
Precomputation Nested Functions Recursion

Annotation

The Power of Precomputation,

Recursion (pars prima),

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Nested Functions Recursion

Maximum unit submatrix

Problem: Given an m × n matrix filled by zeroes and ones we
should find largest (continuous) submatrix containing only ones
(numbers 1).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Nested Functions Recursion

Naive approach

Find all candidates for upper left and lower right corners.
Inspect the interior.

This algorithm works. What is its complexity?

Θ(mn) left-upper-corner candidates, Θ(mn) right-lower...,
Θ(mn) elements inside the candidate matrix (why?),
altogether Θ(m3n3).

Ideas for improvement?

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Nested Functions Recursion

Precomputation

For each 1-element we compute the number of ones lying
(immedialtely) below it (i.e., in a column without being
interrupted by 0).

We index each such candidate by the left- and right- upper
corner.

For each left upper corner try all possibilities of right upper
corner (i.e., in the same row).
These candidates must not be separated by 0 (i.e., they belong
to the same block of 1’s in the row).
As we know numbers of 1’s below each element, the height of
such matrix gets determined as minimum of these numbers.
Rest is just multiplying (the sizes) and comparison (of the
sizes).

Complexity: Precomputation O(mn), computation O(m2n).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Nested Functions Recursion

Can we find a better algorithm?

Surprisingly, yes. And the algorithm also uses a precomputation.

Determine the number of ones below each element (→ B),

Determine the number of ones above each element (→ C ),

Index the candidate-matrices by the left critical end, i.e., the
left end where the matrix neighbors with a zero-element, i.e.,
ai ,j = 1 and ai ,j−1 = 0 or j = 1 (ai ,j−1 is not a member of a
matrix).

Try all possible candidates for the right end (in the
appropriate line).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Nested Functions Recursion

Complexity analysis

Precomputation (determining the matrices B and C ): Θ(mn),

although it seems that the complexity does not change, the
truth is different:

We are trying each right-end-candidate at most once!

Therefore, altogether, Θ(mn). As the complexity of the
problem is Ω(mn), we have estimated the complexity of the
problem (Θ(mn)) and thus the algorithm is optimal (up to a
(multiplicative) constant).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Nested Functions Recursion

Nested Functions and Procedures

It is possible to define a function inside another one:
procedure f(a:integer);

procedure g(b:integer);

begin

writeln(’Proc. g in proc. f w/arg. ’,b);

end;

begin

writeln(’Procedure f with argument ’,a);

g(2);{Calling nested proc. g}
end;

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Nested Functions Recursion

Scope resolution

Procedure can ’see’ (except of local variables) also local
variables of its parents.

Conflicting name solved for the most ’local’ one.

In this way we define ’local’ procedures and functions. I.e.,
nested functions are visible only inside their direct parents
(not from grand-parents and further).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Nested Functions Recursion

Example

procedure f(h:integer);

procedure g(b:integer);

procedure h(c:integer);

begin

writeln(’Procedure h with arg. ’,c);

end;

begin

writeln(’Procedure g with arg. ’,b);

h(5);

end;

begin

writeln(’Procedure f with arg. ’,h);

g(3); f(5); {so far so good, but calling

h(4) here causes an error!}
end;

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Nested Functions Recursion

Recursion

It makes sense to call a function directly from itself.

This is called a recursion.

Recursion is nothing else than just a renamed induction!

Examples: Clerks at the authority-offices, factorial, Caesar’s
cipher...

Note that we are showing problems where the recursion can
be applied (not necessarily problems optimally solved by
recursion)!

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Nested Functions Recursion

Clerks in burreaus

A citizen wants to perform a legal decision.

A clerk wants particular forms to get filled-in (which requires
visits of further authorities).

Solution:
procedure fill in(to fill:list of forms);

var x:list of forms;

for form in to fill do

begin

x:=ask a clerk(form);

fill in(x);

end;

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Nested Functions Recursion

Factorial

n! = 1 · 2 · . . . · n

How to implement it?

Using a cycle:
fakt:=1;

for i:=1 to n do

fakt:=fakt*i;

or using the recursion.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Nested Functions Recursion

Factorial using the recursion

function factorial(a:integer):integer;

begin

if a<2 then

factorial:=1;

else factorial:=a*factorial(a-1);

end;

Computational complexity of this function?

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Nested Functions Recursion

Lecturer goes to the lecture-room

When going to the lecture-room, the lecturer uses a
stair-case. Always he steps either onto the next stair or steps
over one (omits the next stair and steps on the second one).

In how many ways he can reach the room S11?
(do not calculate exact number of stairs, try to estimate with
a reasonable precision)

Ideas?

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Nested Functions Recursion

Lecturer goes to the lecture-room – a solution

We get a recurrence fn = fn−1 + fn−2.

Recurrence is nothing else than a mathematically notated
recursion.

Solution:
function stairs(a:integer):integer;

begin

if a=1 then stairs=1;

else if a=2 then stairs=2;

else

stairs:=stairs(a-1)+stairs(a-2);

end;

What is the problem (with this solution)?

Complexity!

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Nested Functions Recursion

Ideas of the Recursion

The Recursion is a method how to solve a given problem in
such a way that in particular (consecutive) steps we are
decreasing the size of the instance (up to a small-enough
instance) and then we are extending the solutions (for the
smaller instances) to the solution of the given (larger)
instance.

Further example: Output all the numbers in a given numeral
system (with a given base and length).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Nested Functions Recursion

The Main Program

program q;

const MAX=10;

var dig,base:integer;

arr:array[1..MAX] of integer;

begin

write(’Input the number of digits: ’);

readln(dig);

if(dig>MAX) then

halt;{Number too long}
write(’Input the base of the system: ’);

readln(base);

if base>10 then

halt;{Too large base!}
fill(1);

end.
Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Nested Functions Recursion

The Recursive Kernel

procedure fill(where:integer);

var i:integer;

begin

if(where<=dig) then

for i:=0 to base-1 do

begin

arr[where]:=i;

fill(where+1);

end

else output;

end;

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Nested Functions Recursion

The Output-procedure

procedure output;

var i:integer;

start:boolean;

begin

start:=true;

for i:=1 to dig do

if((not start) or (arr[i]<>0)) then

begin

start:=false;

write(arr[i]);

end;

if start then write(0);

writeln;

end;

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I


	Precomputation
	Nested Functions
	Recursion

