Annotation

Defining our own data-types (enumerated data-types),

The control structure case ... of ...,

Compiler directives,

[
[
m Basic sorting algorithms,
[
m Files (text files),

[

basic sorting algorithms.

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |

Defining Data Types

How to pass an array as a parameter?

m In Classical Pascal we have to define our own data-type
(show why the naive approach does not work).

m Turbo Pascal (and also Free Pascal) support open-array
parameters.

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |

Defining Data Types

Defining own data-type:

m Keyword type permits us to define a new data-type.
m trivial use: type int=integer;

B use: type x=array[l..10] of integer;

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |

Defining Data Types

Example

program nnn;
type arr=array[l..10] of integer;
var p:arr;
procedure output(a:arr);
var i:integer;
begin
for i:=1 to 10 do
writeln(alil);
end;
begin
...output(p);
end.

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |

Defining Data Types

Open-array parameters

Available in Turbo Pascal and Free Pascal.

We say that the argument is an array of a particular type, but
we omit limits.

Example: procedure output(a:array of integer);

The argument is an array indexed from 0 to M.

The value N can be determined using a function high.

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |

Defining Data Types

Example using open-array parameters

procedure output(a:array of integer);
var i:integer;
begin
for i:=0 to high(a) do
writeln(alil);
end;

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |

Defining Data Types

Further possibilities

how to use user-defined data-types

We want to calculate the days of a week. How we do that?
m We define constants: Monday=1, Tuesday=2,...
m But I'll change the numbering: Monday=0, Tuesday=1,...

m Then an American comes and enumerates: Sunday=1,
Monday=2,...

m Thus we define a special data-type indexed with days of a
week,

the numbers get assigned by the compiler.

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |

Defining Data Types

Enumerated data-type

m Gets defined in the type-section,
m individual values are in the brackets separated by commas.

m Example: type daysofweek=(monday,tuesday,
wednesday, thursday,friday, saturday, sunday);

m Or we may directly define a variable of enumerated type:
var cal:(monday,tuesday,wednesday,thursday,
friday, saturday,sunday) ;

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |

Defining Data Types

Example

m Let us implement a simple "calendar” for year 2013, i.e., we
output the date and day of week.

m For the sake of simplicity let's consider that each month
consists of 30 days...

m Source code appears on web
(kam.mff.cuni.cz/~perm/programovani/NPRG030/enum.pas).

m We see that the write function cannot output enumerated
data-types.

m What should we do in order to write out the names of the
days?

m Either we use large if-clause or case variable of

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |

Defining Data Types

Structure case

m It helps us to create many branches (in a program) depending
on the value of a variable.

m Syntax:
case variable_name of

valuel: statement nebo blok

value2: statement nebo blok

else statement nebo blok
end;

m Only the branch labeled by current value of the variable gets
executed. The else-branch gets executed otherwise (for other
values).

m The else-clause is not compulsory!

m If the last clause is a block, we write the keyword end twice
(the former closes the block, the latter finishes the case block.

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |

Defining Data Types

Example — calendar

appears at
kam.mff.cuni.cz/ perm/programovani/NPRG030/case_of .pas.

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |

Compiler-directives

Compiler-directives

Compiler tests many issues, e.g.:

whether we are not shooting behind the array,

whether the stack is not overflown,

whether the input/output error occured...

Usually it is a good idea to keep these tests switched on but
sometimes we "know what we are doing”.

m Then we can switch them off (but only if it is essential).

m We can do that using the compiler-directives.

m These directives look like a comment, i.e., they are in the
braces,

just the "comment” begins with the string-character ($).
Then we place (usually 1-character long) name and a switch
+/—.

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |

Compiler-directives

Compiler-directives

m Example: {$R—} — switch the range-checking off.
m The most important:
m $Q — overflow-checking,
m $R - range-checking,
m $/ — input-output tests,
m List can be find in a manual (some directives are
compiler-dependent).

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |

Files

and functions related to them

m This time we show the text files (binary files appear later).
m Text-file is operated by a variable of type Text.

m This variable gets assigned to a given file by the
Assign-function,

m then we open the file using Reset, Rewrite or Append,

m after that we read (using Read and Readln functions). This
time we give the Text-type variable as the first argument,

m writing into the file is operated analogously calling Write or
Writeln functions.

m Finally we close the file using the Close-function.

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |

Files

and functions related to them — syntax (1)

m var f:Text;

m Assign(f,’file.txt’); — assing the variable £ with
file.txt.

m Reset (£); — open the file represented by f (for reading).
m Rewrite(f); — open £ if it exists, destroy (erase) its contain.

m Append(f); — open £ for appending (writing behind its
current end).

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |

Files

and functions related to them — syntax (2)

m Writeln(f,’We are writing to the file’); — output
the text into the file.

m Read(f,a); — Read from the file variable a.
m Close(f); — Close the file (we won't use it anymore).

m eof (£); — function returning boolean depending on whether
we are (already) at the end of the file.

m eof; — function announcing the end of standard input
(usually from keyboard).

m There are many further function Rename, Erase,...

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |

Problems around files

m Sometimes it happens that the file (opened with Reset) does
not exist.

m This causes the input/output error.

m To avoid it we can either destroy the file (calling Rewrite),
which is counter-productive, thus we use an appropriate
compiler-directive (to switch the input/output error off) and if
it occurs, we find it out by calling the T0Result-function.

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |

Example

Assign(f,’file.txt’);
{$/—} {Switch the tests on input/output errors off}
Reset (f);
{$/+} {Switch I0-error on again}
if IOResult<>0 then
begin writeln(’A problem!’); halt;
end;
while not eof(f) do begin
readln(f,s);
writeln(s);
end;
Beware that I0Result is a function and thus after calling it, the
error-value gets replaced by 0. Thus we have to store it into a
variable (for further use).

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |

	Defining Data Types
	Compiler-directives
	Files

