:
2,10" + a,_110""1 4 ... 4 ag. It holds:

an10"4a,_110" 1+ .+ag = (...((an*10)+a,_1%10)+...4-a1 )*10+ag

In the same way we may evaluate numbers in other position

Martin Pergel, perm@kam.mff.cuni.cz

Programovani |



Horner's Method

Example

program X;
var a:string;
i,value:longint;
begin
readln(a); i:=1; value:=0;
while i<=length(a) do
begin
value:=10*value+ord(al[i])-ord(’°0’);
i:=i+1;
end;
writeln(value);
end.

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Horner's Method

Evaluating a polynomial

Consider a polynomial apx™ + ap_1x" "% + ... + ao.
We want to evaluate it, i.e., find its value for some value of x.
Possibilities?

Brute force (estimate a,x”, a,_1x""!,... and sum it up)

or Horner's method:

n
> aix" = (((anx + ap-1)x + ... + a1)x + a0).
i=0

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Horner's Method

Evaluating a polynomial by Horner's method

m 1: Read the coefficient of highest (so far not processed)
monomial

m multiply the value obtained so far with x,
m add the value of the newly read coefficient,

m GOTO 1;

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Horner's Method

Example

program nothing;
var i,a,sum,degree,x:integer;
{Evaluate a polynomial for a value x, use variable a
to read the coefficients}
begin
readln(degree); readln(x);
sum:=0;
for i:=0 to degree do
begin sum:=sum*x;
readln(a);
sum:=sum+a;
end;
writeln(’The value is: ’,sum);
end.

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Horner's Method

Excursion — labels and GOTO

m It is possible to perform hard-wired jumps within a Pascal
program.

m After defining the global variables (section var) we can define
a section label. There we list the used labels.

m Then we may use these labels in the program

m and by goto label; we perform a jump to the location of
the label.

m Never use GOTO (in structured programming). | am using it
in pseudocode in order to postpone the introductin of loop
constructs after the kernel of the algorithm.

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Functions and Procedures

Defining functions and procedures

m Often the same sequence of nontrivial operations will be
needed in many different places (and it would be inefficient to
write them more than once).

m Procedures and functions provide us with a possibility to
define such sequences once and using (calling) them many
times.

m Procedures are a part of a program. Procedures are able to
process parameters passed to them.

m Functions are a part of a program. They are able to process
given parameters and to return a result.

m Examples: Cross the street; write out a message; arrive
somewhere (by a train); calculate a factorial...

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Functions and Procedures

Defining a function

function name(argument :type;...):type_of result

m Start with keyword function followed by name of the
function.

m arguments are listed in parentheses (as if we defined variables).

m Inidividual arguments get separated by a semicolon (while
defining).

m After a colon we put the type of the result.

m Value of the result gets assigned into a special variable with
the same name as the function has.

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Functions and Procedures

Example

program Xx;
var a:integer;

function sum up(a:integer; b:integer):integer;

begin
sum_up:=atb;
end;
begin
a:=sum_up(5,10);
writeln(a);
end.

Martin Pergel, perm@kam.mff.cuni.cz
Programovan



Functions and Procedures

Local variables

m Each function may use special variables (its own).
m These variables are called the local variables.

m We define them in a normal way, just their definition appears
after the header of a particular function-definition:

m function f(a:integer):boolean;
var b,c:integer;. ..
begin...end;

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Functions and Procedures

Example

function sum up(a:integer; b:integer):integer;
var c:integer;
begin

c:=atb;

sum_up:=c;
end;
Note that the variable used to define the result is write-only. It
must never be read! (It could not be distinguished from calling a
parameter-less function.)

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Functions and Procedures

resolution

m In addition to global variables there are also so called local
variables.

m Local variables are visible only within the appropriate
functions.

m A local variable may have the same name as a global one.

m In case of such a conflict, inside the function only the local
variable is visible.

m Values of the parameters are (by default) a value-parameters,
i.e., the value of an expression is copied. If the function
changes this value, this change is not propagated to the caller.

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Functions and Procedures

Example

function sum up(a:integer; b:integer):integer;

begin
sum_up:=atb;
a:=0;
begin
x:=5; y:=10; c:=sum_up(x,y);
writeln(x);
end.

Martin Pergel, perm@kam.mff.cuni.cz
Programovan



Functions and Procedures

Reference-parameters

Sometimes we want to propagate the argument-change to the
caller. How can we do that?

We use the keyword var in the appropriate place:

function f(var a:integer; b:integer) :integer;

begin

end;

x:=0; y:=0; a:=f(x,y);
writeln(x); writeln(y);

Result: 5 and 0; only genuine variables can be passed as such
parameter!

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Functions and Procedures

Parameter-free functions

It can make sense to define functions without parameters (e.g., a
function reading the data).

Then we omit parentheses behind the function-name (when, both,
defining and calling it):

function x:integer;

begin

- x:=10;

end;

a:=x;

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Functions and Procedures

Procedures

"Procedures are functions that return no value.’
procedure name(arguments) ;

name (arguments) ;...

example:
procedure writeit(a:integer;b:integer);
begin
~ writeln(a); writeln(b);

{We output the parameters}
end;

. writeit(5,10);...

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Nested Functions

Nested Functions and Procedures

It is possible to define a function inside another one:
procedure f(a:integer);
procedure g(b:integer);
begin
writeln(’Proc. g in proc. f w/arg. ’,b);
end;
begin
writeln(’Procedure f with argument ’,a);
g(2);{Calling nested proc. g}
end;

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Nested Functions

Scope resolution

m Procedure can 'see’ (except of local variables) also local
variables of its parents.

m Conflicting names resolve to the most 'local’ one.

m In this way we can define 'local’ procedures and functions.
l.e., nested functions that are visible only inside their direct
parents (not from grand-parents and further).

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Nested Functions

Example

procedure f(h:integer);
procedure g(b:integer);
procedure h(c:integer);
begin
writeln(’Procedure h with arg. ’,c);
end;
begin
writeln(’Procedure g with arg. ’,b);
h(5);
end;
begin
writeln(’Procedure f with arg. ’,h);
g(3); £(5); {so far so good, but calling
h(4) here causes an error!}

=hala
Martin Pergel, perm@kam.mff.cuni.cz

Programovani |



	Arrays
	Horner's Method
	Functions and Procedures
	Nested Functions

