
Interfaces provide a workaround for multiple-inheritance

Defined similarly to classes,

we define no members, we just delare them.

They do not contain attributes (only methods).

Syntactically – like with inheritance,

multiple interfaces get separated by commas.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Dynamic programming

Has nothing in common with dynamic allocation!

Refers to a way of designing algorithms trying to avoid the
recursion.

At the beginning we design an algorithm using recursion...

... which is unnecessarily inefficient.

Thus we may try to improve its complexity using cache.

Finally we realize that we do not need the recursion.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Typical problems we solved by recursion

Lecturer goes to S11,

number of valid bracketings (using n pairs of brackets),

number of decompositions of a number into sums of
nonincreasing numbers (Young tableauxs),

Pascal’s triangle,

longest increasing subsequence,

matrix-bracketing (for purpose of multiplication),

knapsack,

...

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Lecturer goes to S11, again
and this time faster

Lecturer comes from Ground floor to 1st floor and at the
staircase he always either steps at the next step or steps over
1 step. In how many ways he can pass the staircase?

Fibonacci numbers, we solved the problem using recursion:

f (n) := f (n− 1) + f (n− 2) (and starting conditions for n = 1
and 2.

Solution is inefficient as we are computing repeatedly the
same values.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Implementation
using recursion

...

static long fibonacci(int n)

{ if(n==1) return 1;

if(n==2) return 2;

return fibonacci(n-1)+fibonacci(n-2);

}
static void Main(){

Console.WriteLine(fibonacci(Convert.ToInt32(

Console.ReadLine())));

}
...

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Problem: Computing still the same values
and how to avoid doing that

Problem is clear, how to avoid doing it?

We introduce a cache for results,

always we take a look whether the result is in cache and when
not, we perform a recursive call.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Example
using cache

static long[] c;

static long fib(int n)

{ if(c[n]==0)

{ if(n==1) c[n]=1;

else if(n==2) c[n]=2;

else c[n]=fib(n-1)+fib(n-2);

}
return c[n];

}
static void Main(){

int i=Convert.ToInt32(Console.ReadLine());

c=new long[i+1];

Console.WriteLine(fib(i));

}
Martin Pergel, perm@kam.mff.cuni.cz

Programming II

One step further
Do we need the recursion?

If we take a closer look, it appears we do not need recursion.

We replace it with a cycle...

... as we are calculating the values in an increasing ordering.

We just have to fill-in the array (result is on its last position).

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Example
using cycle and an array

static long[] c;

static void Main(){
int i=Convert.ToInt32(Console.ReadLine());

c=new long[i+1];

c[1]=1;

c[2]=2;

for(int j=3;j<=i;j++)

c[j]=c[j-1]+c[j-2];

Console.WriteLine(c[i]);

}

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Optimization
Do we need the array?

We always use just last two elements of the array.

Why should we waste the memory then?

Let us ”cache”last two values in variables.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Example
the final one

static void Main(){
long

a=1,b=2,c,j,i=Convert.ToInt32(Console.ReadLine());

switch(i)

{ case 1: b=1; break;

case 2: b=2; break;

default: for(j=3;j<=i;j++)

{ c=a+b; a=b; b=c;}
break;}
Console.WriteLine(b);

}

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Number of valid bracketings

Considering n pairs of brackets, in how many ways we may
organize them to obtain a valid bracketing (e.g.: (()), ()()).

We were solving using recursion on position of a bracket in
the expression.

The algorithms was not too efficient as it was still computing
the same values:

bracket(opening,closing,total) always adds the same
value for a given triple.

And yet total is a constant.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Example
good old recursive algorithm

static long counter=0;

static void bracket(int o,int c,int t)

{ if((o==c) &&(o==t)) counter++;

if(o>c) bracket(o,c+1,t);

if(o<t) bracket(o+1,c,t);

}
static void Main()

{ bracket(0,0,Convert.ToInt32(Console.ReadLine()));

Console.WriteLine(counter); }

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

What now?
Still the same

The program still computes the same value. How to solve the
problem now?

In the same way, just...

... the array shall be two-dimensional (as there are two
parameters)...

... and we have to workaround the fact that the function does
not return the result!

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Example
better recursive algorithm

static long[,] ca; static long counter=0;

static void bracket(int o,int c,int t)

{ long tmp=counter;

if(ca[o,c]==0)

{ if((o==c) &&(o==t)) counter++;

if(o>c) bracket(o,c+1,t);

if(o<t) bracket(o+1,c,t);

ca[o,c]=counter-tmp;

}else counter+=ca[o,c];}
static void Main()

{ int i=Convert.ToInt32(Console.ReadLine());

ca=new long[i+1,i+1];

bracket(0,0,i);

Console.WriteLine(counter);}
Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Do we need the recursion?
Still the same question, again the same answer...

We saved on the recursion, but do we really need it?

No, it suffices to fill-in the cache.

How to fill the cache in?

We may make a self-explanatory step aside using
”debugging”-version.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Example
the debugging version

static long[,] ca;

static long counter=0;

static void bracket(int o,int c,int t)

{ long tmp=counter;

if(ca[o,c]==0)

{ if((o==c) &&(o==t)) counter++;

if(o>c) bracket(o,c+1,t);

if(o<t) bracket(o+1,c,t);

ca[o,c]=counter-tmp;

Console.WriteLine("Filling {0},{1} with

{2}",o,c,counter-tmp);
}else counter+=ca[o,c];

}

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Example
without recursion

static long[,] ca;

static void Main()

{ int i=Convert.ToInt32(Console.ReadLine()),a,b;

ca=new long[i+1,i+1];

for(a=i;a>=0;a--)

for(b=i;b>=a;b--)

{ if((i==b)&&(a==b))

ca[b,a]=1;

if(b>a) ca[b,a]=ca[b,a+1];

if(b<i) ca[b,a]+=ca[b+1,a];

}
Console.WriteLine(ca[0,0]);

}

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Decomposing a number
into sum of nonincreasing numbers

Given a non-negative number, we want to know in how many
ways we may decompose it into a sum of nonincreasing
positive numbers.

Example: 4: 4, 3+1, 2+2, 2+1+1, 1+1+1+1.

We have solved also using a recursion (on position in the sum
using maximum permitted value and the remainder).

The algorithm was still often (and unnecessarily) decomposing
values 1, 2, 3...

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Example
recusive algorithm

static long counter=0;

static void decomp(int what, int max){
int i,j;

if(what==0) counter++;

j=((max>what)?what:max);

{ for(i=j;i>0;i--)

decomp(what-i,i);

}
}
static void Main(){

int i=Convert.ToInt32(Console.ReadLine());

decomp(i,i);

Console.WriteLine(counter);

}
Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Again we make a cache
and again in the same way

We create a cache parametrized by the arguments of the
function,

again we remember how many endings are added (like in
bracketing),

after doing that we may again get rid of the recursion...

... but this time we keep it as a homework.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Example
with a cache

static long[,] ca;

static long counter=0;

static void decomp(int what, int max){
int i,j;long tmp;

if(ca[what,max]==0)

{ tmp=counter;

if(what==0) counter++;

j=((max>what)?what:max);

{ for(i=j;i>0;i--)

decomp(what-i,i);

}
ca[what,max]=counter-tmp;

} else counter+=ca[what,max];

}
static void Main(){

int i=Convert.ToInt32(Console.ReadLine());

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Pascal’s triangle
contains combinatorial numbers describing how many k-element combinations are the
using n elements

We won’t use explicit formula
(

n

k

)

= n!
k!×(n−k)! ,

we use a recurrent formula saying:
(

n

k

)

=
(

n−1
k

)

+
(

n−1
k−1

)

.

We want to determine just particular
(

n

k.

)

This formula can be implemented using recursion...

but still such an algorithm sucks... still because of the same
reason...

thus we introduce a cache and realize that we do not need the
recursion.

This approach to the problem is called the dynamic

programming.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Example
without cache

static long combin(int n, int k)

{ if((k==0)||(n==k))

return 1;

else return combin(n-1,k)+combin(n-1,k-1);

}
static void Main(){

int n=Convert.ToInt32(Console.ReadLine()),

k=Convert.ToInt32(Console.ReadLine());

Console.WriteLine(combin(n,k));

}

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Example
with a cache

static long [,]ca;

static long combin(int n, int k)

{ if(ca[n,k]==0)

{ if((k==0)||(n==k))

ca[n,k]=1;

else ca[n,k]=combin(n-1,k)+combin(n-1,k-1);

}
return ca[n,k]; }

static void Main(){
int n=Convert.ToInt32(Console.ReadLine()),

k=Convert.ToInt32(Console.ReadLine());

ca=new long[n+1,k+1];

Console.WriteLine(combin(n,k));}

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Dynamic programming
general atributes of the method I/II

Considering a problem that can be solved with a recursion we
realize that the recursion is asynchronous [it does not depend
on anything except its parameters].

Then it holds that such a recursion brings always the same
result (for given arguments).

To make use of this fact, it is necessary that the algorithm
computes the values (for fixed arguments) repeatedly (and
many times).

So we use a cache, compute the value only once and read the
cache since next time.

And finally we should get rid of the recursion and replace it
using several cycles.

Complexity of the algorithm then usually decreases rapidly.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Dynamic programming
general atributes of the method I/II

It is also possible to observe dynamic programming as a
method ”an sich”, but then it is unclear where the algorithms
appeared (and what’s the common property of algorithms
from this family).

Note that dynamic programming behaves with recursion as,
e.g., divide et impera did. But compared to divide et impera
the division is not fixed (we are trying all possible divisions
instead).

So far we’ve been just plaing, more serious problems are
comming: longest increasing subsequence, matrix
multiplication (bracketing), knapsack, string metric,...

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Longest increasing subsequence

The recursive algorithm shall ask (for each element) how long
is the longest increasing subsequence ending in this element.

We will be still asking about subsequence consisting of the
first element (at most).

Thus we start caching and for each element we store length of
longest increasing subsequence ending in this element.

Then we sweep through the array and each ”last”element gets
attached after some already explored element.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

