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plices into manifolds.

The second one is a very general topological Helly type theorem for sets in Rd: There
exists a function h(b, d) such that the following holds. If F is a finite family of sets in Rd

such that β̃i (
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1. Introduction

In this thesis we introduce a general framework which combines algebra, algebraic topol-
ogy and combinatorial arguments to yield non-embeddability results. The novelty of our
approach is to examine non-embeddability arguments from a homological point of view.
This turns out to be a surprisingly effective idea, as homological analogues of embed-
dings appear to be much richer and easier to build than their homotopic counterparts.
So far, we have two main applications of the developed methods: an upper bound for
Kühnel’s conjecture [Küh94Küh94, Conjecture B] of non-embeddability of skeleta of simplices
into manifolds (Theorem 1.11.1) and a very general topological Helly type theorem for sets
in Rd (Theorem 1.81.8).

The thesis is based on the following papers:

1. X. Goaoc, I. Mabillard, P. Paták, Z. Patáková, M. Tancer, U. Wagner: On Gener-
alized Heawood Inequalities for Manifolds: a Van Kampen–Flores Type Nonembed-
dability Result, conference version in Proceedings of Symposium of Computational
Geometry, 2015
Here we show that if n ≥ 2bk

(
2k+2
k

)
+ 2k + 5, then the k-dimensional skeleton of

n-dimensional simplex does not embed into any 2k-dimensional manifold with kth
Z2-Betti number at most bk (Theorem 1.11.1). This generalizes van Kampen-Flores
theorem [vK32vK32, Flo33Flo33], although with a slightly suboptimal bound, and constitutes
the first finite upper bound for Kühnel’s conjecture [Küh94Küh94, Conjecture B], so far
as we know. Moreover, our bound is roughly only kth power of the conjectured
value.

2. X. Goaoc, P. Paták, Z. Patáková, M. Tancer, U. Wagner: Bounding Helly numbers
via Betti numbers, conference version in Proceedings of Symposium of Computa-
tional Geometry, 2015
Using induction, we obtain a very general topological Helly type theorem (Theo-
rem 1.81.8): There exists a function h(b, d) such that the following holds. If F is a finite
family of sets in Rd such that the reduced Betti numbers satisfy β̃i (

⋂G;Z2) ≤ b
for any G ( F and every 0 ≤ i ≤ dd/2e − 1, then F has Helly number at most
h(b, d). If we are only interested whether the Helly numbers are bounded or not,
this theorem subsumes a broad class of Helly type theorems for sets in Rd.

3. P. Paták: Colorful Algebraic Tverberg Type Theorem, In preparation
Tverberg’s theorem states that given (r−1)(d+1)+1 points in Rd, it is possible to
split them into r parts F1, F2, . . . , Fr such that convF1∩convF2∩· · ·∩convFr 6= ∅.
There is also a colorful version that places some additional constraints onto the
resulting sets F1, . . . , Fr. So far the colorful version can only be proven if r is a
prime number. Here we prove a variant of colorful Tverberg Theorem, where we
replace convex combinations with affine ones. The result does hold for all fields
and arbitrary non-negative integer values of r; and enables us to reduce the bound
n ≥ 2bk

(
2k+2
k

)
+ 2k + 5 in Theorem 1.11.1 to n ≥ 2bk

(
2k+2
k

)
+ 2k + 3.

Before we describe main ideas of our method, some definitions are needed.11.

1Proper definitions can be found in Section 3.13.1, here we only sketch the most important ones.
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Given a field F and a topological space X, there is a certain vector space C̃∗(X;F) as-
signed to X. It is called the augmented chain complex. Augmented chain complexes also
exist for simplicial complexes. Any continuous map f : X → Y between two topological
spaces X, Y induces a chain map (a special homomorphism) f] : C̃∗(X;F) → C̃∗(Y ;F)
between the corresponding chain complexes. The induced chain map sends the empty
chain, the generator of C̃−1(X;F), onto the empty chain, generator of C̃−1(Y ;F). We call
chain maps satisfying this condition nontrivial. Furthermore, if f is an embedding, the
induced chain map maps chains with disjoint supports to chains with disjoint supports.
We call nontrivial chain maps satisfying this condition homological almost embeddings.

Now the main idea of our method can be described as follows:
Suppose that L is a finite simplicial complex and f : ∆

(k)
n → X is a continuous map

of the k-dimensional skeleton of n-dimensional simplex, ∆
(k)
n , into a topological space

X. If F is finite and n is big enough (depending on X, L, F and k), we can, using

Ramsey theory and the additive structure of the finite chain group C∗
(

∆
(k)
n ;F

)
, find a

homological almost embedding ϕ : C∗ (L;F) → C∗
(

∆
(k)
n ;F

)
such that the composition

f] ◦ ϕ is homologically trivial.
In the proof of Theorem 1.11.1, we combine this idea with a result by Volovikov [Vol96bVol96b]

that every embedding f of ∆
(k)
2k+2 into a 2k-dimensional compact manifold M satisfies22

f∗ 6= 0.
In the proof of Theorem 1.81.8, assuming that the Helly number of a family F is un-

bounded, we inductively use the construction to obtain a homological almost embedding

of C∗
(

∆
(k)
2k+2;Z2

)
into C∗

(
R2k;Z2

)
, which contradicts our homological version of the Van

Kampen-Flores theorem (Theorem 1.71.7).

1.1 Thesis outline

The thesis is divided into chapters as follows:

1. Chapter 11 relates our work to known results.

2. Chapter 22 contains a variant of colorful Tverberg theorem for affine combinations
(Theorem 1.31.3). Although interesting on its own, the result is mainly used to find
suitable combinations of non-trivial chain maps in Chapter 33. Since the proof is
technical, we also provide an easier version (Lemma 2.82.8) for the readers who do
not want to go through all the technical details and are willing to accept a slightly
worse33 bounds in Chapters 33 and 44.

3. In Chapter 33 we show that given a manifold M with bounded kth Betti number,
a k-dimensional simplicial complex L and a continuous map f from a “sufficiently
large” k-dimensional simplexK intoM , f can be used to construct a map g : L→ K
satisfying (f ◦ g)∗ = 0 and some additional properties (Theorem 1.21.2). The chapter
concentrates on the affine structure of non-trivial chain maps and shows that an

2Volovikov’s original result is stated in terms of cohomology but if F is a field, it implies that f∗ 6= 0.
3We note that for the Kühnel’s conjecture (Theorem 1.11.1), the bounds differ only by one. The gap

becomes larger for other theorems.
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affine combination ϕ =
∑
aihi satisfying certain properties can be turned into a

continuous map h such that h∗ = ϕ∗. We combine this idea with Theorem 1.31.3 to
obtain the desired result.

4. Chapter 44 provides the first striking application of our methods: Given a 2k-
dimensional manifold M , we prove non-embeddability of “sufficiently large” k-
dimensional simplicial complexes into M (Theorem 1.11.1) and hence provide an up-
per bound for Kühnel’s conjecture [Küh94Küh94, Conjecture B]. The proof is based on
a combination of Theorem 1.21.2 with Volovikov’s result that there is no embedding
f : ∆

(k)
2k+2 → M into a compact 2k-dimensional manifold M for which f∗ = 0. We

also provide several generalizations of Theorem 1.11.1.

5. Chapter 55 shows the nonexistence of homological embeddings of C∗
(

∆
(k)
k+1;Z2

)

or C∗
(

∆
(k)
2k+2;Z2

)
into C∗(Rk;Z2) or C∗

(
R2k;Z2

)
, respectively (Theorems 1.61.6 and

1.71.7). The proofs are based on the fact that the classical cohomological arguments
easily translate into the setting of non-trivial chain maps.

6. Chapter 66 shows another striking application of our approach, our very general
Helly type theorem (Theorem 1.81.8): There exists a function h(b, d) such that the
following holds. If F is a finite family of sets in Rd such that β̃i (

⋂G;Z2) ≤ b for
any G ( F and every 0 ≤ i ≤ dd/2e − 1, then F has Helly number at most h(b, d).
The proof is obtained by contradiction. If the Helly number of F is sufficiently
large, we use an inductive construction to build a homological almost embedding

of C∗
(

∆
(k)
2k+2;Z2

)
into C∗

(
R2k;Z2

)
. Existence of such an embedding contradicts

Theorem 1.71.7 from Chapter 55, hence the Helly number of F has to be smaller.

The logical dependency of the chapters is as follows:

Chapter 1

IntroductionIntroduction

vv ''Chapter 2

Colorful algebraic
Tverberg type theorem
Colorful algebraic
Tverberg type theorem

��

Chapter 5

Homological
Almost-Embeddings
Homological
Almost-Embeddings

��

Chapter 3

Ramsey type result for
simplicial chain maps
Ramsey type result for
simplicial chain maps

��

Chapter 6

A general Helly type
theorem
A general Helly type
theorem

Chapter 4

Van Kampen-Flores type
non-embeddability results
for manifolds

Van Kampen-Flores type
non-embeddability results
for manifolds

The remaining part of the introduction shows our results in the context of related
work. It also depicts relations between various chapters of this thesis. In Section 1.21.2
we investigate non-embeddability results and provide a motivation for Theorem 1.11.1. In
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Section 1.31.3 we investigate Helly type theorems and show that if one only concentrates
on the question “Are Helly numbers bounded, or not?”, that many of the Helly type
theorems are subsumed by our Theorem 1.81.8. Unfortunately, the bounds on Helly numbers
it provides are enormous, so the main application of Theorem 1.81.8 is a quick identification
of situations for which Helly numbers are bounded and for which a new Helly type
theorems can be obtained by proving effective bounds.

1.2 Non-embeddability results

1.2.1 Non-embeddability

The fact that the complete graph K5 does not embed in the plane has been generalized
in two independent directions. On the one hand, the solution of the classical Heawood
problem established that for surfaces other than the Klein bottle44, complete graph Kn

embeds into a closed surface M if and only if (n − 3)(n − 4) ≤ 6b1(M), where b1 is the
first Z2-Betti number of M . See [Hea90Hea90, Hef91Hef91] for the original statement of the problem
and [Rin74Rin74] for the history and detailed references to the series of work by Gustin, Guy,
Mayer, Ringel, Terry, Welch, and Youngs that solved the problem in 1950–1960.

On the other hand, it is possible to replace complete graphs Kn+1 with their higher

dimensional analogues ∆
(k)
n , k-dimensional skeletons of n-dimensional simplices, and ask

when they embed into Rm. Since every finite k-dimensional simplicial complex embeds
into R2k+1, the first interesting value of m is 2k. In this case the optimal solution is
known: Van Kampen [vK32vK32] and Flores [Flo33Flo33] proved that ∆

(k)
n embeds into R2k if and

only if n ≤ 2k + 1.
Two decades ago Kühnel conjectured [Küh94Küh94, Conjecture B] that ∆

(k)
n embeds in a

compact, (k − 1)-connected 2k-dimensional manifold with kth Z2-Betti number bk only
if the following generalized Heawood inequality holds:

(
n− k − 1

k + 1

)
≤
(

2k + 1

k + 1

)
bk. (1.1)

This is a common generalization of the case of graph on surfaces (k = 1) as well as
the Van Kampen-Flores theorem (bk = 0). So far the conjecture remained essentially
untouched.

In Chapter 44, we are able to prove the following bound for Kühnel’s conjecture:

Theorem 1.1. Let M be a 2k-dimensional manifold with kth Z2-Betti number bk. If
n ≥ 2bk

(
2k+2
k

)
+ 2k + 3, then ∆

(k)
n does not embed into M .

Our assumptions are weaker and apply to a much broader class of manifolds than the
original conjecture, but our bound on n is approximately kth power of the value proposed
by Kühnel.

We note that Volovikov [Vol96bVol96b] has also generalized Van Kampen-Flores theorem
for manifolds, however, his version does not answer the question what is the largest
integer n, for which ∆

(k)
n embeds into a 2k-dimensional manifold with kth Betti number

4Klein bottle does not allow an embedding of K7, only of K6.
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bk. Volovikov’s theorem concerns55 2k-dimensional compact manifolds M and states that
there exists no almost embedding66 f : ∆

(k)
2k+2 →M , for which the induced homomorphism77

f∗ : H∗
(

∆
(k)
2k+2;Z2

)
→ H∗(M,Z2) is trivial.

We deduce Theorem 1.11.1 from Volovikov’s result by using the following sophisticated
reduction:

Theorem 1.2. Let n, s, k, b ≥ 0 be integers. Let M be a manifold with k-th reduced
Z2-Betti number at most b. Let f : ∆

(k)
n →M be an almost embedding. If

n ≥
(
s

k

)
b(s− 2k) + s+ 1 and n ≥ s+ 1.

then there exists an almost embedding g : ∆
(k)
s →M such that the induced homomorphism

in homology g∗ : H∗
(

∆
(k)
s ;Z2

)
→ H∗(M ;Z2) is trivial.

The details of the reduction and its proof can be found in Chapter 44.

1.2.2 Multiple intersections

We have asked when does ∆
(k)
n embed into Rm. We already know the answer for the

extremal value m = 2k, due to Van Kampen-Flores Theorem [vK32vK32, Flo33Flo33]. Since no
(k + 1)-dimensional complex can be embedded into Rk for dimension reasons, the other
extremal value is k = m. Even in that case an optimal solution is known: the topological
Radon’s theorem [BB79BB79] (see also [Mat03Mat03, Theorem 5.1.2]) asserts that ∆

(k)
k+1 does not

embed into Rk.
However, there is another direction, in which non-embeddability results can be gen-

eralized. We can namely restate “∆
(k)
n does not embed into Rm” as follows: “For ev-

ery continuous map f : ∆
(k)
n → Rm, there exist two distinct points x1, x2 ∈ ∆

(k)
n such

that f(x1) = f(x2).” So it is natural to ask which conditions guarantee that for ev-

ery continuous map f : ∆
(k)
n → Rm there are r distinct points x1, . . . , xr ∈ ∆

(k)
n with

f(x1) = f(x2) = . . . = f(xr). A generalization of the topological Radon’s theorem in
this direction is known as topological Tverberg’s theorem [Öza87Öza87, Vol96aVol96a]: If r is a prime
power88 then for every continuous map ∆(m+1)(r−1) → Rm there are r pairwise disjoint
faces σ1, . . . , σr of ∆(m+1)(r−1) such that f(σ1)∩f(σ2)∩· · ·∩f(σr) 6= ∅. Consequently, if r
is a prime power then for every continuous map f : ∆(m+1)(r−1) → Rm there are r distinct
points x1, . . . , xr satisfying f(x1) = f(x2) = . . . = f(xr) if and only if n ≥ (m+ 1)(r− 1).

5Here we only state a special case of Volovikov’s result. It is obtained by setting j = q = 2, m = 2k,
s = k + 1 and N = 2k + 2 in item 3 of Volovikov’s main result. Moreover, the original result is stated

in terms of cohomology, i.e., it asserts that f∗ : H∗(M ;Z2) → H∗
(

∆
(k)
2k+2;Z2

)
cannot be trivial. The

condition then implies f∗ 6= 0 by the following argument. By the Universal Coefficient Theorem [Mun84Mun84,
53.5], Hk( · ;Z2) and Hk( · ;Z2) are dual vector spaces, and f∗ is the adjoint of f∗, hence triviality of f∗
implies that of f∗.

6An almost embedding is a continuous map for which disjoint faces of ∆
(k)
2k+2 have disjoint images.

7Since H∗(R2k,Z2) = 0, this result can be viewed as a generalization Van Kampen-Flores theorem.
8It was an open question whether the result can be extended to general r, see [Mat03Mat03, p. 154]. Recently

Frick announced a counterexample [Fri15Fri15], which is built on methods of Mabillard and Wagner [MU14MU14].
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For r prime Blagojević, Matschke and Ziegler [BMZ15BMZ15] proved a version of the topo-

logical Tverberg theorem where the position of the points x1, . . . , xr ∈ ∆
(n)
n is some-

what controlled. Their topological ‘optimal colored Tverberg theorem’ asserts that if
n = (m + 1)(r − 1) and we divide the n + 1 vertices of ∆

(n)
n into color classes such that

each class contains at most r − 1 points, then we always find r disjoint rainbow99 faces
σ1, . . . , σr ⊆ ∆

(n)
n such that f(σ1)∩f(σ2)∩· · ·∩f(σr) 6= ∅. Matoušek, Tancer and Wagner

provided an alternative geometric proof [MTW12MTW12].
We replace the convex hulls with affine ones and obtain an algebraic analogue of the

’optimal colored Tverberg theorem’ that is valid for all positive integers r and all fields
F:

Theorem 1.3. Let F be a field, r ≥ 1 an integer and A a finitely dimensional affine
space over F. If N ≥ (r − 1)(dimA + 1) + 1 is an integer and C is an N-element set
partitioned into m+ 1 “color classes”

C = C0 ] . . . ] Cm,

where |C0| ≤ r and |Ci| ≤ r− 1 for all i = 1, . . . ,m, then for every map ψ : C → A, it is
possible to split C into r sets F1, . . . , Fr ⊆ C satisfying

(A) |Ci ∩ Fj| ≤ 1 for every i ∈ {0, 1, . . . ,m}, j ∈ {1, . . . , r}, and

(B) aff
(
ψ(F1)

)
∩ · · · ∩ aff

(
ψ(Fr)

)
6= ∅.

We prove this theorem in Chapter 22. We use it then in Chapter 33 to prove1010 Theo-
rem 1.21.2.

Since our proof only uses the fact that aff is a closure operator, we also obtain the
following matroidal version:

Theorem 1.4. Let M be a matroid (not necessary finite) with rank function r. Suppose
further that the rank r(M) is finite. Let k ≥ 1 be an integer. If N > (k − 1)r(M) is an
integer and C is an N-element set partitioned into m = r(M) “color classes”

C = C0 ] . . . ] Cm,

where |C0| ≤ r and |Ci| ≤ r− 1 for all i = 1, . . . ,m, then for every map ψ : C → A, it is
possible to split C into r sets F1, . . . , Fr ⊆ C satisfying

(A) |Ci ∩ Fj| ≤ 1 for every i ∈ {0, 1, . . . ,m}, j ∈ {1, . . . , r}, and

(B) cl
(
ψ(F1)

)
∩ · · · ∩ cl

(
ψ(Fr)

)
6= ∅,

where cl is the closure operator on M .

9A face is called rainbow if all its vertices lie in distinct color classes.
10If we used an uncolored version of algebraic Tverberg theorem (Lemma 2.82.8), we would obtain a

slightly worse bounds in Theorems 1.21.2, 1.11.1 and 1.51.5, otherwise the proofs would go through. If the reader
does not want to go through the technical proof of Theorem 1.31.3 and is willing to accept worse bounds,
we advise him/her to skip Theorems 1.31.3 and 1.41.4 and use Lemma 2.82.8 instead.
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Observe that Theorem 1.31.3 differs from “optimal colored Tverberg theorem” [BMZ15BMZ15]
by considering affine hulls and allowing |C0| to contain r points instead of r− 1. We also
note that without requiring the color constraints (condition (A)), the algebraic Tverberg
theorem is easy to prove, see Lemma 2.82.8.

We relate Theorem 1.41.4 to the refuted Eckhoff’s partition conjecture [Eck00Eck00]: Let X
be a set and wcl : 2X → 2X a map satisfying wcl(wcl(X)) = wcl(X) and A ⊆ B ⇒
wcl(A) ⊆ wcl(B). (We call such a map a weak closure operator on X.) Define tr(X)
to be the largest size of a (multi)set in X which cannot be partitioned into r parts
whose weak closures have a point in common. Eckhoff asked whether it is true that for
every such weak closure operator one has tr ≤ t2(r − 1). An affirmative answer would
have implied a combinatorial proof of topological Tverberg theorem. The question was
answered negatively1111 by Bukh [Buk10Buk10].

However, it is still possible to prove Tverberg type theorems for some classes of weak
closure operators: Theorem 1.41.4 is a very strong Tverberg type theorem for matroids.

We also note that the proof of Theorem 1.41.4 provides some insight into the difficulties
one encounters when trying to prove Rota basis conjecture [HR94HR94, Conjecture 4]. Rota
conjectured that given a matroid of rank r and r of its bases, it is possible to arrange
them into an r × r matrix such that the rows are permutations of the given bases and
the columns of the matrix are also bases.

If we let Ci, i = 0, . . . ,m − 1 be the ith basis, our proof of Theorem 1.41.4 goes
through, yielding rainbow sets Fi, i = 1, . . . , r that are “almost bases”: Fi is the ba-
sis of cl (Fi ∪ Fi+1 ∪ . . . ∪ Fr). A careful investigation of the cases where Fi fails to be a
basis of the whole matroid may help to understand Rota basis conjecture better.

At the beginning of this section, we have asked when for every continuous map
f : ∆

(k)
n → Rm there are r points x1, . . . , xr satisfying f(x1) = f(x2) = . . . = f(xr).

When r is a prime power, topological Tverberg theorem provides an answer for the
extremal case k = n, in that case the existence of r such points is ensured for every
n ≥ (m+ 1)(r − 1).

But what happens if k ≤ n?

If r is a prime number and m(r − 1) ≤ rk, Sarkaria [Sar00Sar00] proved that every con-

tinuous map f : ∆
(k)
rk+2r−2 → Rm has r distinct points x1, . . . , xr ∈ ∆

(k)
rk+2r−2 satisfying

f(x1) = f(x2) = . . . = f(xr). Volovikov goes even further and shows that1212 if p is a prime
number, q = pn, M is an m-dimensional compact manifold and m(q − 1) ≤ qk, then for

every continuous map f : ∆
(k)
qk+2q−2 → M for which f∗ : H∗

(
∆

(k)
qk+2q+2;Zp

)
→ H∗(M ;Zp)

is trivial, there exist q disjoint points x1, . . . , xq with f(x1) = f(x2) = . . . = f(xq).

Using similar combinatorial reduction to Volovikov’s result as for Theorem 1.11.1, we
obtain a version of Theorem 1.11.1 for multiple intersections.

Theorem 1.5. Let M be a d-dimensional manifold. Let q = pn be a prime power. Let

b be the kth Betti number of M in the homology with Zp coefficients. If k ≥ d
(

1− 1
q

)
,

11A negative answer is also implied by Frick’s example [Fri15Fri15] that the topological Tverberg theorem
cannot be extended to non-prime values of r.

12In fact, he proved a result which is more general than stated here, however, we do not need the full
statement.
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N0 = q(k+1)+q−2, and N ≥
(
N0

k

)
b (N0 − 2k)+N0 +1 then for every map f : ∆

(k)
N →M

there exist q disjoint simplices σ1, . . . , σq ⊆ ∆
(k)
N with f(σ1) ∩ f(σ2) ∩ · · · ∩ f(σq) 6= ∅.

Theorem 4.44.4 has very weak assumptions and the bound is relatively weak.
In contrast, the tight version of the Tverberg Theorem for manifolds by Blagojević,

Maschke and Ziegler [BMZ11BMZ11] provides the optimal bound N ≥ (q − 1)(dimM + 1),
if one maps the whole simplex: There is no (q − 1)-almost embedding of ∆N into any
d-dimensional M , provided that N ≥ (q − 1)(d+ 1) and q is a prime power.

If q is a prime number, they even get colored version: For every continuous map

f :
∣∣∣∆(k)

N

∣∣∣ → M and every coloring of vertices of ∆
(k)
N such that no q vertices of ∆N get

the same color, there exist q disjoint rainbow faces σ1, . . . , σq ⊆ ∆N such that f(|σ1|) ∩
· · · ∩ f(|σq|) 6= ∅.

1.2.3 Homological non-embeddability

Chapter 55 is the last in the non-embeddability part of the thesis. In that chapter we
provide analogues of Radon’s theorem and Van Kampen-Flores theorem for non-trivial
chain maps.

Before we state the results precisely, we define a support of a singular chain γ =∑t
i=1 θi ∈ Cl(M ;Z2), where θi are l-dimensional singular simplices in M , by

supp
t∑

i=1

θi =
t⋃

i=1

θi(∆l).

(Recall that an l-dimensional singular simplex in M is any continuous map θi : ∆l →M .)

Theorem 1.6 (Homological Radon’s lemma). If ϕ : C∗
(

∆
(d)
d+1;Z2

)
→ C∗(Rd;Z2) is a

nontrivial chain map, then there exist two disjoint faces σ1, σ2 ∈ ∆
(d)
d+1 with suppϕ(σ1) ∩

suppϕ(σ2) 6= ∅.

Theorem 1.7 (Homological Van Kampen-Flores). If ϕ : C∗
(

∆
(k)
2k+2;Z2

)
→ C∗(Rk;Z2)

is a nontrivial chain map, then there exist two disjoint faces σ1, σ2 ∈ ∆
(k)
2k+2 satisfying

suppϕ(σ1) ∩ suppϕ(σ2) 6= ∅.
These theorems provide a valuable tool in our study of Helly types theorems in Chap-

ter 66.

The next section of the introduction shows our Helly type result in the context of
related theorems.

1.3 General Helly type theorem

Helly’s classical theorem [Hel23Hel23] states that a finite family of convex subsets of Rd must
have a point in common if any d + 1 of the sets have a point in common. Together
with Radon’s and Caratheodory’s theorems, two other “very finite properties” of con-
vexity, Helly’s theorem is a pillar of combinatorial geometry. Along with its variants
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(e.g. colorful or fractional), it underlies many fundamental results in discrete geometry,
from the centerpoint theorem [Rad46Rad46] to the existence of weak ε-nets [ABFK92ABFK92] or the
(p, q)-theorem [AK95AK95].

In the contrapositive, Helly’s theorem asserts that any finite family of convex subsets
of Rd with empty intersection contains a sub-family of size at most d + 1 that already
has empty intersection. This inspired the definition of the Helly number of a family F of
arbitrary sets. If F has empty intersection then its Helly number is defined as the size of
the largest sub-family G ⊆ F with the following properties: G has empty intersection and
any proper sub-family of G has nonempty intersection; if F has nonempty intersection
then its Helly number is, by convention, 1. With this terminology, Helly’s theorem simply
states that any finite family of convex sets in Rd has Helly number at most d+ 1.

Helly already realized that bounds on Helly numbers independent of the cardinality of
the family are not a privilege of convexity: his topological theorem [Hel30Hel30] asserts that a
finite family of open subsets of Rd has Helly number at most d+1 if the intersection of any
sub-family of at most d members of the family is either empty or a homology cell.1313 Such
uniform bounds are often referred to as Helly type theorems. In discrete geometry, Helly
type theorems were found in a variety of contexts, from simple geometric assumptions
(e.g. homothets of a planar convex curve [Swa03Swa03]) to more complicated implicit conditions
(sets of lines intersecting prescribed geometric shapes [Tve89Tve89, GHP+06GHP+06, CGHP08CGHP08], sets
of norms making a given subset of Rd equilateral [Pet71Pet71, Theorem 5], etc.) and several
surveys [Eck93Eck93, Wen04Wen04, Tan13Tan13] were devoted to this abundant literature. These Helly
numbers give rise to similar finiteness properties in other areas, for instance in variants
of Whitney’s extension problem [Shv08Shv08] or the combinatorics of generators of certain
groups [Far09Far09].

Many Helly numbers are established via ad hoc arguments, and decades sometimes
go by before a conjectured bound is effectively proven, as illustrated by Tverberg’s
proof [Tve89Tve89] of a conjecture of Grünbaum [Grü58Grü58]. Note that this is true not on-
ly for the quantitative question (what is the best bound? ) but also for the existential
question (is the Helly number uniformly bounded? ); in this example, establishing a first
bound [Kat86Kat86] was already a matter of decades. Substantial effort was devoted to iden-
tify general conditions ensuring bounded Helly numbers, and topological conditions, as
opposed to more geometric ones like convexity, received particular attention. The gener-
al picture that emerges is that requiring that intersections have trivial low-dimensional
homotopy [Mat97Mat97] or have trivial high-dimensional homology [CGG12CGG12] is sufficient (see
below for a more comprehensive account).

In the last part of the thesis, we focus on the existential question and give the following
new homological sufficient condition for bounding Helly numbers. Note that we consider
homology with coefficients over Z2, denote by β̃i(X) the ith reduced Betti number (over
Z2) of a space X, and use the notation

⋂F :=
⋂
U∈F U as a shorthand for the intersection

of a family of sets.

Theorem 1.8. For any non-negative integers b and d there exists an integer h(b, d) such
that the following holds. If F is a finite family of subsets of Rd such that β̃i (

⋂G) ≤ b

13By definition, a homology cell is a topological space X all of whose (reduced, singular, integer
coefficient) homology groups are trivial, as is the case if X = Rd or X is a single point. Here and in
what follows, we refer the reader to standard textbooks like [Hat02Hat02, Mun84Mun84] for further topological
background and various topological notions that we leave undefined.
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for any G ( F and every 0 ≤ i ≤ dd/2e − 1 then F has Helly number at most h(b, d).

Our proof hinges on a general principle, which we learned from Matoušek [Mat97Mat97] but
already underlies the classical proof of Helly’s theorem from Radon’s lemma, to derive
Helly type theorems from results of non-embeddability of certain simplicial complexes.
The novelty of our approach is to examine these non-embeddability arguments from a ho-
mological point of view. This turns out to be a surprisingly effective idea, as homological
analogues of embeddings appear to be much richer and easier to build than their homo-
topic counterparts. More precisely, our proof of Theorem 1.81.8 builds on two contributions
of independent interest:

• In Chapter 55 we reformulate some non-embeddability results in homological terms.
We obtain a homological analogue of the Van Kampen-Flores Theorem (Corol-
lary 5.75.7) and, as a side-product, a homological version of Radon’s lemma (Lem-
ma 5.95.9). This is part of a systematic effort to translate various homotopy technique
to a more tractable homology setting. It builds on, and extends, previous work on
homological minors [Wag11Wag11].

• By working with homology rather than homotopy, we can then generalize a tech-
nique of Matoušek [Mat97Mat97] that uses Ramsey’s theorem to find embedded struc-
tures. This part is contained in Chapter 66.

Our method also proves a bound of d+ 1 on the Helly number of any family F such that
β̃i (
⋂G) = 0 for all i ≤ d and all G ( F :

Theorem 1.9. Let F be a family of subsets of Rd such that β̃i(
⋂G) = 0 for every G ( F

and i = 0, 1, . . . , d− 1. Then the Helly number of F is at most d+ 1.

Theorem 1.91.9 is a variant of Helly’s topological theorem, where the sets of F are not
assumed to be open.1414 Under the weaker assumption that β̃i (

⋂G) = 0 for all subfamilies
G ( F but only for i ≤ dd/2e − 1, our method still yields a bound of d+ 2 on the Helly
number:

Theorem 1.10. Let F be a family of subsets of Rd such that β̃i(
⋂G) = 0 for every

G ( F and i = 0, 1, . . . , dd/2e − 1. Then the Helly number of F is at most d+ 2.

In both cases the bounds are tight, as shown by Remark 6.56.5.
Quantitatively, the bound on h(b, d) that we obtain in the general case is very large

as it follows from successive applications of Ramsey’s theorems. The conditions of Theo-
rem 1.81.8 relax the conditions of a Helly type theorem of Amenta [Ame96Ame96] (see the discus-
sion below) for which a lower bound of b(d+ 1) is known [Lar68Lar68]; we note that a stronger
lower bound is possible for h(b, d) (see Example 6.26.2) but consider narrowing this gap to
be outside the scope of the thesis. Qualitatively, Theorem 1.81.8 is sharp in the sense that
all (reduced) Betti numbers β̃i with 0 ≤ i ≤ dd/2e − 1 need to be bounded to obtain a
bounded Helly number (see Example 6.16.1).

14In the original proof, this assumption is crucial and used to ensure that the union of the sets must
have trivial homology in dimensions larger than d; this may fail if the sets are not open.
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1.3.1 Relation to previous work.

The search for topological conditions that ensure bounded Helly numbers started with
Helly’s topological theorem [Hel30Hel30] (see also [Deb70Deb70] for a modern version of the proof)
and organized along several directions related to classical questions in topology. Theo-
rem 1.81.8 unifies topological conditions originating from two different approaches:

• Helly type theorem can be derived from non-embeddability results, in the spirit of
the classical proof of Helly’s theorem from Radon’s lemma. Using this approach,
Matoušek [Mat97Mat97] showed that it is sufficient to control the low-dimensional ho-
motopy of intersections of sub-families to ensure bounded Helly numbers: for any
non-negative integers b and d there exists a constant c(b, d) such that any finite
family of subsets of Rd in which every sub-family intersects in at most b connected
components, each (dd/2e − 1)-connected,1515 has Helly number at most c(b, d). By
Hurewicz’ Theorem and the Universal Coefficient Theorem [Hat02Hat02, Theorem 4.37
and Corollary 3A.6], a k-connected space X satisfies β̃i(X) = 0 for all i ≤ k. Thus,
our condition indeed relaxes Matoušek’s, in two ways: by using Z2-homology in-
stead of the homotopy-theoretic assumptions of k-connectedness1616, and by allowing
an arbitrary fixed bound b instead of b = 0.

• Helly’s topological theorem can be easily derived from classical results in algebraic
topology relating the homology/homotopy of the nerve of a family to that of its
union: Leray’s acyclic cover theorem [Bre97Bre97, Sections III.4.13, VI.4 and VI.13]
for homology, and Borsuk’s Nerve theorem [Bor48Bor48, Bjö03Bjö03] for homotopy (in that
case one considers finite open good cover 1717). More general Helly numbers were
obtained via this approach by Dugundji [Dug66Dug66], Amenta [Ame96Ame96]1818, Kalai and
Meshulam [KM08KM08], and1919 Colin de Verdière et al. [CGG12CGG12]. The outcome is that if a
family of subsets of Rd is such that any sub-family intersects in at most b connected
components, each a homology cell (over Q), then it has Helly number at most
b(d+1). This therefore relaxes Helly’s original assumption by allowing intersections
of sub-families to have β̃0’s bounded by an arbitrary fixed bound b instead of b = 0.
Theorem 1.81.8 makes the same relaxation for the β̃1’s, β̃2’s, . . . β̃dd/2e−1’s and drops
all assumptions on higher-dimensional homology, including the requirement that
the sets are open (which is used to control the (> d)-dimensional homology of
intersections).

15We recall that a topological space X is k-connected, for some integer k ≥ 0, if every continuous map
Si → X from the i-dimensional sphere to X, 0 ≤ i ≤ k, can be extended to a map Di+1 → X from the
(i+ 1)-dimensional disk to X.

16We also remark that our condition can be verified algorithmically since Betti numbers are easily
computable, at least for sufficiently nice spaces that can be represented by finite simplicial complexes,
say. By contrast, it is algorithmically undecidable whether a given 2-dimensional simplicial complex is
1-connected, see, e.g., the survey [Soa04Soa04].

17An open good cover is a finite family of open subsets of Rd such that the intersection of any sub-family
is either empty or is contractible (and hence, in particular, a homology cell).

18The role of nerves is implicit in Amenta’s proof but becomes apparent when compared to an earlier
work of Wegner [Weg75Weg75] that uses similar ideas.

19The result of Colin de Verdière et al. [CGG12CGG12] holds in any paracompact topological space; Theo-
rem 1.81.8 only subsumes the Rd case.
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Let us highlight two Helly numbers that stand out in this line of research as not subsumed
(qualitatively) by Theorem 1.81.8. On the one hand, Eckhoff and Nischke [EN09EN09] gave a
purely combinatorial argument that derives the theorems of Amenta [Ame96Ame96] and Kalai
and Meshulam [KM08KM08] from Helly’s convex and topological theorems. On the other hand,
Montejano [Mon13Mon13] relaxed Helly’s original assumption on the intersection of sub-families
of size k ≤ d+ 1 from being a homology cell into having trivial d− k homology (so only
one Betti number needs to be controlled for each intersection, but it must be zero). These
results neither contain nor are contained in Theorem 1.81.8.

We notice that other non-topological structural conditions, known to ensure bounded
Helly numbers, also fall under the umbrella of Theorem 1.81.8. As already observed by
Motzkin [Mot55Mot55, Theorem 7] (see also Deza and Frankl [DF87DF87]), any family of real al-
gebraic subvarieties of Rd defined by polynomials of degree at most k has Helly number
bounded by a function of d and k (more precisely, by the dimension of the vector subspace
of R[x1, x2, . . . , xd] spanned by these polynomials); since the Betti numbers of an alge-
braic variety in Rn can be bounded in terms of the degree of the polynomials that define
it [Mil63Mil63, Tho65Tho65], this also follows from Theorem 1.81.8. We give some other examples in
Section 1.3.21.3.2, where we easily derive from Theorem 1.81.8 generalizations of various existing
Helly type theorems.

Note that Theorem 1.81.8 is similar, in spirit, to some of the general relations between
the growth of Betti numbers and fractional Helly theorems conjectured by Kalai and
Meshulam [Kal04Kal04, Conjectures 6 and 7]. Kalai and Meshulam, in their conjectures, allow
a polynomial growth of the Betti numbers in |⋂G|. As the following example shows,
Theorem 1.81.8 is also sharp in the sense that even a linear growth of Betti number, already
in R1, may yield unbounded Helly numbers. In particular, the conjectures of Kalai and
Meshulam cannot be strengthened to include Theorem 1.81.8.

Example 1.11. Consider a positive integer n and open intervals Ii := (i− 1.1; i+ 0.1) for
i ∈ [n]. Let Xi := [0, n]\Ii. The intersection of all Xi is empty but the intersection of any
proper subfamily is nonempty. In addition, the intersection of k such Xi can be obtained
from [0, n] by removing at most k open intervals, thus the reduced Betti numbers of such
intersection are bounded by k.

1.3.2 Further consequences

We conclude this introduction with a few implications of our main result.

New geometric Helly type theorems. The main strength of our result is to show
that very weak assumptions on families of sets are enough to guarantee a bounded Helly
number. This can be used to identify new Helly type theorems, for instance by detecting
easily generalizations of known results, as we now illustrate on two Helly type theorems
of Swanepoel.

A first example is given by a Helly type theorem for hollow boxes [Swa99Swa99], which
generalizes (qualitatively) as follows:

Corollary 1.12. For any integers s, k, d there exists an integer h(s, k, d) such that the
following holds. Let S be a set of s vectors in Rd, and let F = {U1, U2, . . . , Un} where Ui
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is the k-skeleton of some polytope in Rd whose facets all have their normal vector in S.
Then F has Helly number at most h(s, k, d).

Swanepoel’s result corresponds to the case k = d− 1 and S = {±e1,±e2, . . . ,±ed} where
(e1, e2, . . . , ed) is a basis of Rd.

Proof. We need to verify the assumptions of Theorem 1.81.8, that is, we consider a subfamily
G = {Ui : i ∈ I} ⊆ F and we check that β̃i(

⋂G) is bounded by a function of s and d for
any i ≥ 0 (according to the assumptions of Theorem 1.81.8, it would be sufficient to consider
i ≤ dd/2e − 1, but in this case, there is no difference in reasoning for other values of i).

Let P = P(S) be the set of all polytopes which can be obtained as an intersection of
half-spaces with the normal vectors to their boundary hyperplanes in S. Let Pi ∈ P be
a polytope such that Ui is a (polyhedral) subcomplex of Pi.

Let us consider the polytope P =
⋂
i∈I Pi. From the definition of P we immediately

deduce that P ∈ P . Moreover, the intersection U :=
⋂
G is a polyhedral subcomplex of

P . (The faces U are of form
⋂
i∈I σi where σi is a face of Ui; see [RS72RS72, Exercise 2.8(5)

+ hint].)
Since P ∈ P we deduce that it has at most 2s facets. By the dual version of the

upper bound theorem [Zie95Zie95, Theorem 8.23], the number of faces of P is bounded by a
function of s and d. Consequently, β̃i(U) is bounded by a function of s and d, since U is
a subcomplex of P .

A second example concerns a Helly type theorem for families of translates and homo-
thets of a convex curve [Swa03Swa03], which are special cases of families of pseudo-circles. More
generally, a family of pseudo-spheres is defined as a set F = {U1, U2, . . . , Un} of subsets
of Rd such that for any G ⊆ F , the intersection

⋂G is homeomorphic to a k-dimension
sphere for some k ∈ {0, 1, . . . , d− 1} or to a single point. The case b = 1 of Theorem 1.81.8
immediately implies the following:

Corollary 1.13. For any integer d there exists an integer h(d) such that the Helly number
of any finite family of pseudo-spheres in Rd is at most h(d).

Note that the case of Euclidean spheres, contained in Corollary 1.131.13, also received some
attention [Mae89Mae89, DF87DF87].

Generalized linear programming. Theorem 1.81.8 also has consequences in the di-
rection of optimization problems. Various optimization problems can be formulated as
the minimization of some function f : Rd → R over some intersection

⋂n
i=1Ci of subsets

C1, C2, . . . , Cn of Rd. If, for t ∈ R, we let Lt = f−1 ((−∞, t]) and Ft = {C1, C2, . . . , Cn, Lt}
then

min
x∈⋂ni=1 Ci

f(x) = min
{
t ∈ R :

⋂
Ft 6= ∅

}
.

If the Helly number of the families Ft can be bounded uniformly in t by some constant
h then there exists a subset of h − 1 constraints Ci1 , Ci2 , . . . , Cih−1

that suffice to define
the minimum of f :

min
x∈⋂ni=1 Ci

f(x) = min
x∈⋂h−1

j=1 Cij

f(x).
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A consequence of this observation, noted by Amenta [Ame94Ame94], is that the minimum of f
over C1∩C2∩ . . .∩Cn can2020 be computed in randomized O(n) time by generalized linear
programming [SW92SW92]. Together with Theorem 1.81.8, this implies that an optimization
problem of the above form can be solved in randomized linear time if it has the property
that every intersection of some subset of the constraints with a level set of the function
has bounded “topological complexity” (measured in terms of the sum of the first dd/2e
Betti numbers). Let us emphasize that this linear-time bound holds in a real-RAM
model of computation, where any constant-size subproblems can be solved in O(1)-time;
it therefore concerns the combinatorial difficulty of the problem and says nothing about
its numerical difficulty.

Since we use many notions and facts from different areas of mathematics and since
some chapters are independent of the others, we provide, for the readers’ convenience, the
basic definitions and fact at the beginning of the corresponding chapter. However, to omit
repetitions, we respect the logical dependency of the chapters. For further convenience,
we also provide a list of used symbols at the end of the thesis.

20This requires f and C1, C2, . . . , Cn to be generic in the sense that the number of minima of f over
∩i∈ICi is bounded uniformly for I ⊆ {1, 2, . . . , n}.
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2. Colorful algebraic Tverberg type
theorem

This chapter contains the proof of the colorful algebraic Tverberg type theorem (The-
orem 1.31.3) and its matroidal generalization, Theorem 1.41.4. The proof is algorithmic but
somewhat technical. Hence we also provide Lemma 2.82.8, a variant of Theorem 1.31.3, which
is more accessible, but provides worse bounds in later applications. Therefore, readers
who do not want to go through all the technicalities and are willing to accept a slightly
worse bound in Theorems 1.21.2, 1.11.1 and 1.51.5 may jump to Chapter 33 directly after the proof
of Lemma 2.82.8 and hence skip sections 2.32.3 and 2.42.4.

Because of the algorithmic character of the proof, we can also address the complexity
question and hence state stronger versions of Theorems 1.31.3 and 1.41.4 – Theorems 2.122.12 and
2.132.13.

2.1 Preliminaries – Affine spaces

Before we state the main results, we recall some definitions and basic facts from linear
algebra. The notions that we leave undefined can be found in any linear algebra textbook,
see e.g. [MLB88MLB88]. We also refer the reader to [Ben95Ben95] for detailed proofs of all here
mentioned statements, although all of them are relatively straightforward.

Throughout the text we use the symbol Zn to denote Z/nZ, e.g., for p prime Zp is
the p-element field.

Definition 2.1 (Affine space). Let F be a field and V a vector space over F. A subset
A ⊆ V is called an affine space over F (or F-affine space), if A has the form A = {a+v |
v ∈ U}, where a ∈ V and U is a vector subspace of V . In this case the dimension dimA
is defined as dimU .

If X is an arbitrary set and F a field, we can turn X into an F-affine space M(X;F)
in the following way:

Definition 2.2. Let X be a set and F a field. A multipoint µ over F in X is a formal
sum11

µ =
∑

x∈X
axx,

where ax ∈ F, only finitely many ax are non-zero and
∑

x∈X ax = 1. The set of all
multipoints over F in X is denoted by M (X;F), where the field F may be omitted if it
is clear from the context. The support suppµ of a multipoint µ =

∑
x∈X axx is defined

as suppµ := {x ∈ X | ax 6= 0}.
1We have chosen the name multipoint for the following reason: Imagine we are tourists and we want

to go from valley a to mountain peek b and we have three possibilities: either to go through cottage c1,
c2 or c3. A trip through a combination c1 − c2 + c3 then corresponds to visiting multiple cottages in the
following order: climbing the mountain up via the path around c1, then going down around c2 and then
climbing up around c3. The “route” then goes through multiple points. It is useful to keep this image
in mind during some proofs in Chapter 33.
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It can be easily checked thatM (X;F) is an affine subspace of FX . Because the map
x 7→ 1 · x is an inclusion of X into M (X;F), we regard M (X;F) as a superset of X.

Definition 2.3. Let A be an affine space over F and B ⊆ A a set. We define the affine
hull of B as

affFB :=

{∑

i∈I
aibi | I is a finite set, bi ∈ B, ai ∈ F and

∑

i∈I
ai = 1

}
. (2.1)

If F is an ordered field, we further define the convex hull of B as

convFB :=

{∑

i∈I
aibi | I is a finite set, bi ∈ B, ai ∈ F, 0 ≤ ai ≤ 1 and

∑

i∈I
ai = 1

}
.

(2.2)
If the field F is clear from the context, we omit it from the subscript.

It can be easily proven that aff B is an affine space over F and the operator aff satisfies
the following axioms:

Observation 2.4. For every X, Y ⊆ A and x,y ∈ A:

(CL1) X ⊆ aff(X),

(CL2) X ⊆ Y ⇒ aff(X) ⊆ aff(Y ),

(CL3) aff
(
aff(X)

)
= aff(X) and

(CL4) y ∈ aff(X ∪ x) \ aff(X)⇒ x ∈ aff(X ∪ y) (Mac Lane-Steinitz exchange property)

Let us briefly demonstrate that aff really satisfies the exchange axiom: If y ∈ aff
(
X ∪

{x}
)
\ aff X, then y =

∑
i∈I aixi, where all xi ∈ X ∪ {x}. Without loss of generality, we

may assume that all xi are distinct. Since y /∈ aff X, one xi, say x1, equals x and the
corresponding coefficient a1 is nonzero. So we may write y = a1x +

∑
i∈I\{1} aixi, where

a1 +
∑

i∈I\{1} ai = 1, hence x = 1
a1

y −∑i∈I\{1}
ai
a1

xi, where 1
a1
−∑i∈I\{1}

ai
a1

= 1 (note

that a1 6= 0) and the exchange axiom follows.

Definition 2.5. If M is a set and cl : 2M → 2M a map satisfying (CL1)–(CL4) we say
that cl is a closure operator22. A set with a closure operator is called a (not necessary
finite) matroid.

Definition 2.6. Let A be an affine space over a field F. A set B ⊆ A is called affinely
independent, if b /∈ aff

(
B\{b}

)
holds true for every element b ∈ B. Note that the notion

of independence makes sense for any closure operator cl. In such a case, we define the
rank r(C) of a set C as the size of an inclusion maximal independent subset of C.

Note that (CL4) implies that the rank is well-defined and in fact equals the size of
any maximal independent subset in cl(C). Moreover, for affine spaces we have r(B) =
dimB + 1.

2A typical examples of closure operators are: identity on any set, affine closure on an affine space,
linear span in a vector space, algebraic closure, etc.; there are also some closure operators arising in
graph theory [Oxl11Oxl11]
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Observation 2.7. Let A be an affine space over a field F.

1. Every affinely independent set B ⊆ A has at most dimA + 1 elements.

2. If B is affinely independent, then dim aff B + 1 = cardB.

3. If B ⊆ A is an affinely independent set and c ∈ A\aff B, then B∪{c} is an affinely
independent set.

4. For all B,C ⊆ A the following equality holds: aff(B ∪ C) = aff
(
B ∪ aff C

)
.

The proof of Observation 2.72.7 is an easy exercise, Moreover, the properties in fact follow
from axioms (CL1)–(CL4). Hence the observation remains valid, even if we replace aff
with an arbitrary closure operator and dimA with r(A)− 1.

Let us briefly demonstrate that Observation 2.72.7 is indeed implied by (CL1)–(CL4)
and does not depend on any other properties of aff:

Proof. Properties 11 and 22 are trivial (noting that the definition of dimension (or rank)
does not depend on the chosen maximal independent set).

Let us now prove 33: If B ∪{c} is affinely dependent, there exists a point b ∈ B ∪{c}
such that b ∈ aff

(
(B ∪ {c}) \ {b}

)
. Clearly b 6= c, hence b ∈ B. Because B is affinely

independent, b /∈ aff
(
B \ {b}

)
, hence b ∈ aff((B ∪{c}) \b) \ aff

(
B \ {b}

)
. Using (CL4),

we see that c ∈ aff((B \ {b}) ∪ {b}) = aff(B) – a contradiction.
To prove 44, we use axioms (CL1)–(CL3). By (CL1) and (CL2) we have B ⊆ aff(B∪C)

and aff(C) ⊆ aff(B ∪ C). Altogether B ∪ aff(C) ⊆ aff(B ∪ C). Using (CL1) and (CL2)
once again, we see that aff(B ∪ C) ⊆ aff(B ∪ aff(C)) ⊆ aff(aff(B ∪ C)). By (CL3) the
leftmost and the rightmost term coincide, hence aff(B∪aff(C)) = aff(B∪C) as well.

2.2 Prelude

In this section we prove a simple algebraic Tverberg type result (Lemma 2.82.8), so far with-
out any color restriction. We include this lemma for two reasons. Firstly, its proof clearly
demonstrates the basic idea which we use while proving the full colorful version, whereas
in the full proof the idea is somewhat obfuscated by the technical details. Secondly, the
readers who do not want to go through the technical details in the proof of the colorful
version, may use Lemma 2.82.8 instead of the full colorful version in the proofs of Chapters 33
and 44. The proofs then go through, although with slightly worse bounds.

Lemma 2.8. Let A be an affine space over a field F, C ⊆ A a (multi)set and r > 0 an
integer. If |C| > (dimA + 1)(r − 1), then there exist r disjoint sets F1, F2, . . . , Fr ⊆ C
such that aff F1 ∩ aff F2 ∩ · · · ∩ aff Fr 6= ∅.

Proof. We prove the statement by induction over r. If r = 1, then C is nonempty and
we may choose F1 = C.

So assume that r > 1. Let B = aff C. Because B ⊆ A, the dimension of B is
at most dimA. Therefore, there exists a set Fr ⊆ C with at most dimA + 1 points
such that aff Fr = B. We set C ′ := C \ Fr. Then |C ′| > (dimA + 1)(r − 2), so we
may apply induction and obtain r − 1 pairwise disjoint sets F1, F2, . . . , Fr−1 ⊆ C ′ with
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aff F1 ∩ aff F2 ∩ · · · ∩ aff Fr−1 6= ∅. Since Fi ⊂ C \ Fr, the r sets F1, . . . , Fr are also
pairwise disjoint. For all i = 1, . . . , r − 1 we have Fi ⊆ C \ Fr = C ′ ⊆ aff B = aff Fr. It
follows that aff F1 ∩ aff F2 ∩ · · · ∩ aff Fr−1 ∩ aff Fr 6= ∅ and the proof is finished.

We note that the bound |C| > (dimA + 1)(r − 1) in Lemma 2.82.8 is optimal.

Observation 2.9. Let r > 0 be an integer, F a field and A an affine space. Then there
exists a set C having exactly |C| = (dimA + 1)(r − 1) elements and a map ψ : C → A,
such that every r pairwise disjoint subsets F1, . . . , Fr ⊆ C satisfy

⋂r
i=1 affF (ψ (Fi)) = ∅.

For simplicity we show the observation only for finitely dimensional affine spaces A.
We note that if dimA is infinite, the same construction goes through, the only difficulty
is how to write down infinite sequences properly.

Proof of Observation 2.92.9. Let F be a field and let A be an m-dimensional affine space
over F. Without loss of generality, we may assume A = Fm. Let e1, . . . , em be the
standard basis vectors of Fm. Let C be a set containing exactly (m+ 1)(r− 1) elements.
We group the elements in C into (m + 1) groups, each containing (r − 1) elements. We
define ψ as follows:

ψ(x) =

{
ei if x is in the ith group, where i ≤ m,

0 if x is in the (m+ 1)th group.

Since {e1, e2, . . . , em, 0} are affinely independent, and every point ei or 0 is missing it
at least one Fi, we see that there are no r pairwise disjoint subsets F1, F2, . . . , Fr ⊆ C
satisfying

r⋂

i=1

affF (ψ (Fi)) 6= ∅,

which proves the optimality of Lemma 2.82.8.

Now we reformulate Lemma 2.82.8 in the terms of multipoints33, which provides some
geometric intuition for the proofs in Chapter 33. If µ, µ′ are two multipoints satisfying
supp(µ) ∩ supp(µ′) = ∅, we say that µ and µ′ are disjoint.

If X is a set, F a field, A an affine space over F and ψ : X → A a map, then the map
ψ can be extended to a map ψ : M(X;F)→ A via

ψ

(∑

x∈X
axx

)
=
∑

x∈X
axψ(x).

Lemma 2.10. Let A be an affine space over a field F, ψ : C → A a set and r > 0 an
integer. If |C| > (dimA+1)(r−1), then there exists r disjoint multipoints µ1, µ2, . . . , µr ∈
M(C;F) such that ψ(µ1) = ψ(µ2) = . . . = ψ(µr).

3See Definition 2.22.2.
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Proof. Let C ′ = ϕ(C) be a multiset. If we apply Lemma 2.82.8, we obtain r sets F ′1, . . . , F
′
r ⊆

C ′ with aff F ′1 ∩ aff F ′2 ∩ · · · ∩ aff F ′r 6= ∅.
If F ′ ⊆ C is a set and a is a point in aff(F ′), then a =

∑
x∈F ′ axx, for some ax, where

only finitely many of ax are non-zero and
∑
ax = 1.

If a is a point in aff F ′1 ∩ aff F ′2 ∩ · · · ∩ aff F ′r, we have

a =
∑

x∈F1

ax,1ψ(x) =
∑

x∈F ′2

ax,2ψ(x) = . . . =
∑

x∈F ′r

ax,rψ(x),

where only finitely many ax,i are nonzero and
∑
ax,i = 1 for all i = 1, . . . , r.

If we set µi =
∑

x∈Fi ax,ix ∈ M(C;F) for all i = 1, . . . , r, the equality rewrites as
a = ψ(µ1) = ψ(µ2) = . . . = ψ(µr); in particular ψ(µ1) = ψ(µ2) = . . . = ψ(µr).

2.3 Statement of the colorful algebraic theorem

Before we formulate the result precisely, we introduce some terminology.

Definition 2.11. Let m ≥ 0 be an integer. Let a set C be partitioned into (m + 1)
pairwise disjoint non-empty sets C0, C1, . . . , Cm. We call the sets Ci color classes. A
subset S ⊆ C satisfying |S ∩ Ci| ≤ 1 for all i = 0, . . . ,m, is called rainbow. We further
define the coloring c : C → {0, 1, . . . ,m} via

c(x) = i if and only if x ∈ Ci. (2.3)

To simplify the notation, we introduce the following convention. If I ⊆ Z is a subset
of {0, . . . ,m}, we set

CI :=
⋃

i∈I
Ci. (2.4)

We can now restate Theorem 1.31.3 in more precise form, addressing also the algorithmic
aspects.

Theorem 2.12. Let m ≥ 0, r ≥ 1 be integers, C a set, F a field, A a finitely dimensional
affine space over F and ψ : C → A a map. Let C be partitioned into (m + 1) non-
empty color classes C0, . . . , Cm with |C0| ≤ r and |Ci| ≤ r − 1 for all i = 1, . . . ,m. If
|C| > (dimA + 1)(r − 1) then there exist r pairwise disjoint rainbow sets F1, . . . , Fr ⊆ C
satisfying

r⋂

i=1

affF (ψ (Fi)) 6= ∅. (2.5)

Furthermore, if dimA can be computed in time polynomial in m, r and u is the
maximal time needed to decide whether a point p ∈ C and a set S ⊆ C satisfy ψ(p) ∈
aff
(
ψ(S)

)
, then such sets Fi can be algorithmically found in time polynomial in u,m,r

and |C|.
Note that the assumptions |C| > (dimA + 1)(r − 1), |C0| ≤ r and |Ci| ≤ r − 1 imply

that m ≥ dimA.
Since the proof only uses the fact that the operator aff satisfies axioms (CL1)–(CL4),

we also obtain the following matroidal version44:

4See Definition 2.52.5.
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Theorem 2.13. Let M be a matroid (not necessary finite) with rank function r. Let
k ≥ 1 be an integer. If N > (k − 1)r(M) is an integer and C an N-element set with a
partition into m+ 1 parts (“color classes”)

C = C0 ] . . . ] Cm,

with |C0| ≤ k and |Ci| ≤ k − 1 for all i = 1, . . . ,m, then for every map ψ : C →M , it is
possible to split C into k sets F1, . . . , Fk ⊆ C satisfying

(A) |Ci ∩ Fj| ≤ 1 for every i ∈ {0, 1, . . . ,m}, j ∈ {1, . . . , k}, and

(B) cl
(
ψ(F1)

)
∩ · · · ∩ cl

(
ψ(Fk)

)
6= ∅,

where cl is the closure operator on M .

Since we only use properties of the closure operator aff that follow from axioms (CL1)–
(CL4) in our proof of Theorem 2.122.12, the proof of Theorem 2.132.13 follows from the proof
of Theorem 2.122.12, if we replace all occurrences of aff with cl, only the reduction of Theo-
rem 2.122.12 to Theorem 2.152.15 needs small adjustment, which we address in Remark 2.162.16.

Although it would be possible to write the proof down in the more abstract matroidal
setting, we prefer the proof with aff for two reasons: Firstly, it provides some geometric
intuition, which helps to understand the proof, secondly, we only need the affine version
in later constructions.

Before we proceed with the proof, we restate Theorem 2.122.12 using Definition 2.22.2 (mul-
tipoints). The reformulation provides nice geometric intuition for Chapter 33.

Ifm ≥ 0 is an integer and a set C is partitioned into (m+1) color classes C0, C1, . . . , Cm
we say that a multipoint µ ∈M (C;F) is rainbow, if suppµ is.

Using the definition of multipoints, Theorem 2.122.12 implies the following:

Theorem 2.14. Let m ≥ 0, r ≥ 1 be integers, C a set, F a field, A a finitely dimensional
affine space over F and ψ : C → A a map. Let C be partitioned into (m + 1) non-empty
color classes C0, . . . , Cm with |C0| ≤ r and |Ci| ≤ r − 1 for all i = 1, . . . ,m. If |C| >
(dimA+1)(r−1) then there exist r pairwise disjoint rainbow multipoints µ1, µ2, . . . , µr ⊆
M (C;F) satisfying

ψ(µ1) = ψ(µ2) = . . . = ψ(µr). (2.6)

Since we are only interested in theoretical applications, we do not address the com-
plexity question in Theorem 2.142.14.

Proof. In the setting of Theorem 2.142.14, the assumptions of Theorem 2.122.12 are satisfied, so
there exist r pairwise disjoint rainbow sets F1, . . . , Fr with aff

(
ψ(F1)

)
∩aff

(
ψ(F2)

)
∩· · ·∩

aff
(
ψ(Fr)

)
6= ∅. Let a be a point in the intersection.

Then according to the same considerations as in the proof of Lemma 2.102.10, a = ψ(µ1) =
ψ(µ2) = . . . = ψ(µr), where µi ∈M (Fi;F) ⊆M (C;F) for every i = 1, 2, . . . , r.

Because the sets Fi, i = 1, . . . , r, are pairwise disjoint and rainbow and suppµi ⊆ Fi,
the multipoints µi are pairwise disjoint and rainbow as well.

For a better presentation, we reduce Theorem 2.122.12 to the following statement.
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Theorem 2.15. Let m ≥ 0 and r ≥ 1 be integers, C a set, F a field, A an m-dimensional
affine space over F and ψ : C → A a map. Let C be partitioned into (m+ 1) color classes
C0, . . . , Cm with |C0| ≥ r and |Ci| ≥ (r − 1) for all i = 1, . . . ,m. Then there exist r
pairwise disjoint rainbow sets F1, . . . , Fr ⊆ C satisfying

r⋂

i=1

affF (ψ (Fi)) 6= ∅.

Furthermore, if u is the maximal time needed to decide whether a point p ∈ C and a set
S ⊆ C satisfy ψ(p) ∈ aff

(
ψ(S)

)
, then such sets Fi can be algorithmically found in time

O
(
(m+ r)|C|m2u+ |C|

)
.

Note that in Theorem 2.152.15 we replace the conditions |C0| ≤ r and |Ci| ≤ r − 1
from Theorem 2.122.12 by |C0| ≥ r and |Ci| ≥ r − 1 and add a condition that there are
exactly (dimA + 1) colors. The main purpose of the conditions |C0| ≤ r, |Ci| ≤ r − 1
in Theorem 2.122.12 is to ensure that we have enough color classes, in Theorem 2.152.15 this
is stated explicitly as the additional condition; what becomes implicit is the fact that
|C| > (r − 1)(dimA + 1).

The reduction of Theorem 2.122.12 to Theorem 2.152.15 follows a well known pattern, a
similar reduction previously appeared in the proof of the optimal colored Tverberg theo-
rem [BMZ15BMZ15] or in Sarkaria’s proof for the prime power Tverberg theorem [Sar00Sar00, 2.7.3],
see also de Longueville’s exposition [dL02dL02, Prop. 2.5]. Nevertheless, there is a subtle
difference, since we do not now how the affine space A is represented and it may be
unpractical to search for an isomorphism of A and Fd.

Observation 2.92.9 shows that the bound |C| > (dimA + 1)(r − 1) in Theorem 2.122.12 is
optimal, which also proves optimality of Theorem 2.132.13 and Theorem 2.152.15.

In general, the assumption |C0| ≤ r in Theorem 2.122.12 is also necessary. For example
if A = F = R, r = 3, m = 1, C0 := {0, 1, 2, 3}, C1 := {4} and ψ is the identity map,
then |C| > (m + 1)(r − 1), but there are no three pairwise disjoint rainbow subsets
satisfying (2.52.5). We note that it is not true that the condition is necessary in all cases.
E.g. if A = F = Z2, Theorem 2.122.12 without any restriction on |C0| easily follows from the
pigeonhole principle.

2.4 Proof of Theorem 2.122.12

The reduction of Thm. 2.122.12 to Thm. 2.152.15. Let d = dimA. Let 0 be the origin in Fm−d
and e1, . . . , em−d be the standard basis of Fm−d. Then A ∼= A× {0} ⊆ A× Fm−d.

If |C| > (d + 1)(r − 1) + 1, we throw the superfluous elements of C away. This does
not increase the size of any color class, therefore all the assumptions of Theorem 2.122.12
remain preserved. So we may assume that |C| = (d+ 1)(r − 1) + 1.

Now we add (m + 1)(r − 1) + 1 − |C| = (m − d)(r − 1) points to C to obtain set
C ′. We partition C ′ into color classes C ′0, . . . , C

′
m in such a way that C0 ⊆ C ′0, |C ′0| = r,

Ci ⊆ C ′i and |C ′i| = r − 1 for all i = 1, . . . ,m. This is clearly possible.

We group the (m− d)(r− 1) added points into (m− d) groups of (r− 1) points. Now
we construct map ψ′ : C ′ → A × Fm−d as follows: Let o be a fixed element from C. We
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set

ψ′(x) :=

{
{ψ(o)} × ei for all elements x in the ith group (i = 1, . . . ,m− d),

ψ(x)× {0} for x ∈ C.

Since dimA× Fm−d = m, the assumptions of Theorem 2.152.15 are satisfied, so there are
r rainbow sets F ′1, . . . , F

′
r ⊆ C ′ satisfying

⋂r
i=1 affF (ψ′(F ′i )) 6= ∅.

Observe that by the construction only (r − 1) points got mapped onto a fixed point
{ψ(o)}× ei; in particular every point {ψ(o)}× ei is missing in at least one ψ′(F ′i ). More-

over, the points {ψ(o)}×ei, i = 1, . . . ,m−d, are affinely independent and aff
{
{ψ(o)}×ei |

i = 1, . . . ,m−d
}
∩
(
A×{0}

)
= ∅. It follows that

⋂r
i=1 affF (ψ′(F ′i )) ⊆ A×{0}. Moreover,

because ψ′ � C = ψ × {0}, we immediately see that the sets Fi := F ′i ∩ C are rainbow
subsets of C that satisfy

r⋂

i=1

affF (ψ(Fi)) 6= ∅.

If d can be computed in polynomial time, the reduction time is also polynomial.
Let u be the time needed to decide whether a point p ∈ C satisfies ψ(p) ∈ aff

(
ψ(S)

)
,

where S ⊆ C. Then the time u′ needed to decide whether a point p′ ∈ C ′ satisfies
ψ(p′) ∈ aff

(
ψ(S ′)

)
, where S ′ ⊆ C ′, is polynomial in u,d.

Remark 2.16. The proof generalizes to matroids as follows. Instead of increasing dimen-
sion, we add (m− d) points p1, p2, . . . , pm−d to the matroid M and make them mutually
independent and also independent on all others. Since we add (r − 1)(m − d) points to
C, we may simply extend the map by mapping first r − 1 added elements to p1, second
r − 1 added elements to p2, etc. The rest of the proof follows.

Proof of Theorem 2.152.15

We show that there is a recursive algorithm that performs the task in time O
(
(m +

r)|C|m2u + |C|
)
. Its inputs are: set C partitioned into color classes C0, . . . , Cm, map

ψ : C → A and r. Its output is a collection of r pairwise disjoint rainbow sets F1, . . . , Fr ⊆
C satisfying (2.52.5). First we describe the algorithm and show that whenever it stops it
outputs a correct answer. Then we provide a pseudo-code for the algorithm, bound the
running time and provide some optimizations.

Correctness

The recursion

The algorithm runs recursively, constructing inductively sets Fr, Fr−1, . . . , F1. If Fr,
. . . , Fi+1 are already constructed, the algorithm either constructs set Fi and calls itself
recursively to construct Fi−1, . . . , F1, or it decreases the dimension of A and calls itself
recursively to construct Fi, . . . , F1.

We may throw away the additional points, so we may assume that |C0| = r and
|Ci| = r − 1 for all i = 1, . . . ,m.
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If r = 1, we are searching for one nonempty set F1. Since |C0| = 1 by assumption, we
set F1 := C0. If m = 0, dimA = 0, hence ψ(x) ∈ A is the same for all points x ∈ C. In
this case |C0| = r. We split C0 into r disjoint sets F1, . . . , Fr, each containing one point.
Then clearly aff

(
ψ(F1)

)
∩ aff

(
ψ(F2)

)
∩ · · · ∩ aff

(
ψ(Fr)

)
6= ∅.

So we may assume that r > 1 and m > 0. We try to iteratively build sets Gj ⊆ C,
j = 0, 1, . . . ,m, satisfying the following three conditions:

(I) |Gj| = j + 1,

(II) Gj is rainbow and

(III) dim aff
(
ψ(Gj)

)
= j.

The idea behind the sets Gj is the following: If aff ψ(Gj) ⊇ ψ(C), Gj is rainbow and
|Gj| ≤ dimA + 1, we may put Fr := Gj, as we did in the proof of Lemma 2.82.8. We try to
construct such set Gj by starting with j = 0, requiring conditions (I)(I)–(III)(III) and increasing
j by one at each step, while still maintaining (I)(I)–(III)(III). Then if we succeed in constructing
Gj with aff ψ(Gj) ⊇ ψ(C), the set Fr = Gj is rainbow with at most dimA + 1 elements
and we may continue by induction as in the proof of Lemma 2.82.8. Unfortunately, it might
happen that we do not succeed. In that case, we show that there is a subspace A′ ( A
so that if we restrict our attention to A′ and C ′ = C ∩ ψ−1(A′), we may apply induction
there.

Let us now build sets Gj.

First loop

The first step is easy. Because |C0| = r ≥ 1, there exists an element p ∈ C0. We set
G0 := {p}. This assignment clearly satisfies conditions (I)(I),(II)(II) and (III)(III).

So suppose j ≥ 0, we already have set Gj satisfying all the conditions and we want
to construct set Gj+1.

There are two possibilities what can happen:

1. ψ(C) ⊆ aff
(
ψ(Gj)

)
,

2. ψ(C) 6⊆ aff
(
ψ(Gj)

)
.

Before going into technical details we sketch the overall idea how we deal with the
particular cases, To make the reasoning easier, we use c as defined in Equation (2.32.3).

In the first case, we have found the desired set Gj satisfying aff ψ(Gj) ⊇ ψ(C). We
set Fr := Gj and apply recursion. The second case is more complicated. We would like
to find a point p with c(p) /∈ c(Gj) and ψ(p) /∈ aff

(
ψ(Gj)

)
, so that we could form Gj+1 by

adding p to Gj. Unfortunately, this may not be possible without replacing some points
in Gj.

Now we provide the details. Let us start with possibility 11.
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Case 11: ψ(C) ⊆ aff
(
ψ(Gj)

)

In this case we set Fr := Gj. Since Gj is rainbow, so is Fr. We further define C ′ := C \Fr,
ψ′ := ψ � C ′ and r′ = r − 1. We partition C ′ into m + 1 color classes C ′i := Ci \ Fr for
i = 0, . . . ,m. Now we run the algorithm recursively on C ′ and ψ′. We obtain (r − 1)
pairwise disjoint rainbow sets F1, . . . , Fr−1 ⊆ C ′ that satisfy

∅ 6=
r−1⋂

i=1

aff
(
ψ′(Fi)

)
=

r−1⋂

i=1

aff
(
ψ(Fi)

)
.

Since the sets Fi, i = 1, . . . , r−1, are rainbow subsets of C ′, they are rainbow in C as well.
It follows that F1, . . . , Fr are pairwise disjoint, since for i = 1, . . . , r−1, Fi ⊆ C ′ = C \Fr
and Fi are pairwise disjoint.

Because
r−1⋂

i=1

aff
(
ψ(Fi)

)
⊆ aff

(
ψ(C)

)
⊆ aff

(
ψ(Gj)

)
= aff

(
ψ(Fr)

)
,

we have
r⋂

i=1

aff
(
ψ(Fi)

)
6= ∅.

Since the sets F1, . . . , Fr form the desired system, we output F1, . . . , Fr and stop the
algorithm.

Now we deal with the more complicated situation.

Case 22: ψ(C) 6⊆ aff
(
ψ(Gj)

)

In this case we want to find point p with c(p) /∈ c(Gj) and ψ(p) /∈ aff
(
ψ(Gj)

)
so that we

could set Gj+1 = Gj ∪ {p}. In general, this may not be possible, it may happen that we
need to replace some points in Gj before we can add p. In order to know which points to
replace and how, the algorithm uses a second loop. During the loop, the algorithm keeps
track of “replacement rules”, which makes this part somewhat technical.

Moreover, there are three possibilities in each iteration: Either we have collected
enough information and we can construct the desired set Gj+1, or we adjust the replace-
ment rules, or we obtain a proper subspace A′ ( A such that we can find the desired sets
F1,. . . , Fr by a recursive call of our algorithm to C ′ := C ∩ ψ−1 (A′), A′ and ψ � C ′.

Second loop

In the kth step of the second loop the replacement rules consist of the following data:
sets Kk ⊆ {0, 1, . . . ,m}, Rk ⊆ Gj and Rp

k ⊆ C, where p ranges over all elements55 p ∈ CKk
for which ψ(p) /∈ aff

(
ψ(Rk)

)
.

Furthermore, we want that these sets satisfy the following conditions:

(i) c(Rk) ( Kk,

(ii) c(Rp
k) = c(Rk) ∪ {cpk}, for some cpk ∈ Kk \ c(Gj),

5Recall that the symbol CKk
stands for

⋃
i∈Kk

Ck, i.e., CKk
are all the points with color in Kk. We

will also use the equivalence p ∈ CKk
⇔ c(p) ∈ Kk.
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(iii) |Rp
k| = |Rk|+ 1,

(iv) p ∈ Rp
k and aff

(
ψ(Rp

k \ {p})
)

= aff
(
ψ(Rk)

)
,

(v) Gj ∩ CKk = Rk and Kk 6⊆ c(Gj).

Note that condition (ii)(ii) states that Rp
k only contains points that have the same colors

as points in Rk and one additional point that has color cpk, which is not yet present in
c(Gj).

The intuition behind the sets Kk, Rk and Rp
k is the following. The set Rk represents

the subset of Gj that we want to replace. The set Kk represents the colors that we might
use while replacing Rk. The set Rp

k \{p} is the replacement of Rk if we want to add point
p. More precisely, Rp

k is a rainbow set, the sets ψ(Rk) and ψ
(
Rp
k \ {p}

)
have the same

affine hull and c(Rp
k) ⊆ Kk.

We will start with R0 as small as possible and a suitable set K0. In each step, we will
enlarge the sets Rk and Kk until we find an element p ∈ CKk with ψ(p) /∈ aff

(
ψ(Gj)

)
,

or until ψ(CKk) ⊆ aff
(
ψ(Rk)

)
. If we fin an element p ∈ CKk with ψ(p) /∈ aff

(
ψ(Gj)

)
,

we will construct the desired set Gj+1. If ψ(CKk) ⊆ aff
(
ψ(Rk)

)
, then the affine space

A′ = aff
(
ψ(Rk)

)
( A and C ′ = C ∩ ψ−1(A′) satisfy |C ′| > (dimA′ + 1)(r− 1), so we will

apply recursion to obtain the desired sets F1, . . . , Fr.

Let us now carry out the technical details.
The first step (k = 0) is easy. We set R0 := ∅ and K0 := {0, 1, . . . ,m} \ c(Gj). If we

now take a point p ∈ CK0 , then ψ(p) is not contained in aff
(
ψ(R0)

)
= ∅, so we need to

define the set Rp
0 for every such p. We simply put Rp

0 := {p}.
Now we check the above defined sets satisfy all the prescribed conditions. Note m =

dimA, C ⊆ A and we are in case 22, where ψ(C) 6⊆ aff
(
ψ(Gj)

)
. This, together with |Gj| =

j + 1 (condition (I)(I)) and dim aff ψ(Gj) = j (condition (III)(III)) implies that |Gj| < m + 1.
Consequently, the set K0 = {0, 1, . . . ,m} \ c(Gj) is nonempty. Hence conditions (i)(i)–(v)(v)
are satisfied trivially (with cpk = c(p) in condition (ii)(ii)).

So we may suppose that the sets Kk, Rk and Rp
k are already constructed for all relevant

p ∈ CKk and we want to continue with our construction. Since Rk ⊆ Gj there are three
cases that may occur, as announced:

2a) ψ(CKk) ⊆ aff
(
ψ(Rk)

)
,

2b) ψ(CKk) 6⊆ aff
(
ψ(Gj)

)
or

2c) ψ(CKk) ⊆ aff
(
ψ(Gj)

)
and ψ(CKk) 6⊆ aff

(
ψ(Rk)

)
.

Before going into technical details we give a short overview how we deal with the
particular situations.

In the first case, the restriction of ψ to CKk leads to an affine space A′ := aff
(
ψ(Rk)

)
.

We show that this space has dimension lower thanm and |CKk | > (dimA′+1)(r−1). After
that we adjust the color classes in CKk so that we can apply the algorithm recursively for
m′ < m. We obtain r disjoint rainbow sets F1, . . . , Fr (with ψ(Fi) ⊆ A′) satisfying the
desired conditions and can stop our algorithm. In the second case, we show how to use
sets Rp

k to construct set Gj+1 so that we can continue in the first loop. In the third case,
we prove that we can continue in the second loop.

We are now ready to deal with the particular cases:
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Case 2a)2a): ψ(CKk) ⊆ aff
(
ψ(Rk)

)

In this case, we show that the affine space A′ = aff
(
ψ(Rk)

)
is a proper subset of A and

there is a set C ′ ⊆ C ∩ψ−1(A′) satisfying |C ′| > (dimA′+ 1)(r−1), so that we can apply
induction to A′, C ′ and obtain the desired sets F1, . . . , Fr.

Let us verify it now. Let A′ := aff
(
ψ(Rk)

)
and m′ = dimA′. A has dimension

m and because we are in Case 22, we know that ψ(C) 6⊆ aff
(
ψ(Gj)

)
. It follows that

dim aff
(
ψ(Gj)

)
< m. Since Rk ⊆ Gj, we also have m′ = dim aff

(
ψ(Rk)

)
< m.

Condition (i)(i) implies c(Rk) ( Kk, so there is a point p ∈ CKk \ Cc(Rk).
Because Rk is rainbow and dim aff

(
ψ(Rk)

)
= m′ we can choose m′+1 distinct elements

k0, k1, . . . , km′ in c(Rk). We define C ′ := C{k0,...,km′}∪{p} and partition C ′ into color classes
C ′0 := Ck0 ∪ {p} and C ′i := Cki for i = 1, . . .m′.

Because C ′ ⊆ CKk , the assumption ψ(CKk) ⊆ aff
(
ψ(Rk)

)
(Case 2a)2a)) implies ψ(C ′) ⊆

A′. Also |C ′0| ≥ r and |C ′i| ≥ r − 1 for all i = 1, . . . ,m′. It follows that we can apply the
algorithm recursively on C ′ and ψ � C ′ : C ′ → A′. We obtain r pairwise disjoint rainbow
sets F1, . . . , Fr ⊆ C ′ that satisfy

⋂r
i=1 aff

(
ψ(Fi)

)
6= ∅. From the definition of color classes

C ′i easily follows that any set F ⊆ C ′ that is rainbow in C ′ is also rainbow as a subset of
C. We conclude that the sets F1, . . . , Fr form the desired system.

Case 2b)2b): ψ(CKk) 6⊆ aff
(
ψ(Gj)

)

In this case, we may construct the set Gj+1 as follows: We pick a point p ∈ CKk with
ψ(p) /∈ aff

(
ψ(Gj)

)
and set Gj+1 := (Gj \Rk) ∪Rp

k.
Before we show that such Gj+1 satisfies conditions (I)(I)–(III)(III), we prove the following

auxiliary equality:
aff
(
ψ(Gj+1)

)
= aff

(
ψ (Gj ∪ {p})

)
. (2.7)

Indeed,

aff
(
ψ(Gj+1)

)
= aff

(
ψ ((Gj \Rk) ∪Rp

k)
)

= aff
(
ψ ((Gj \Rk) ∪ (Rp

k \ {p}) ∪ {p})
)
,

where the last equality uses the fact that p ∈ Rp
k from condition (iv)(iv). Because the

operator aff satisfies aff
(
B ∪ C

)
= aff

(
B ∪ aff C

)
for every two sets B,C ⊆ A (we refer

to Observation 2.72.7) we may rewrite the expression further to

aff
(
ψ(Gj+1)

)
= aff

(
ψ (Gj \Rk) ∪ aff

(
ψ(Rp

k \ {p})
)
∪ ψ({p})

)
.

By condition (iv)(iv) aff
(
ψ(Rp

k \ {p})
)

= aff
(
ψ(Rk)

)
, which reduces the equality to:

aff
(
ψ(Gj+1)

)
= aff

(
ψ
(
Gj \Rk

)
∪ aff

(
ψ(Rk)

)
∪ ψ
(
{p}
))
.

Using Observation 2.72.7 again, we obtain

aff
(
ψ(Gj+1)

)
= aff

(
ψ
(
(Gj \Rk) ∪Rk ∪ {p}

))

Since Rk ⊆ Gj, Equation (2.72.7) follows.
Using the fact that Rk ⊆ Gj, we are now ready to verify that Gj+1 satisfies condi-

tions (I)(I)–(III)(III).
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• Condition (I)(I) (|Gj+1| = j+2): |Gj+1| = | (Gj \Rk)∪Rp
k|. Because Gj is rainbow,

condition66 (ii)(ii) implies that the sets Gj \ Rk and Rp
k do not share any color. In

particular, they are disjoint and |Gj+1| = |Gj \ Rk| + |Rp
k|. Since |Rp

k| = |Rk| + 1
(condition (iii)(iii)), |Gj+1| = |Gj \Rk|+ |Rk|+ 1. Because Rk ⊆ Gj, we have |Gj+1| =
|Gj|+ 1. Condition (I)(I) for Gj then implies |Gj+1| = j + 2. We conclude that Gj+1

satisfies condition (I)(I).

• Condition (II)(II) (Gj+1 is rainbow): We have Gj+1 = (Gj \Rk) ∪ Rp
k. As we

have already shown while verifying condition (I)(I), the sets Gj \ Rk and Rp
k do not

share any color. Hence it suffices to show that both Gj \ Rk and Rp
k are rainbow.

Since Gj is rainbow by condition (II)(II), so are Gj \Rk and Rk ⊆ Gj. Conditions (iii)(iii)
(|Rp

k| = |Rk| + 1) and (ii)(ii) (c(Rp
k) = c(Rk) ∪ {cpk} for some cpk ∈ Kk \ c(Gj)) then

imply that Rp
k cannot use any color twice, so Rp

k is rainbow as well and the condition
follows.

• Condition (III)(III) (dim aff
(
ψ(Gj+1)

)
= j + 1): From the equality (2.72.7) we get

aff
(
ψ(Gj+1)

)
= aff

(
ψ (Gj ∪ {p})

)
. Moreover, we have chosen a point p which sat-

isfies ψ(p) /∈ aff
(
ψ(Gj)

)
, so dim aff

(
ψ(Gj+1)

)
= dim aff

(
ψ(Gj)

)
+ 1. By induction

hypothesis this equals j + 1 and Gj+1 satisfies condition (III)(III).

It follows that we have constructed set Gj+1 satisfying the desired conditions, therefore,
we can continue with the first loop.

Case 2c)2c): ψ(CKk) ⊆ aff
(
ψ(Gj)

)
and ψ(CKk) 6⊆ aff

(
ψ(Rk)

)

In this case, we show how to construct sets Kk+1, Rk+1 and Rp
k+1 for all points p ∈ CKk+1

for which ψ(p) /∈ aff
(
ψ(Rk+1)

)
.

We choose an inclusion minimal subset S ⊆ Gj satisfying ψ
(
CKk

)
⊆ aff

(
ψ(S)

)
and

define Rk+1 := S. Because we assume that ψ(CKk) ⊆ aff
(
ψ(Gj)

)
, such set Rk+1 does

exist. We further define
Kk+1 := Kk ∪ c(Rk+1). (2.8)

Before we construct Rp
k+1, we prove the following two auxiliary claims:

Claim 2.1. ψ � Gj is injective, and ψ(Gj) is affinely independent.

Proof. The claim easily follows from |Gj| = j + 1 (condition (I)(I)) and dim aff
(
ψ(Gj)

)
= j

(condition (III)(III)).

Claim 2.2.
Rk ( Rk+1. (2.9)

Proof. By condition (i)(i) Rk ( CKk , so ψ(Rk) ⊆ ψ(CKk). Since we have chosen Rk+1 as
a set satisfying ψ(CKk) ⊆ aff

(
ψ(Rk+1)

)
, we have aff

(
ψ(Rk)

)
⊆ aff

(
ψ(Rk+1)

)
. Because

ψ(Rk) and ψ(Rk+1) are subsets of the affinely independent set ψ(Gj) (Claim 2.12.1), we
have ψ(Rk) ⊆ ψ(Rk+1). Since ψ � Gj is injective and Rk, Rk+1 ⊆ Gj, we have Rk ⊆ Rk+1.
Since ψ(Rk) ⊆ ψ(CKk) 6⊆ aff

(
ψ(Rk)

)
by condition (i)(i) and the fact that we are in case 2c)2c),

we can use ψ(CKk) ⊆ aff
(
ψ(Rk+1)

)
to deduce that that Rk+1 6= Rk.

6c(Rpk) = c(Rk) ∪ {cpk}, for some cpk ∈ Kk \ c(Gj) ⊆ Kk \ c(Rk)
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Now we construct sets Rp
k+1 for all points p ∈ CKk+1

satisfying ψ(p) /∈ aff
(
ψ(Rk+1)

)
.

Let p be such a point. By definition of Rk+1, ψ(CKk) ⊆ aff
(
ψ(Rk+1)

)
, so p cannot lie

in CKk . Equation (2.82.8) then implies c(p) ∈ (Kk+1 \Kk) ⊆ c(Rk+1). Because Rk+1 ⊆ Gj

is a rainbow set77, there exists a unique element r ∈ Rk+1 with c(r) = c(p). Since we
assume p /∈ CKk , we have c(r) = c(p) /∈ Kk ⊇ c(Rk), where the last inclusion follows from
condition (i)(i). In particular, c(r) /∈ c(Rk), hence

r ∈ Rk+1 \Rk. (2.10)

Since Rk+1 is an inclusion minimal subset of Gj for which ψ
(
CKk

)
⊆ aff

(
ψ(Rk+1)

)
, there

exists an element q ∈ CKk such that ψ(q) /∈ aff
(
ψ(Rk+1 \ {r})

)
. Since ψ(q) ∈ ψ(CKk) ⊆

aff
(
ψ(Rk+1)

)
, the exchange principle implies ψ(r) ∈ aff

(
ψ(Rk+1 \ {r}) ∪ ψ({q})

)
.

It easily follows that

aff
(
ψ(Rk+1)

)
= aff

(
ψ
(
(Rk+1 \ {r}) ∪ {q}

))
. (2.11)

Claim 2.22.2 together with (2.102.10) imply that Rk ⊆ Rk+1 \ {r}. Since q was chosen to
satisfy ψ(q) /∈ aff

(
ψ(Rk+1 \ {r})

)
, we have ψ(q) /∈ aff

(
ψ(Rk)

)
as well. Together with

q ∈ CKk , this implies that Rq
k is defined. We set88

Rp
k+1 := Rk+1 \

(
Rk ∪ {r}

)
∪Rq

k ∪ {p}. (2.12)

It remains to show that our assignment satisfies conditions (i)(i)–(v)(v).

• Condition (i)(i): By definition of Kk+1, we have c(Rk+1) ⊆ Kk+1. Rk+1 ⊆ Gj

and Kk 6⊆ c(Gj) (condition (v)(v)) then imply that Kk+1 6⊆ c(Rk+1), in particular
Kk+1 6= c(Rk+1) and condition (i)(i) follows.

• Condition (ii)(ii): Condition (ii)(ii) states that c(Rq
k) = c(Rk) ∪ {cqk} for some cqk ∈

Kk \ Gj, in particular c(Rk) ⊆ c(Rq
k). Together with the fact that elements p

and r have the same color (c(p) = c(r)), Equation (2.122.12) then yields c(Rp
k+1) =

c (Rk+1 \Rk) ∪ c(Rq
k). If we now apply condition (ii)(ii) for Rq

k and Claim 2.22.2, we see
that c(Rp

k+1) = c(Rk+1) ∪ {cpk+1}, where cpk+1 = cqk. Note that Kk ⊆ Kk+1, hence
cpk+1 ∈ Kk+1 \ c(Gj). Condition (ii)(ii) follows.

• Condition (iii)(iii): By definition Rp
k+1 = Rk+1 \

(
Rk ∪ {r}

)
∪ Rq

k ∪ {p}. Because
Rk+1 is a subset of Gj, Rk+1 is rainbow (condition (II)(II)). Together with c(Rq

k) =
c(Rk) ∪ {cqk}, where cqk /∈ c(Gj) ⊇ c(Rk+1), it implies that the sets Rk+1 \ Rk and
Rq
k are disjoint. Since r ∈ Rk+1 \ Rk (Equation (2.102.10)), c(p) = c(r) ∈ c(Rk+1) \

c(Rk) and c(Rq
k) ∩ c(Gj) = c(Rk) (conditions (ii)(ii) and (v)(v)), we have p, r /∈ Rq

k and
p, r /∈ Rk. From ψ(p) /∈ aff

(
ψ(Rk+1)

)
follows p /∈ Rk+1. Since r ∈ Rk+1, we have

|Rp
k+1| = |Rk+1 \Rk| − |{r}|+ |{p}|+ |Rq

k| = |Rk+1 \Rk|+ |Rk|+ 1, where the last
equality uses the induction hypothesis for k. From Claim 2.22.2 then easily follows
that |Rp

k+1| = |Rk+1|+ 1 as desired.

7Gj is rainbow by condition (II)(II).
8We note that Rpk+1 does depend on our choice of q, i.e., if we choose another q ∈ CKk

that satisfies

ψ(q) /∈ aff
(
ψ(Rk+1 \ {r})

)
, we obtain a different set Rpk+1.
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• Condition (iv)(iv): By definition p ∈ Rp
k+1, so we only need to verify that aff

(
ψ(Rp

k+1\
{p})

)
= aff

(
ψ(Rk+1)

)
. Let us compute. Using the fact that q ∈ Rq

k from condi-
tion (iv)(iv) and the equality aff

(
B ∪ C

)
= aff

(
B ∪ aff(C)

)
from Observation 2.72.7 we

may rewrite aff
(
ψ(Rp

k+1 \ {p})
)

as follows:

aff
(
ψ(Rp

k+1 \ {p})
)

= aff
(
ψ
(
Rk+1 \ (Rk ∪ {r})

)
∪ ψ(Rq

k)
)

= aff
(
ψ
(
Rk+1 \ (Rk ∪ {r})

)
∪ ψ(Rq

k \ {q} ∪ {q})
)

= aff
(
ψ
(
Rk+1 \ (Rk ∪ {r})

)
∪ aff

(
ψ(Rq

k \ {q})
)
∪ ψ({q})

)
.

Now we use condition (iv)(iv) for k (aff
(
ψ(Rq

k \ {q})
)

= aff
(
ψ(Rk)

)
). We obtain

aff
(
ψ(Rp

k+1 \ {p})
)

= aff
(
ψ
(
Rk+1 \ (Rk ∪ {r})

)
∪ aff

(
ψ(Rk)

)
∪ ψ({q})

)

= aff
(
ψ
(
(Rk+1 \ {r}) ∪ {q}

))

= aff
(
ψ(Rk+1)

)
,

where the last equality follows from (2.112.11).

• Condition (v)(v): By definition Kk+1 = Kk ∪ c(Rk+1). This implies CKk+1
= CKk ∪

Cc(Rk+1). Hence Gj ∩ CKk+1
= (Gj ∩ CKk) ∪ (Gj ∩ Cc(Rk+1)). By the induction

assumption Gj ∩ CKk = Rk. Because Gj ⊇ Rk+1 is rainbow (condition (II)(II)),
Gj ∩ Cc(Rk+1) = Rk+1. Claim 2.22.2 then implies Gj ∩ CKk+1

= Rk+1 as desired.
Because Kk 6⊆ c(Gj) and Kk ⊆ Kk+1, we have Kk+1 6⊆ c(Gj) as well.

It follows that we may continue in the second loop. This ends our description of the
algorithm.

Running time

We have already shown that if the algorithm stops, it always outputs r sets F1, . . . , Fr
that satisfy the desired conditions. It remains to argue that it always stops in polynomial
time.

Let us recapitulate how the algorithm works. First, if |C0| > r it deletes the additional
points and similarly if |Ci| > i. This can be clearly done in O(|C|)-time. So we may
assume that |C| = (m+ 1)(r − 1) + 1.

Let t(m, r) denote the running time of the algorithm under the conditions that

|C| = (m+ 1)(r − 1) + 1. (2.13)

If m = 0, the algorithm splits C0 into r sets F1, . . . , Fr and outputs them in O(r)-time,
hence t(0, r) = O(r). If r = 1, the algorithm outputs C0 in time O(|C0|) = O(r) = O(1),
hence t(m, 1) = O(1).

Since r < |C|, it follows that the total running time of our algorithm equals

t(m, r) +O(|C|). (2.14)

If m > 0, r > 1 and |C| = (m+ 1)(r − 1) + 1 the algorithm runs as follows:
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1: function Tverberg decomposition
2: Let p be an element in C0. Set G0 := {p}.
3: for j = 0, 1, . . . do . First loop
4: if ψ(C) ⊆ aff

(
ψ(Gj)

)
then . Case 11

5: Set Fr := Gj

6: Set C ′ := C \ Fr, C ′i := Ci \ Fr, i = 0, . . . ,m, ψ′ := ψ � C ′

7: Call Tverberg decomposition on m, r − 1 and C ′, C ′i, ψ
′

8: We obtain r − 1 sets F ′1, . . . , F
′
r−1.

9: Output F ′1, . . . , F
′
r−1, Fr and stop

10: else . Case 22
11: Set R0 := ∅, K0 := {0, 1, . . . ,m} \ c(Gj) and Rp

0 := {p} for all p ∈ CK0

12: for k = 0, . . . do . Second loop
13: if ψ(CKk) ⊆ aff

(
ψ(Rk)

)
then . Case 2a)2a)

14: Choose a point p ∈ CKk \ Cc(Rk). Let c(Rk) = {k0, . . . , km′}.
15: Set C ′ := Cc(Rk) ∪ {p}.
16: Partition C ′ into color classes C ′0 := Ck0 ∪ {p}
17: and C ′i := Cki for i = 1, . . . ,m′. Set ψ′ := ψ � C ′.
18: Call Tverberg decomposition on m′, r and C ′, C ′i.
19: We obtain r sets F ′1, . . . , F

′
r.

20: Output F ′1, . . . , F
′
r and stop

21: else if ψ(CKk) 6⊆ aff
(
ψ(Gj)

)
then . Case 2b)2b)

22: Choose a point p ∈ CKk with ψ(p) /∈ aff
(
ψ(Gj)

)

23: Set Gj+1 := (Gj \Rk) ∪Rp
k.

24: Continue in the first loop
25: else . Case 2c)2c)
26: Find inclusion minimal Rk+1 ⊆ Gj with ψ(CKk) ⊆ aff

(
ψ(Rk+1)

)

27: Set Kk+1 := Kk ∪ c(Rk+1).
28: for all p ∈ CKk+1

for which ψ(p) /∈ aff
(
ψ(Rk+1)

)
do

29: Let r ∈ Rk+1 \Rk be the unique element with c(r) = c(p).
30: Choose an element qr ∈ CKk with

31: ψ(qr) /∈ aff
(
ψ
(
Rk+1 \ {r}

))
.

32: Set Rp
k := Rk+1 \ (Rk ∪ {r}) ∪Rqr

k ∪ {p}.
33: end for
34: end if
35: end for
36: end if
37: end for
38: end function

Before we start with the time analysis of the algorithm, we recall that u is the maximal
time needed to decide whether a point p ∈ C and a set S ⊆ C satisfy ψ(p) ∈ aff

(
ψ(S)

)
.

The time that we need to decide whether ψ(C) ⊆ aff
(
ψ(Gj)

)
(line 44) is O(|C|u): We

simply test whether all elements of ψ(C) lie in aff
(
ψ(Gj)

)
.

Case 11 (lines 55 – 99) deletes points from Gj in all sets Ci. This task can be performed
in O(|C|)-time. Then the algorithm call itself recursively on C \ Gj and stops. Since
|C \Gj| = (m+ 1)(r− 1) + 1− (j + 1), the recursive call has to delete m− j points from
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|C \Gj| before the set satisfies condition (2.132.13). Hence the total running time of Case 11
is t(m, r − 1) +O(m) +O(|C|) = t(m, r − 1) +O(|C|).

Let us now analyze Case 22 (lines 1010 – 3636). To avoid some technicalities during the
analysis, we set K−1 = ∅. The decision whether we are in Case 2a)2a), Case 2b)2b) or Case 2c)2c)
can be done in O(|C|u)-time for the same reason as the decision whether we are in Case 11
or Case 22.

Line 1111 can be performed in O(|C|)-time. Case 2a)2a) (lines 1313 – 2020) calls the algorithm
recursively and then stops. If 0 ∈ c(Rk), the set C ′ contains one superfluous point and
the recursively called instance has to delete it. Otherwise |C ′| = (m′+ 1)(r− 1) + 1 from
the beginning. Since lines 1414 – 1717 can be performed in O(|C|) time and m′ < m, the total
running time of Case 2a)2a) is at most t(m− 1, r) +O(|C|) regardless whether 0 ∈ c(Rk) or
not.

Case 2b)2b) (lines 2121 – 2424) finds point p ∈ CKk with ψ(p) /∈ aff
(
ψ(Gj)

)
. Such a point

can be found as follows: We go through all elements of CKk and test whether ψ(p) ∈
aff
(
ψ(Gj)

)
. This requires O(|CKk \ CKk−1

| · u) = O(|C|u)-time. Constructing Gj+1 from
p (line 2323) can then be done in constant time. Hence Case 2b)2b) finishes in O(|C|u) time.

Case 2c)2c) (lines 2525 – 3434) is the most difficult to analyze. It contains the nontrivial
task of finding inclusion minimal subset Rk+1 ⊆ Gj for which ψ(CKk) ⊆ aff

(
ψ(Rk+1)

)

(line 2626).

Claim 2.3. An inclusion minimal set Rk+1 ⊆ Gj for which ψ(CKk) ⊆ aff
(
ψ(Rk+1)

)
can

be found in O
(
mu · |CKk \ CKk−1

|
)

time.

We postpone the proof after the analysis of the remaining lines.
Line 2727 can be performed in O(|C|) time. The cycle on lines 2828 – 3333 runs through

all elements p ∈ CKk+1
for which ψ(p) /∈ aff

(
ψ(Rk+1)

)
. Line 2626 implies that ψ(CKk) ⊆

aff
(
ψ(Rk+1)

)
, hence it suffices to go through all elements p ∈ CKk+1

\ CKk and the cycle
is repeated at most |CKk+1

\CKk |-times. Testing whether p satisfies ψ(p) /∈ aff
(
ψ(Rk+1)

)

(line 2828) is performed in time u.
Finding an element r ∈ Rk+1\Rk that has the same color as p (line 2929) can be done as

follows: We go through all elements r ∈ Rk+1\Rk and check their colors. Equation (2.102.10)
implies that we find an element r with c(r) = c(p). This takes at most O(|Rk+1\Rk|) time

in total. We choose an element qr ∈ CKk with ψ(qr) /∈ aff
(
ψ
(
Rk+1 \ {r}

))
(lines 3030–3131)

as follows: Such element cannot lie in CKk−1
, because CKk−1

⊆ Rk (lines 2626 and 1111), hence

we go through all elements qr ∈ CKk \CKk−1
and test whether ψ(qr) ∈ aff

(
ψ
(
Rk+1\{r}

))
.

Because this condition only depends on r, we remember the points qr and reuse them for
all points p with c(p) = c(r).

The last line (3232) can be performed in constant time. We conclude that the cycle on
lines 2828 – 3333 can be performed in time

O
(
|CKk+1

\ CKk |(u+ |Rk+1 \Rk|) + |CKk \ CKk−1
|u
)
.

Since Rk+1 ⊆ Gj and |Gj| = j + 1 ≤ m+ 1, this lies in

O
(
|CKk+1

\ CKk |(u+m) + |CKk \ CKk−1
|u
)
.

Observe that Rk ( Rk+1 (Claim 2.22.2), Rk+1 ⊆ Gj, |Gj| = j + 1 and Cases 2a)2a) and 2b)2b)
both terminate the second loop (lines 1212–3535). It follows that we go through Case 2c)2c) at
most j + 1 < m+ 1-times.
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Now we use
⋃(

CKk+1
\CKk

)
⊆ C. Using amortized complexity, we see that the total

time that the first loop (lines 1212 – 3535) spends on lines 2525 – 3434 is bounded by O(|C|mu).
If we sum the running times up, we obtain that one iteration of Case 22 can be done

in time t(m− 1, r) +O(|C|mu).
From the condition dim aff

(
ψ(Gj)

)
= j follows that Case 22 (lines 1010 – 3636) can happen

at most (dimA)-times. Since dimA ≤ m, it follows that the total running time of Case 22
is bounded by t(m− 1, r) +O(|C|m2u). (We recall that the term t(m− 1, r) is obtained
from Case 2a)2a), which immediately runs the algorithm recursively and then stops the
algorithm. In particular the term t(m− 1, r) appears at most once.)

In combinations with the running time of Case 11 it gives t(m, r) ≤ max{t(m −
1, r), t(m, r − 1)}+O(|C|m2u).

If we solve the recursion, we get t(m, r) = O
(
m+ r)|C|m2u

)
, hence the total running

time of our algorithm equals O
(
(m+ r)|C|m2u+ |C|

)
, see Equation 2.142.14.

The last thing we need to verify is Claim 2.32.3.

Proof of Claim 2.32.3. The task of finding some minimal Rk+1 ⊆ Gj such that ψ(CKk) ⊆
aff
(
ψ(Rk+1)

)
can be achieved as follows: We start with set S ′ := Gj and go through

all elements r ∈ Gj \ Rk (Rk ⊆ Rk+1 by Claim 2.22.2). For each such r we test whether
ψ(CKk) ⊆ aff

(
ψ(S ′ \ {r})

)
. Since ψ(CKk−1

) ⊆ aff
(
ψ(Rk)

)
, it suffices to test whether

ψ(CKk \CKk−1
) ⊆ aff

(
ψ(S ′ \{r})

)
. One such test can be done in time O

(
|CKk \CKk−1

|u
)
.

If ψ(CKk) ⊆ aff
(
ψ(S ′ \ {r})

)
, we delete r from S ′. When we have tested all elements, we

set Rk+1 := S ′. It follows that finding set Rk+1 requires time O
(
|Gj| · |CKk \CKk−1

| ·u
)

=
O
(
mu · |CKk \ CKk−1

|
)
.
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3. Ramsey type result for simplicial
chain maps

In this chapter we prove Theorem 1.21.2. In fact, we prove a slightly stronger version
(Theorem 6.86.8): Let s, k, n ≥ 1 be integers, M a manifold and f : ∆

(k)
n →M a continuous

map. If

n ≥ max

{
s+ 1,

(
s

k

)
β̃k(M ;Zp)(s− 2k) + s+ 1

}
,

then there exists an almost embedding g : ∆
(k)
s → ∆

(k)
n , such that the induced map

(f ◦ g)∗ : H∗
(
∆(k)
s ;Zp

)
→ H∗ (M ;Zp)

is trivial and the g-image of every face is a union of faces in ∆
(k)
n .

In this chapter we work with ordered simplicial and singular chains and derived ho-
mology groups, since the argumentation in the proofs is then much easier. Because not
all of these terms are commonly used nowadays and our proofs rely on precise definitions,
we recall them first.

Moreover, until now we have omitted the difference between an abstract simplicial
complex K and its geometric realization |K|. Since in some of our constructions the
distinction is necessary, we will carefully distinguish these two throughout this chapter.

3.1 Preliminaries

3.1.1 Simplicial complexes

If we write simplicial complex, we mean a finite abstract simplicial complex:

Definition 3.1 (Simplicial complexes). A finite simplicial complex is a finite family K
of finite sets such that τ ⊆ σ ∈ K implies τ ∈ K. A simplicial complex L ⊆ K is called
a subcomplex of K.

If σ ∈ K and cardσ = l, we call σ an (l − 1)-dimensional face of K. The kth
dimensional skeleton K(k) of K is the family of all ≤ k-dimensional faces of K. The
vertex set V (K) of K is the set of all elements appearing in faces of K, i.e., V (K) =

⋃
K.

We furthermore assume that the vertex set V (K) is linearly ordered.
The abstract d-dimensional simplex ∆d is the family of all subsets of {0, 1, . . . , d}.

This simplex inherits its vertex ordering from the integers.

Since we are only working with finite simplicial complexes, we will usually omit the
word finite.

Definition 3.2 (Geometric realization). A geometric realization of a finite abstract sim-
plicial complex K is an assignment σ 7→ |σ|, σ ∈ K, that satisfies:

1. If σ is a k-dimensional face, then |σ| is a k-dimensional simplex and

2. |σ| ∩ |σ′| = |σ ∩ σ′|.
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In such case we define |L| := ⋃σ∈L |σ| for every subcomplex L ⊆ K.

By a slight abuse of notation, we also call |K| a geometric realization of K. Note that
|K| is a topological space.

We implicitly assume that every (finite abstract) simplicial complexK comes equipped
with a fixed geometric realization. If K does not come with a geometric realization, we
equip it with the standard one.

Definition 3.3 (Standard geometric realization). The standard geometric realization
of an abstract simplicial complex K is defined as follows: If v is the ith vertex in the
ordering of V (K), we define |v| as ei, the ith vector from the standard canonical basis
of Rcard(V (K))+1. For an l-dimensional face σ = {v0, v1, . . . , vl} of K, we set |σ| :=
conv{|v0| , |v1| , . . . , |vl|}. Finally, for a subcomplex L ⊆ K we set |L| :=

⋃
σ∈L |σ|. In

particular, |K| := ⋃σ∈K |σ| ⊆ Rcard
(
V (K)

)
+1.

Unless stated otherwise, we endow every abstract simplicial complex with the standard
geometric realization described above.

Note that for s < n the standard inclusion of |∆s| into |∆n| is the restriction of the
standard inclusion Rs+2 → Rn+2 onto |∆s|.

In our constructions, we need the following special case of stellar subdivision:

Definition 3.4 (Stellar subdivision). Let K be a finite abstract simplicial complex with
geometric realization |K| and a /∈ V (K) be a point with |a| contained in the interior of |σ|
for some maximal face σ ∈ K. The stellar subdivision sd(K, a) is the abstract simplicial
complex K ′ that is obtained from K by the following procedure:

• Remove σ from K

• for every τ ( σ add {a} ∪ τ to K ′.

For technical reasons, we equip K ′ := sd(K, a) with a geometric realization that slight-
ly differs from the standard geometric realization. We have assumed that |a| is given
and it stays the same in K ′. For faces of K ′ containing a, we set |{a, v0, . . . , vl−1}| :=
conv{|a| , |v0| , . . . , |vl−1|}. The remaining faces inherit their realizations from |K|. Fi-
nally, for every subcomplex L ⊆ K ′, we set |L| :=

⋃
σ∈L |σ|. In particular, |sd(K, a)| :=⋃

σ∈sd(K,a) |σ|. Since we require the vertices of a simplicial complex to be ordered, we

shall now define the ordering on vertices of sd(K, a). The ordering of V
(
sd(K, a)

)
puts

a before all other vertices and orders the remaining vertices according to their original
ordering in K.

Observe that the geometric realization of sd(K, a) is homeomorphic to the standard
geometric realization of sd(K, a) and also to |K|.

3.1.2 Chain complexes

Choosing appropriate homology theories in this chapter makes our argumentation much
easier.11 It turns out that the ordered versions of simplicial and singular homology are

1 Since we are only working with sufficiently nice spaces, the resulting homology groups will be
naturally isomorphic, regardless of the definition we choose. The difference only appears at the level of
chain groups.
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suitable for our purposes. In both cases we consider augmented chain complexes and
hence reduced homology groups.

Since the corresponding definitions are scattered throughout the literature, we provide
all the necessary notions here. In order to introduce the homology groups efficiently, we
define some abstract machinery first. Moreover, since we are only interested in homology
with field coefficients, we state the definitions in this simpler setting22.

Definition 3.5 (Chain complexes). Let F be a field. An infinite sequence

. . .
∂l+2−−→ Cl+1

∂l+1−−→ Cl
∂l−→ Cl−1

∂l−1−−→ . . .

of F-vector spaces Cl and their homomorphisms ∂l : Cl → Cl−1, where l ranges over the
integers, is called an F-chain complex, if ∂l ◦ ∂l+1 = 0 for every integer l. In that case
we define the graded F-module C∗ as the direct sum C∗ :=

⊕
l∈ZCl and set ∂ :=

⊕
l∈Z ∂l.

An element c ∈ Cl ⊆ C∗ is called an element of degree l.
If ϕ : C∗ → D∗ is a linear map between two graded F-modules, such that ϕ(Cl) ⊆ Dl+i

for some integer i, then ϕ =
⊕

l∈Z ϕl, where each ϕl : Cl → Dl+i is an F-linear map. We
call such a map ϕ a graded map of degree i.

A chain map between two F-chain complexes

. . .
∂Cl+2−−→ Cl+1

∂Cl+1−−→ Cl
∂Cl−−→ Cl−1

∂Cl−1−−→ . . .

and

. . .
∂Dl+2−−→ Dl+1

∂Dl+1−−→ Dl

∂Dl−−→ Dl−1

∂Dl−1−−→ . . .

is any 0-degree F-linear map ϕ : C∗ → D∗, satisfying ∂D ◦ ϕ = ϕ ◦ ∂C.

By a slight abuse of notation, we also write C∗ as a shorthand for

. . .
∂Cl+2−−→ Cl+1

∂Cl+1−−→ Cl
∂Cl−−→ Cl−1

∂Cl−1−−→ . . . ,

i.e., for C∗ equipped with a (−1)-degree F-linear map ∂C : C∗ → C∗ satisfying ∂C ◦∂C = 0.
Hence we may say that C∗ is an F-chain complex.

If we write ϕ : C∗ → D∗, we mean that ϕ is a chain map between two F-chain com-
plexes C∗ and D∗.

Also note that we mostly use augmented chain complexes33, i.e., chain complexes C∗,
where C−1 6= ∅. It is a custom to denote such chain complexes with a tilde, i.e. C̃∗ instead
of C∗.

We are now ready to define homology groups. We also define boundaries and cycles,
which provide some geometric intuition about the properties captured in homology, at
least for simplicial and singular chain complexes that we define later.

2If the reader prefers more abstract setting, he/she can replace the field F with a commutative ring
R and vector spaces with (free) R-modules.

3In simplicial and singular homology, we may assign two reasonable chain complexes to a simplicial
complex (or a topological space), one of them having C−1 = 0 and the other not. The latter is called
augmented.
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Definition 3.6 (Homology groups). Let F be a field and

C∗ = . . .
∂l+2−−→ Cl+1

∂l+1−−→ Cl
∂l−→ Cl−1

∂l−1−−→ . . .

an F-chain complex. The lth group of cycles Zl with F-coefficients is defined as Zl :=
Ker ∂l and the lth group of boundaries Bl with F-coefficients is defined as Bl := Im ∂l+1.
The lth homology group Hl with F-coefficients is then defined as the quotient Zl/Bl. The
dimension of Hl as an F-vector space is called the lth Betti number βl.

If we consider the trivial morphisms between the homology groups 0: Hl → Hl−1,
l ∈ Z, we obtain the following chain complex

H∗ = . . .
0−→ Hl+1

0−→ Hl
0−→ Hl−1

0−→ . . .

It is a custom to call the homology groups of augmented complexes reduced and
denote them with a tilde, i.e. H̃l instead of Hl and H̃∗ instead of H∗, similarly we have
reduced Betti numbers β̃l.

Definition 3.7 (Induced map). Let F be a field and ϕ : C∗ → D∗ be a chain map between
two F-chain complexes. Let BC

l be the boundaries in C∗, HC
l be the homology groups for

C∗, BD
l the boundaries for D∗ and HD

l the homology groups for D∗.
The induced map in homology ϕ∗ : HC

∗ → HD
∗ is defined as follows:

ϕ∗(z +BC
l ) := ϕ(z) +BD

l if z is a cycle in Cl.

It can be easily checked that ϕ∗ is a well-defined chain map.

3.1.3 Simplicial homology

When one works with simplicial complexes in algebraic topology, one usually assumes that
some ordering of their vertices is implicitly given. One also assumes that subcomplexes
inherit this ordering.

Our calculations turned out to be easier, if we change the ordering of vertices in certain
situations. It means that we have to state the vertex ordering explicitly. Let us now look
how this affects the definition of simplicial homology. We note that the constructions are
relatively standard44, see e.g. [Mun84Mun84, Chapter 1, §13] or [BroBro, Jon11Jon11].

Definition 3.8 (Ordered simplices). Let K be a (finite abstract) simplicial complex and
l ≥ −1 an integer. A sequence (v0, v1, . . . , vl) with {v0, v1, . . . , vl} ∈ K is called an
ordered l-simplex in K. The elements v0, . . . , vl are its vertices. An ordered l-simplex

4The ordered homology is not new. As noted in [Bar95Bar95] the discussion whether to use ordered
or oriented chain groups for singular homology dates back to Lefschetz [Lef33Lef33], Eilenberg [Eil44Eil44] and
Steenrod [ES52ES52]. In short: in oriented homology one regards two l-dimensional singular simplices σ
and σ′ as equal, if there exists an order preserving linear transformation τ of |∆l| such that σ = σ′ ◦ τ
and one regards σ as equal to −σ′ if there is an order reversing linear transformation τ ′ such that
σ = σ′ ◦ τ . One further throws away “degenerated” simplices satisfying σ = −σ. In ordered homology
one considers degenerated simplices, but factors out the subgroup they generate, see [ST80ST80]. Regardless
whether we choose the chain group of all singular simplices, ordered singular simplices or oriented singular
simplices [Bar95Bar95], the resulting homology functors are naturally isomorphic.

The situation for ordered and oriented simplicial homology is analogous.
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σ = (v0, v1, . . . , vl) is degenerated, if two of its vertices coincide, i.e., if there exist
i,j, 0 ≤ i < j ≤ l for which vi = vj. If π ∈ S

(
{0, 1, . . . , l}

)
is a permutation of

the set {0, 1, . . . , l} and σ = (v0, . . . , vl) an ordered l-simplex in K, we define55 π(σ) :=
(vπ−1(0), vπ−1(1), . . . , vπ−1(l)). If σ = (v0, . . . , vl) is an l-simplex in K and a ∈ V (K) is a
vertex of K, then a ∧ σ denotes the ordered (l + 1)-simplex (a, v0, v1, . . . , vl). Note that
we cannot assume that a∧ σ is an (l+ 1)-face of K, so we regard a∧ σ as an (l+ 1)-face
of the simplicial complex 2V (K).

We are now ready to define the simplicial chain groups.

Definition 3.9 (Simplicial chain groups). Let K be a (finite abstract) simplicial complex,
F a field and l ≥ −1 an integer. We define the lth augmented ordered simplicial chain
group Õl(K;F) to be the F-vector space with basis consisting of all ordered l-simplices in

K. In other words, Õl(K;F) is the set of all finite sums
∑
aiσi, where ai ∈ F and σi are

ordered l-simplices in K. The addition of two such sums and multiplication of such sum
by an element of F is defined in the natural way.

We further define the lth augmented simplifying66 simplicial chain group T̃l(K;F) to be

the vector subspace of Õl(K;F) generated by degenerated singular l-simplices and elements
of the form

(
σ − sgn(π)π(σ)

)
, where σ ranges over all ordered l-simplices in K and π

ranges over all permutations π ∈ S
(
{0, 1, . . . , l}

)
.

The lth augmented simplicial chain group C̃l(K;F) is the quotient-space

C̃l(K;F) := Õl(K;F)/T̃l(K;F).

If l < −1, we put C̃l(K;F) = Õl(K;F) = T̃l(K;F) = 0.

We note that Õ−1(K;F) is generated by the empty sequence ω and hence isomorphic
to F. Furthermore, there are no ordered degenerated (−1)-simplices. Since there is only
one permutation of the empty set, and its sign is by definition 1, T−1(K;F) is generated

by ω − ω = 0, hence C̃−1(K;F) ∼= Õ−1(K;F) ∼= F.
Now we define the boundary operators in order to turn simplicial chain groups into

chain complexes:

Definition 3.10 (Simplicial boundary operators). Let K be a (finite abstract) simplicial
complex and F be a field. If l ≥ 0 is an integer, the lth ordered simplicial boundary
operator ∂ol : Õl(K;F)→ Õl−1(K;F) is given77 on the basis of Õl(K;F) by88

∂ol
(
(v0, v1, . . . , vl)

)
:=

l∑

i=0

(−1)i(v0, v1, . . . , v̂i, . . . , vl)

5Observe that π(σ) is again an ordered l-simplex in K. Also note that it is common to define π(σ)
using π−1 to permute vertices, since in this way vi maps onto vπ(i). Moreover, without the inverse the
equality π′(π(σ)) = (π′ ◦ π)(σ) would not hold.

6The letter T stands for trivial, but the term trivial chain group would collide with the term trivial
group, hence we decided to call T̃l(K;F) simplifying group, because we use it to simplify our calculations.

7The boundary operator depends on F and K, but to keep the notation simple, these are usually
omitted.

8 We use the symbol (v0, v1, . . . , v̂i, . . . , vl) as a shorthand for (v0, v1, . . . , vl) with vi removed. That
is, (v0, v1, . . . , v̂i, . . . , vl) = (v0, v1, . . . , vi−1, vi+1, vi+2, . . . , vl).
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and extended linearly to the whole space Õl(K;F).

It is easy to check that ∂ol
(
T̃l(K;F)

)
⊆ T̃l−1(K;F), so we may define the lth simplicial

boundary operator ∂l : C̃l(K;F)→ C̃l−1(K;F) by ∂l
(
o+ T̃l(K;F)

)
:=
(
∂ol o
)

+ T̃l−1(K;F)

for every o ∈ Õl(K;F).
For l < 0 we put ∂ol = 0, ∂l = 0.

It can be easily verified that ∂ol ◦ ∂ol+1 = 0 and ∂l ◦ ∂l+1 = 0 for every integer l.

Definition 3.11 (Simplicial chain complexes). Let K be a (finite abstract) simplicial

complex and F be a field. The augmented ordered simplicial chain complex Õ∗(K;F) is
the following infinite sequence of F-vector spaces and maps between them

Õ∗(K;F) := . . .
∂ol+2−−→ Õl+1(K;F)

∂ol+1−−→ Õl(K;F)
∂ol−−→ Õl−1(K;F)

∂ol−1−−→ . . .

According to Definition 3.63.6, the augmented ordered simplicial chain complex gives rise to
ordered simplicial boundary groups Bo

l (K;F), ordered simplicial cycle groups Zo
l (K;F)

and reduced ordered simplicial homology groups H̃o
l (K;F).

The augmented simplicial chain complex C̃∗(K;F) is the infinite sequence

C̃∗(K;F) := . . .
∂l+2−−→ C̃l+1(K;F)

∂l+1−−→ C̃l(K;F)
∂l−→ C̃l−1(K;F)

∂l−1−−→ . . .

It gives rise to simplicial boundary groups Bl(K;F), simplicial cycle groups Zl(K;F) and

reduced simplicial homology groups H̃l(K;F).

If the field F is clear from the context, we omit it from the notation and only write
H̃l(K), Bo

l (K), Zo
l (K), C̃l(K), etc. If we explicitly state the source and target space of

the boundary operator, (or when it does not matter), we also omit the indexes l and o

for ∂, i.e., we write Õl(K)
∂−→ Õl−1(K), instead of Õl(K;F)

∂ol−→ Õl−1(K;F), etc.

3.1.4 Singular homology

In order to allow easy transition from simplicial to singular homology groups, we present
a definition of singular homology that matches the ordered approach.

Let us define several maps first.

Definition 3.12 (Standard simplices). Let l > −1. The standard l-dimensional simplex
|∆l| is defined as99 |∆l| := conv

(
{e1, . . . , el+1}

)
= {(t0, t1, . . . , tl) | 0 ≤ ti ≤ 1,

∑l
i=1 ti =

1} ⊆ Rl+1.
For 0 ≤ i ≤ l we define the ith face map δil : |∆l−1| → |∆l| by

δil(t0, t1, . . . , tl−1) := (t0, t1, . . . ti−1, 0, ti, ti+1, . . . , tl−1).

If 0 ≤ i ≤ l and 0 ≤ j ≤ l are two distinct integers (i 6= j), we define the degeneracy
map σi,jl : |∆l| → |∆l| by1010

σi,jl (t0, t1, . . . , tl) :=

{
(t0, . . . , ti−1, 0, ti+1, . . . , tj−1, tj + ti, tj+1, . . . , tl), if i < j,

(t0, . . . , tj−1, tj + ti, tj+1, . . . , ti−1, 0, ti+1, . . . , tl) if i > j.

9See Definitions 3.13.1 and 3.33.3.
10With some fantasy the case i > j can be viewed as the proper interpretation of the first formula for

j < i.
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If π ∈ S
(
{0, 1, . . . , l}

)
is an permutation, we define the permutation map pπl : |∆l| →

|∆l| by pπl (t0, t1, . . . , tl) := (tπ−1(0), tπ−1(1), . . . , tπ−1(l)). Furthermore, if π is the identity
on ∅, we let pπ−1 be the identity on ∅ as well.

In other words, δil is the orientation preserving inclusion of |∆l−1| on the facet of |∆l|
that does not contain the ith vertex, the map σi,jl maps the ith vertex to the jth vertex
and leaves other vertices unchanged1111 and pπl permutes the vertices of |∆l| according to
the permutation π.

In the proof of Lemma 3.323.32 we will need the following observation concerning maps
σi,jl , δil and pπl :

Observation 3.13. Let k, l,m be integers satisfying 0 ≤ k ≤ l, 0 ≤ m ≤ l − 1. Then

σm+1,m
l ◦ δkl =





δkl ◦ σm,m−1
l−1 if k < m,

δm+1
l if k ∈ {m,m+ 1},
δkl ◦ σm+1,m

l−1 if k > m+ 1

(3.1)

and

δk+1
l+1 ◦ δ0

l = δ0
l+1 ◦ δkl .

Moreover, if π is the transposition (01) viewed as an element of S({0, 1, . . . , l}) and π′ is
the transposition (01) viewed as an element of S({0, 1, . . . , l − 1}), then

pπl ◦ δkl =





δ1
l if k = 0

δ0
l if k = 1

δkl ◦ pπ
′
l−1 if k > 1

(3.2)

and σ2,1
l ◦ pπl = pπl ◦ σ2,0

l .

Proof. The maps δji and σj,ni are linear for all non-negative integers i, j, n. Hence it suffices
to verify that for every i = 1, . . . , l+ 1 the left and right hand-side of Equation (3.13.1) map
ei onto the same point and similarly for the remaining equations. This can be easily
checked using the equalities

δjl (ei) =

{
ei for 0 ≤ i < j,

ei+1 for l ≥ i ≥ j,

σj+1,j
l (ei) =

{
ei for 0 ≤ i ≤ l, i 6= j + 1,

ej for i = j + 1,

pπl (ei) = eπ(i).

We can now define singular simplices.

11Usually the degeneracy map is defined as a map from |∆l| to |∆l−1|. Our calculations are simpler
if we have a map from |∆l| to |∆l|. Hence we have decided to compose the usual jth degeneracy map
with the ith face map to obtain our map σi,jl .
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Definition 3.14 (Ordered singular simplices). Let l ≥ −1 be an integer and X a topo-
logical space. An ordered singular l-simplex in X is any continuous map γ : |∆l| → X.
An ordered singular l-simplex γ : |∆l| → X is degenerated if γ = γ′ ◦ σi,jl for some
i, j ∈ {0, . . . , l}, i 6= j and some ordered singular l-simplex γ′ : ∆l → X.

In other words, γ is degenerated if it factors linearly through some face of |∆l|.
Next we describe the singular chain groups.

Definition 3.15 (Singular chain groups). Let X be a topological space, F a field and

l ≥ −1 an integer. We define the lth augmented ordered singular chain group Õl(X;F)
to be the F-vector space with basis consisting of all ordered singular l-simplices in X. In
other words, Õl(X;F) is the set of all finite sums

∑
aiγi, where ai ∈ F and γi are ordered

singular l-simplices in X. The addition of two such sums and multiplication of such sum
by an element of F is defined in the natural way.

We further define the lth augmented simplifying1212 singular chain group T̃l(X;F) to be

the vector subspace of Õl(X;F) generated by degenerated singular l-simplices and elements
of the form

(
σ − sgn(π)(σ ◦ pπl )

)
, where σ ranges over all singular l-simplices in X and

π ranges over all permutations π ∈ S
(
{0, 1, . . . , l}

)
.

The lth augmented singular chain group C̃l(X;F) is the quotient-space

C̃l(X;F) := Õl(X;F)/T̃l(X;F).

If l < −1, we put C̃l(X;F) = Õl(X;F) = T̃l(X;F) = 0.

A (−1)-dimensional singular simplex in X is the unique, empty map from ∅ to X.

Furthermore we have Õ−1(X;F) ∼= F, T̃−1(X;F) ∼= 0 and C̃−1(X;F) ∼= F by the same
argument as for the simplicial chain groups.

In order to turn singular chain groups into chain complexes, we define the boundary
operators.

Definition 3.16 (Singular boundary operators). Let X be a topological space and F a

field. If l ≥ 0 is an integer, the lth ordered singular boundary operator ∂Ol : Õl(X;F)→
Õl−1(X;F) is given on the basis of Õl(X;F) by1313

∂Ol
(
γ
)

=
l∑

i=0

(−1)i(γ ◦ δil)

and extended linearly to the whole space Õl(X;F).

It can be checked that ∂Ol
(
T̃l(X;F)

)
⊆ T̃l−1(X;F), so we may further define the lth

singular boundary operator ∂l : C̃l(X;F) → C̃l−1(X;F) by ∂l
(
o + T̃l(X;F)

)
:=
(
∂Ol o

)
+

T̃l−1(X;F) for every o ∈ Õl(X;F).
For l < 0 we put ∂Ol = 0, ∂l = 0.

12As in the simplicial case, the letter T stands for trivial, but the term trivial chain group would collide
with the term trivial group, hence we decided to call T̃l(X;F) simplifying group, because it is used to
simplify our calculations.

13See Definition 3.123.12, which introduces the maps δil .
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It can be easily verified that ∂Ol ◦ ∂Ol+1 = 0 and ∂l ◦ ∂l+1 = 0 for every integer l.
Definition 3.173.17 is an analogue of Definition 3.113.11 for singular chains.

Definition 3.17 (Singular chain complexes). Let X be a topological space and F a field.

The augmented ordered singular chain complex Õ∗(X;F) is the following infinite sequence
of F-vector spaces and maps between them

Õ∗(X;F) := . . .
∂Ol+2−−→ Õl+1(X;F)

∂Ol+1−−→ Õl(X;F)
∂Ol−−→ Õl−1(X;F)

∂Ol−1−−→ . . .

According to Definition 3.63.6, the augmented ordered singular chain complex gives rise to
ordered singular boundary groups BO

l (X;F), ordered singular cycle groups ZO
l (X;F) and

reduced ordered singular homology groups H̃O
l (X;F).

The augmented singular chain complex C̃∗(X;F) is the infinite sequence

C̃∗(X;F) := . . .
∂l+2−−→ C̃l+1(X;F)

∂l+1−−→ C̃l(X;F)
∂l−→ C̃l−1(X;F)

∂l−1−−→ . . .

It gives rise to singular boundary groups Bl(X;F), singular cycle groups Zl(X;F) and

reduced singular homology groups H̃l(X;F) and reduced Betti numbers β̃l(X;F).

As for the simplicial homology, if the field F is clear from the context, we omit it
from the notation and only write H̃l(X), ZO

l (X), C̃l(X), etc. If we explicitly state
the source and target space of the boundary operator, (or when it does not matter),

we also omit the indexes l and O for ∂, i.e., we write Õl(X)
∂−→ Õl−1(X), instead of

Õl(X;F)
∂Ol−→ Õl−1(X;F), etc.

Note that if K is a simplicial complex, H̃l(K) stands for the lth simplicial homology

group, whereas for a topological space X, the symbol H̃l(X) means the lth singular

homology group. In particular, H̃l(|K|) is the lth singular homology group corresponding
to simplicial complex K.

Any continuous map f : X → Y between two topological spaces X, Y induces chain
maps between the corresponding chain complexes and hence also between the correspond-
ing homology groups. The following definition shows which symbols we use for various
induced maps.

Definition 3.18. Let f : X → Y be a continuous map between two topological spaces X,
Y and F be a field. The induced chain map fO] : Õ∗(X;F) → Õ∗(Y ;F) is prescribed on

the generators of Õ∗(X;F) by

fO] (γ) := f ◦ γ for every ordered singular simplex γ

and extended linearly onto the whole Õ∗(X;F).

The induced chain map f] : C̃∗(X;F) → C̃∗(Y ;F) is prescribed on the generators of

C̃∗(X;F) by

f]
(
γ + T̃l(X;F)

)
:= (f ◦ γ) + T̃l(Y ;F) if γ is an ordered singular l-simplex.

We further set fO∗ := (fO] )∗, f∗ := (f])∗.
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Note that fO]
(
T̃l(X;F)

)
⊆ T̃l(Y ;F), hence f] is well-defined.

As before, we may omit the superscript O, if it is clear from the context.

Definition 3.19 (Inclusion of simplicial chains into singular chains). Let K be a (finite
abstract) simplicial complex with geometric realization |K|. Let F be a field. There exists

a natural inclusion ιoK of Õ∗(K;F) into Õ∗(|K| ;F). It is defined as follows: Let σ =
(v0, v1, . . . , vl) be an l-dimensional ordered simplex in K. Let the geometric realization of
its vertices be |v0|,. . . , |vl|. The value of ιoK(σ) is the singular l-simplex1414 γ : |∆l| → |K|
given by (t0, t1, . . . , tl) 7→ t0 |v0|+ . . .+ tl |vl|.

The natural inclusion ιK : C̃∗(K;F)→ C̃∗(|K| ;F) is defined as follows:

ιK
(
σ + T̃l(K;F)

)
:= ιoK(σ) + T̃l(|K| ;F) if σ is an ordered l-simplex in K.

We conclude this subsection with a comparison of the defined homology groups.

Theorem 3.20 (Equivalence of defined homologies). Let X be a topological space and F
a field. Then the factorization πsg : Õ∗(X;F) → Õ∗(X;F)/T∗(X;F) = C̃∗(X;F) induces

an isomorphism πsg∗ of H̃O
∗ (X;F) and H̃∗(X;F).

Let K be a (finite abstract) simplicial complex and F a field. Then the factorization

π∆ : Õ∗(K;F)→ Õ∗(K;F)/T∗(K;F) = C̃∗(K;F) induces an isomorphism π∆
∗ of H̃o

∗(K;F)

and H̃∗(K;F).

Also the induced maps (ιoK)∗ : H̃o
∗(K;F) → H̃O

∗ (|K| ;F) and (ιK)∗ : H̃∗(K;F) →
H̃∗ (|K| ;F) are isomorphisms.

Proof. The isomorphisms H̃o
∗(K;F) ∼= H̃∗(K;F) ∼= H̃O

∗ (|K| ;F) follow from [Pra07Pra07, Thm.

2.1, Thm. 4.7]. The isomorphism H̃O
∗ (|K| ;F) ∼= H̃∗ (|K| ;F) is provided in [Bar95Bar95] or

can be obtained by an inspection of the proof of equivalence of simplicial and singular
homology in Hatcher’s textbook [Hat02Hat02, Thm. 2.27].

We note that for simplicial homology the definition of reduced homology in Hatcher’s
textbook [Hat02Hat02] agrees with H̃∗, whereas for singular homology his definition agrees with

H̃O
∗ .

Remark 3.21. For a simplicial complex K, we have defined the lth simplicial chain group
C̃l(K) as the factor Õl(K)/T̃l(K). Every ordered l-face (u0, u1, . . . , ul) of K is modulo T̃l
equivalent to 0 or (−1)t(v0, v1, . . . , vl), where v0 < v1 < . . . , vl in the ordering of V (K) and

t is either 0 or 1. Since chains of this form generate a subgroup of Õl(K), the short exact

sequence 0 → T̃l(K) → Õl(K) → C̃l(K) → 0 splits and Õl(K) = C̃l(K)⊕ T̃l(K). So we

can either view C̃l as a free group generated by the simplices of the form (v0, v1, . . . , vl),

where v0 < v1 < . . . < vl, or as the factor Õl(K)/T̃l(K). The second approach only differs

from the first one by introducing new names for some chains in C̃l(K), e.g. (v0, v2, v1) =
−(v0, v1, v2), (v0, v1, v1) = 0, etc. The new names are very useful during our calculations.

To simplify our terminology, we say that σ is a k-face of K, if σ = (v0, v1, . . . , vl),
where v0 < v1 < . . . < vl and {v0, v1, . . . , vl} ∈ K.

14Recall that |vi| is a point in the simplex |σ|, hence t0 |v0| + . . . + tl |vl| ∈ |σ| ⊆ |K| and ιoK(σ) is

indeed a singular simplex in Õ∗(|K| ;F).
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3.1.5 Almost embeddings

Definition 3.22. Let K be an abstract simplicial complex and F a field. A support of
an ordered l-simplex σ = (v0, v1, . . . , vl) in K is defined as follows

supp(σ) :=

{
∅ if σ is degenerated,

{v0, v1, . . . , vl} otherwise.

Let γ ∈ C̃l (K;F) be a simplicial chain. Then γ can be expressed as γ =
∑

i∈I aiσi +

T̃l (K;F), where σi ∈ K are non-degenerated ordered simplices in K, all ai are nonzero
and σi and σj have distinct supports for i 6= j. We then define the support supp(γ) of γ
as

supp(γ) :=
⋃

i∈I
σi.

We note that the expression of γ as
∑

i∈I aiσi + T̃l (K;F) is not unique. For example,

(v0, v1) + T̃l(K;F) = −(v1, v0) + T̃l(K;F). However, the result supp(γ) is independent of
the way we express γ.

Before we proceed further, let us recall that we assume that any (abstract) simplicial
complex K comes equipped with a fixed geometrical realization |K|. That is, if we write
|K|, then we always mean the same geometric realization of K.

Definition 3.23. Let K be an abstract simplicial complex with geometric realization |K|,
j ≥ 1 an integer and X a topological space. We say that f is a j-almost embedding of K
into X, if f : |K| → X is a continuous map such that for every (j + 1) pairwise disjoint
faces σ0, σ1, . . . , σj ∈ K

f(|σ0|) ∩ f(|σ1|) ∩ · · · ∩ f(|σj|) = ∅.
The term almost embedding is used as a shorthand for 1-almost embedding.

If K and L are two abstract simplicial complexes and F a field, then a chain map
ϕ : C̃∗ (K;F) → C̃∗ (L;F) is called an almost embedding if for every two disjoint faces
σ, σ′ ∈ K

supp
(
ϕ(σ)

)
∩ supp

(
ϕ(σ′)

)
= ∅.

The definition of a j-almost embedding f ensures that for every (j+1)-tuple of disjoint
faces σ1, . . . , σj+1 the intersection of their f images is empty, i.e., f(|σ0|)∩ f(|σ1|)∩ · · · ∩
f(|σj|) = ∅, however, there may exist up to j disjoint faces, whose f images intersect.

Note that every (continuous) embedding f : |K| → X is an almost embedding as well.
IfK, L are two simplicial complexes andX a topological space, f an almost embedding

of K into |L| and g an almost embedding of L into X, it may happen that g ◦ f is not
an almost embedding, see Fig. 3.13.1.

But this cannot happen, if f behaves nicely:

Observation 3.24. If K, L are two simplicial complexes, X a topological space, j, k > 0
integers, f a j-almost embedding of K into |L|, g a k-almost embedding of L into X and
if for every σ ∈ K the image f(|σ|) has the form

f(|σ|) =
⋃

i∈I
|ρ′i| , where ρ′i are simplices in L,
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f(a) f(b)0 1 g(0)

g(1)

g(f(a)) = g(f(b))
|L|

X
a b

|K|

⇓ f
=⇒
g

The composition of almost embeddings is not always an almost embedding. Here an
example for K = {∅, {a}, {b}}, L = {∅, {0}, {1}, {0, 1}} and almost embeddings f of K
into |L| and g of L into X = R2.

Figure 3.1: Bad composition of almost embeddings

then g ◦ f is a (jk)-almost embedding of K into X.

The proof is straightforward.

3.2 Statement of the main result

Let us recall the main idea behind Theorems 1.11.1, 1.51.5 and 1.81.8: Suppose that L is a finite

simplicial complex and f :
∣∣∣∆(k)

n

∣∣∣ → X is a continuous map of
∣∣∣∆(k)

n

∣∣∣ into a sufficiently

nice topological space X. If p is a prime number and n is big enough (depending on X,
L and k), we can, using Ramsey theory and the additive structure of the chain group

C∗
(

∆
(k)
n ;Zp

)
, find an almost embedding ϕ : C∗ (L;Zp) → C∗

(
∆

(k)
n ;F

)
such that the

composition f] ◦ ϕ is homologically trivial.
One of our main results in this direction1515 is Theorem 3.253.25, which provides a reason-

ably good bound on n and serves as our main technical tool in proving Theorems 1.11.1 and
1.51.5 in Chapter 44.

Theorem 3.25. Let b ≥ 0 and n, s, k > 0 be integers and p a prime number. Let M

be a manifold1616 with k-th reduced Zp-Betti number at most b. Let f :
∣∣∣∆(k)

n

∣∣∣ → M be a

continuous map.
If

n ≥
(
s

k

)
b(s− 2k) + s+ 1 and n ≥ s+ 1, (3.3)

then there exists an almost embedding g :
∣∣∣∆(k)

s

∣∣∣ →
∣∣∣∆(k)

n

∣∣∣ such that the induced homo-

morphism in homology
(
f ◦ g

)
∗ : H∗

(∣∣∣∆(k)
s

∣∣∣ ;Zp
)
→ H∗(M ;Zp) is trivial. Moreover, the

15For the other results in this direction see Chapter 66.
16The theorem remains valid if we replace manifold M with an arbitrary topological space X and

consider its singular homology when computing Betti numbers.
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image g(|σ|) of every face σ ∈ ∆
(k)
s has the form

⋃
i∈Iσ |ρ′i|, where ρ′i are some simplices

from ∆
(k)
n .

Actually, we prove the following stronger form of Theorem 3.253.25:

Theorem 3.26. Let b ≥ 0 and n, s, k > 0 be integers and p a prime number. Let M

be a manifold with k-th reduced Zp-Betti number at most b. Let θ : C̃∗
(∣∣∣∆(k)

n

∣∣∣ ;Zp
)
→

C̃∗ (M ;Zp) be a chain map.
If

n ≥
(
s

k

)
b(s− 2k) + s+ 1 and n ≥ s+ 1, (3.4)

then there exists an almost embedding g :
∣∣∣∆(k)

s

∣∣∣ →
∣∣∣∆(k)

n

∣∣∣ such that the induced homo-

morphism in homology θ∗ ◦ g∗ : H∗
(∣∣∣∆(k)

s

∣∣∣ ;Zp
)
→ H∗(M ;Zp) is trivial. Moreover, the

image g(|σ|) of every face σ ∈ ∆
(k)
s has the form

⋃
i∈Iσ |ρ′i|, where ρ′i are some simplices

from ∆
(k)
n .

Theorem 3.253.25 then follows from Theorem 3.263.26 by setting θ := f].

Remark 3.27. The reader who does not want to use colorful algebraic Tverberg theorem
(Theorem 2.142.14), may still go through the proofs in this chapter and use Lemma 2.102.10
instead, but he/she obtains a bound n ≥

(
s
k

)
b(s− 2k) + 2s− 2k instead of n ≥

(
s
k

)
b(s−

2k) + s+ 1 in Theorems 3.253.25 and 3.263.26.

3.3 Proof of the main result

We split the proof of Theorem 3.263.26 into several lemmas representing separate ideas.
Throughout the chapter we assume that F is a field and k, n, s ≥ 1 are fixed inte-
gers, m =

(
s+1
k+1

)
is the number of all k-faces of ∆

(k)
s , σ1, . . . , σm are all of them and

θ : C̃∗
(∣∣∣∆(k)

n

∣∣∣ ;F
)
→ C̃∗ (M ;F) is a fixed chain map. Moreover, because we want the

proof to be as understandable as possible, we will avoid an unnecessary symbol for the
inclusion map ∆

(k)
s ↪→ ∆

(k)
n and consider ∆

(k)
s as the subcomplex on the first s+1 vertices

of ∆
(k)
n , in accordance Section 3.1.13.1.1. The general plan looks as follows:

Let ιn be the natural inclusion of C̃∗
(

∆
(k)
n ;F

)
into C̃∗

(∣∣∣∆(k)
n

∣∣∣ ;F
)

, similarly for ιs.

For brevity we set ϕ := θ ◦ (ιn). First we show how to construct a certain chain map

ψ : C̃∗
(

∆
(k)
s ;F

)
→ C̃∗

(
∆

(k)
n ;F

)
such that the composed map ϕ∗ ◦ ψ∗ : H∗(∆(k)

s ;F) →
H∗(M ;F) is trivial, that is, ϕ∗ ◦ ψ∗ = 0. Then for F = Zp, we use ψ to construct an

almost embedding g :
∣∣∣∆(k)

s

∣∣∣→
∣∣∣∆(k)

n

∣∣∣ satisfying (ιn)∗◦ψ∗ = g∗◦(ιs)∗. Then 0 = ϕ∗◦ψ∗ =

θ∗ ◦ (ιn)∗ ◦ψ∗ = θ∗ ◦ g∗ ◦ (ιs)∗ and because (ιs)∗ is an isomorphism [Hat02Hat02, Theorem 2.21],
it implies triviality of θ∗ ◦ g∗. Commutative diagram 3.23.2 illustrates the situation.

The proof of Theorem 3.263.26 is split into separate lemmas as follows: Observation 3.283.28
describes the following idea behind the construction of ψ: If modify the inclusion

C̃∗
(
∆(k)
s ;F

)
↪→ C̃∗

(
∆(k)
n ;F

)
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H̃∗
(

∆
(k)
s ;Zp

)
ψ∗

//

(ιs)∗
��

H̃∗
(

∆
(k)
n ;Zp

)

(ιn)∗
��

ϕ∗

''

H̃∗
(∣∣∣∆(k)

s

∣∣∣ ;Zp
)

g∗
// H̃∗

(∣∣∣∆(k)
n

∣∣∣ ;Zp
)

θ∗ // H̃∗(M ;Zp)

Figure 3.2: Triviality of θ∗ ◦ (ιn)∗ ◦ ψ∗ implies triviality of θ∗ ◦ g∗. Note that (ιs)∗ is an
isomorphism.

+ =σi −zσi
xi xi

v0

v1 v1

v0 v0

v1

=⇒σi

v0

v1

x1

x2

x3

σi

v0

v1

x1
x2

x3

Figure 3.3: Edge σ = (v1, v2) “rerouted” through point xi and through multipoint
x3 − x2 + x1.

by subtracting any linear map that maps all maximal dimensional faces σi of ∆
(k)
s to cycles

zσi and all other faces to zero, the resulting linear map ψ : C̃∗
(

∆
(k)
s ;F

)
→ C̃∗

(
∆

(k)
n ;F

)

determined by

ψ(σ) :=

{
σ if σ ∈ ∆

(k)
s is a face of dimension strictly less than k,

σi − zσi if σ = σi.

is a chain map again.
Then we restrict our attention to cycles zσi of a special form1717 ∂(xi ∧ σi), where

xi ∈ V
(

∆
(k)
n

)
. If k = 1 and σi = (v0, v1) is a k-face, then σi “travels” from v0 to v1

directly, whereas ψ(σ) = σ− zσi = (v0, xi) + (xi, v1) makes a detour through point xi, see
Fig. 3.33.3. To obtain better bounds later on we allow xi to be multipoints1818, see Figure 3.33.3
again.

Lemma 3.293.29 shows a condition on the multipoints xi which forces the induced ho-
momorphism ϕ∗ ◦ ψ∗ to be trivial. Lemma 3.303.30 provides sufficient condition for ψ to
be an almost embedding. Lemma 3.313.31 states that the condition of Lemma 3.303.30 can be
satisfied with a relatively small number of multipoints. Lemma 3.323.32 is used to construct

f :
∣∣∣∆(k)

s

∣∣∣→
∣∣∣∆(k)

n

∣∣∣ satisfying (ιn)∗ ◦ ψ∗ = f∗ ◦ (ιs)∗. At the end we use Theorem 2.142.14 to

find the multipoints satisfying all the prescribed conditions.
We note that Theorem 3.253.25 does hold even for k = 0, stating that if we have s(b+1)+2

points in a topological space having (b + 1) path-connected components, we can always

17See Definition 3.83.8 for the introduction of xi ∧ σi.
18See Definition 2.22.2 for the introduction of multipoints.
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find s + 1 of them lying in a common path-connected component. Lemma 3.343.34 shows
that our approach can be viewed as a natural generalization of the case k = 0 to higher
values of k.

For the next observation, recall that σi are all k-dimensional faces of ∆
(k)
s .

Observation 3.28. Let F be a field and zσ1 , zσ2 , . . . , zσm arbitrary cycles in C̃∗
(

∆
(k)
n ;F

)
.

If we have a linear map ψ : C̃∗
(

∆
(k)
s ;F

)
→ C̃∗

(
∆

(k)
n ;F

)
which satisfies

ψ(σ) :=

{
σ if σ ∈ ∆

(k)
s is a face of dimension strictly less than k,

σi − zσi if σ = σi.

Then ψ is a chain map.

Proof. Since the map ψ is linear, we only need to verify that ψ ◦∂ = ∂ ◦ψ. The boundary

map ∂ is also linear and the set of all faces of ∆
(k)
s freely generates C̃∗

(
∆

(k)
s ;F

)
, see

Remark 3.213.21. So it suffices to check that ψ ◦ ∂(σ) = ∂ ◦ ψ(σ) for every face σ ∈ ∆
(k)
s .

Let σ be a face of ∆
(k)
s . Its boundary ∂σ is a chain that contains only faces of

dimension less than k. Since ψ is identical on such faces, its linearity gives ψ(∂σ) = ∂σ.
If σ is a face of dimension less than k, ψσ = σ by definition, hence ∂ψσ = ∂σ in that

case.
For a k-dimensional face σi we have ψ(σi) = σi−zσi . By linearity ∂(ψ(σi)) = ∂σi−∂zσi .

Because zσi is a cycle, we have ∂zσi = 0, hence ∂(ψ(σi)) = ∂σi as well. This finishes the
proof.

To simplify the expressions in the following text we introduce some notational con-
ventions now. If K is a simplicial complex and z a cycle in C̃k(K;F), we let [z] denote
its homology class, i.e., [z] = z + Bk(K;F). Furthermore, we write ϕ∗[z] as a shorthand
for ϕ∗([z]).

Informal sketch of Lemma 3.293.29. If we picked up a vertex x ∈ ∆
(k)
n and set zσi =

∂(x ∧ σi) for all k-dimensional faces σi, the map ψ from Observation 3.283.28 would satisfy
ψ∗ = 0, see Fig. 3.43.4 for an illustration in the case k = 1. Most likely, ψ would not be
an almost embedding. But there is a way around this: If we had m different points1919

x1, . . . , xm satisfying ϕ∗
[
∂(x1 ∧ σi)

]
= ϕ∗

[
∂(xj ∧ σi)

]
for all i and j, we could set zσi =

∂(xi ∧ σi). The map ϕ∗ ◦ ψ∗ would be trivial, since the different points xj all behave as
x1 with respect to ϕ∗. Note that it is also possible to replace the points x1, . . . , xr with
multipoints2020 µ1, . . . , µr.

Now we formalize the idea for multipoints and arbitrary k: Let X = V
(

∆
(k)
n

)
be the

vertex set of ∆
(k)
n , µ =

∑
x∈X axx ∈ M(X;F) be a multipoint and σ be a k-face in ∆

(k)
s .

We set
∂(µ ∧ σ) :=

∑

x∈X
ax∂(x ∧ σ). (3.5)

19That means one point for every k-face.
20See Definition 2.22.2.
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v1

v3

v2

x  

v1

v3

v2

x

The cycle v1v2 + v2v3 + v3v1 turns into v1x+ xv2 + v2x+ xv3 + v3x+ xv1, which can be
contracted to x. Other triangles behave the same way. Similarly in higher dimensions.

Figure 3.4: Setting zσi = ∂(x ∧ σi) for all σi implies triviality of ψ∗

Clearly ∂(µ ∧ σ) ∈ C̃∗
(

∆
(k)
n ,F

)
is a cycle.

Recall that σ1, . . . , σm are all k-dimensional faces of K and we have a chain map

ϕ : C̃∗
(

∆
(k)
n ;F

)
→ C̃∗ (M ;F). We define

v(µ) :=
(
ϕ∗
[
∂(µ ∧ σ1)

]
, ϕ∗
[
∂(µ ∧ σ2)

]
, . . . , ϕ∗

[
∂(µ ∧ σm)

])
(3.6)

for every µ ∈M(X;F).

Lemma 3.29. Let F be a field, X = V
(

∆
(k)
n

)
be the vertex set of ∆

(k)
n , µσ1 , µσ2 , . . . , µσm

be (not necessarily distinct) multipoints from M (X;F) with v(µσ1) = v(µσ2) = . . . =

v(µσm). Let ψ : C̃∗
(

∆
(k)
s ;F

)
→ C̃∗

(
∆

(k)
n ;F

)
be the linear map determined by its value

on generators of C̃∗
(

∆
(k)
s ;F

)
:

ψ(σ) :=

{
σ if σ ∈ ∆

(k)
s is a face of dimension strictly less than k,

σi − ∂(µσi ∧ σi) if σ = σi.

(3.7)
Then ψ satisfies ϕ∗ ◦ ψ∗ = 0.

Proof. Because ∂(µσi ∧ σi) is a cycle, ψ is a well-defined chain map by Observation 3.283.28.
The only condition that needs to be checked is ϕ∗ ◦ ψ∗ = 0. The homology group

H∗
(

∆
(k)
s ;F

)
is generated2121 by the elements of the form [∂τ ], where τ is a (k + 1)-

dimensional face of ∆
(k+1)
s . Therefore, we only need to verify that ϕ∗

(
ψ∗[∂τ ]

)
= 0 for all

faces τ ∈ ∆s of dimension k + 1.

21This is a well known fact, which can be verified for example as follows: We know the number of

l-dimensional faces of ∆
(k)
s for every l, so we may compute its Euler characteristic. The non-reduced

homology of ∆
(k)
s is concentrated in degrees 0 and k, so we may use the Euler characteristic to compute

β̃k

(
∆

(k)
s ;Z2

)
=
(
s+1
k+1

)
. Then we verify that [∂τ ], where τ is a (k + 1)-dimensional face of ∆

(k+1)
s

containing its first vertex, are linearly independent and hence form a basis of H∗
(

∆
(k)
s ;Z2

)
.
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Nevertheless, in order to verify it, we need to work with (k+ 2)-dimensional faces. It
makes the calculations somewhat tricky, since we can only apply ϕ∗ to cycles of dimension
at most k.

So let τ = (v0, v1, . . . , vk+1) be a (k+1)-dimensional face of ∆s. To keep the equations
short we set τi = (v0, v1, . . . , v̂i, . . . , vk+1). By definition

∂τ =
k+1∑

i=0

(−1)iτi. (3.8)

Using (3.73.7) and observing that all τi are k-faces, we obtain

ψ(∂τ) =
k+1∑

i=0

(−1)i
(
τi − ∂(µτi ∧ τi)

)
,

henceforth

(ϕ∗ ◦ ψ∗)(∂τ) = ϕ∗

[
k+1∑

i=0

(−1)i
(
τi − ∂(µτi ∧ τi)

)
]

= ϕ∗

[
k+1∑

i=0

(−1)iτi

]
−

k+1∑

i=0

(−1)iϕ∗
[
∂(µτi ∧ τi)

]

The multipoints µτi satisfy v(µτi) = v(µτ1), hence by Equation (3.63.6), ϕ∗
[
∂(µτi∧σ)

]
=

ϕ∗
[
∂(µτ1 ∧ σ)

]
for every k-dimensional face σ and we may continue our calculations:

(ϕ∗ ◦ ψ∗)(∂τ) = ϕ∗

[
k+1∑

i=0

(−1)iτi

]
−

k+1∑

i=0

(−1)iϕ∗
[
∂(µτ1 ∧ τi)

]

= ϕ∗

[
k+1∑

i=0

(−1)i
(
τi − ∂(µτ1 ∧ τi)

)
]
.

Because µτ1 is a multipoint in X = V
(

∆
(k)
n

)
, we can express it as an affine com-

bination µτ1 =
∑

x∈X ax · x, where
∑

x∈X ax = 1. Definition (3.53.5) of ∂(µ ∧ τi) then
yields

(ϕ∗ ◦ ψ∗)(∂τ) = ϕ∗

[
k+1∑

i=0

(−1)i

(
τi −

∑

x∈X
ax∂(x ∧ τi)

)]
.

Because
∑

x∈X ax = 1, we may rewrite the sum further to

(ϕ∗ ◦ ψ∗)(∂τ) = ϕ∗

[
k+1∑

i=0

(−1)i

(∑

x∈X
ax
(
τi − ∂(x ∧ τi)

)
)]

.

Both sums are finite, we can rearrange them, use the definition of ∂τ (3.83.8) and linearity
of ∂:
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(ϕ∗ ◦ ψ∗)(∂τ) = ϕ∗

[∑

x∈X
ax

(
∂τ −

k+1∑

i=0

(−1)i∂(x ∧ τi)
)]

= ϕ∗

[∑

x∈X
ax

(
∂

(
τ −

k+1∑

i=0

(−1)i(x ∧ τi)
))]

.

Now we observe that by definition
(
τ −∑k+1

i=0 (−1)i(x ∧ τi)
)

= ∂(x ∧ τ) and finally

arrive at

(ϕ∗ ◦ ψ∗)(∂τ) = ϕ∗

[∑

x∈X
ax
(
∂∂(x ∧ τ)

)
]

= ϕ∗

[∑

x∈X
ax · 0

]
= 0,

which finishes the proof.

Our task now is to find conditions on the multipoints µσ1 , µσ2 , . . . , µσm that will guar-
antee that ψ is an almost embedding.

Lemma 3.30. Let F be a field. Let U be the set of vertices of ∆
(k)
n that do not lie in

V
(

∆
(k)
s

)
. Let Uσ1 , Uσ2 , . . . , Uσm ⊆ U be (not necessarily distinct) sets. Let X = V

(
∆

(k)
n

)

be the set of vertices of ∆
(k)
n . Let µσ1,µσ2,. . . , µσm ∈M (X;F) be multipoints. If

suppµσi ⊆ (σi ∪ Uσi) for every i = 1, . . . ,m and (3.9)

σ ∩ τ = ∅ ⇒ Uσ ∩ Uτ = ∅ for every two k-faces σ, τ ∈ ∆(k)
s , (3.10)

then the linear map ψ : C̃∗
(

∆
(k)
s ;F

)
→ C̃∗

(
∆

(k)
n ;F

)
defined (as before) by

ψ(σ) :=

{
σ if σ ∈ ∆

(k)
s is a face of dimension strictly less than k,

σi − ∂(µσi ∧ σi) if σ = σi
(3.11)

is an almost embedding.

Proof. According to Definition 3.233.23 we need to verify that suppψ(σ) ∩ suppψ(τ) = ∅
whenever σ and τ are disjoint faces in ∆

(k)
s .

For every k-face σi we have

suppψ(σi) = supp
(
σi − ∂(µσi ∧ σi)

)
⊆ suppσi ∪ supp

(
∂(µσi ∧ σi)

)

⊆ σi ∪
(
σi ∪ suppµσi

)

⊆ σi ∪ Uσi ,

where the last inclusion follows from (3.93.9).

Our calculations will be simplified if we moreover set Uσ := ∅ for every face σ ∈ ∆
(k)
s

of dimension less than k. Because ψ(σ) = σ in that case, we then have

suppψ(σ) ⊆ σ ∪ Uσ (3.12)
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for every face σ of ∆
(k)
s .

We will now show that ψ is an almost embedding as follows: Assume that σ ∩ τ = ∅.
By (3.123.12) we have

suppψ(σ) ∩ suppψ(τ) ⊆ (σ ∪ Uσ) ∩ (τ ∪ Uτ ) .

Using distributivity of ∪ and ∩ and noting that σ∩Uτ ⊆ V
(

∆
(k)
s

)
∩U = ∅ and τ ∩Uσ ⊆

V
(

∆
(k)
s

)
∩ U = ∅ the right hand-side reduces to

(σ ∩ τ) ∪ (Uσ ∩ Uτ ).
We assume that σ ∩ τ = ∅. If σ or τ has dimension less than k, Uσ or Uτ , respectively, is
empty, which implies Uσ ∩Uτ = ∅. If both σ,τ have dimension k, the second intersection
is empty by (3.103.10). Hence suppψ(σ) ∩ suppψ(τ) = ∅ in all cases.

Now we show that conditions of Lemma 3.303.30 can be satisfied with relatively small
number of distinct multipoints. As mentioned above, we only need that ϕ is an almost-
embedding, so we can use the same multipoint for several k-faces provided they pairwise
intersect. Optimizing the number of multipoints used reformulates as the following hy-
pergraph coloring problem:

Assign to each k-face σi of ∆s some color c(i) ∈ N such that card{c(i) : 1 ≤
i ≤ m} is minimal and disjoint faces use distinct colors.

This question is classically known as Kneser’s hypergraph coloring problem and for s −
2k+ 1 ≥ 1 an optimal solution uses s−2k+ 1 colors [Lov78Lov78, Mat03Mat03]. Let us spell out one
such coloring (proving its optimality is considerably more difficult, but we do not need to

know that it is optimal). Let us assume that the vertex set of ∆
(k)
s equals {v0, v1, . . . , vs}.

For every k-face σi we let minσi denote the smallest index of a vertex in σi. When
minσi ≤ s − 2k − 1 we set c(i) = minσi, otherwise we set c(i) = s − 2k. Observe that
any k-face with color c ≤ s− 2k− 1 contains vertex vc. Moreover, the k-faces with color
s− 2k consist of k + 1 vertices each, all from a set of 2k + 1 vertices. It follows that any
two k-faces with the same color have some vertex in common.

For s− 2k + 1 ≤ 0, every two k-faces intersect, hence we may use the same color for
all of them.

We conclude

Lemma 3.31. If s − 2k + 1 > 0, there exists an assignment c of s − 2k + 1 colors to
k-dimensional faces of ∆

(k)
s such that disjoint faces use distinct colors. If s− 2k + 1 ≤ 0

such assignment c uses only one color.

Lemma 3.32. Let k > 0 be an integer and p a prime number. Let F = Zp. Let

X = V
(

∆
(k)
n

)
be the set of vertices of ∆

(k)
n . Let µσ1 , . . . , µσm be (not necessarily dis-

tinct) multipoints from M (X;F). If, as before, we define ψ : C∗
(

∆
(k)
s ;F

)
→ C∗ (M ;Zp)

by (3.113.11), i.e.,

ψ(σ) :=

{
σ if σ ∈ ∆

(k)
s is a face of dimension strictly less than k,

σi − ∂(µσi ∧ σi) if σ = σi,

(3.13)
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then there exists a continuous map f :
∣∣∣∆(k)

s

∣∣∣→
∣∣∣∆(k)

n

∣∣∣ such that

(ιn)∗ ◦ ψ∗ = f∗ ◦ (ιs)∗. (3.14)

If ψ is an almost embedding, then f is also an almost embedding. Moreover, for every
face σ ∈ ∆

(k)
s , the image f

(
|σ|
)

has the form
⋃
i∈Iσ |τi|, where τi are some simplices in

∆
(k)
n .

We first present the main idea of the proof, without going into technical details.

Proof idea. Suppose that σ ∈ ∆
(k)
s is a k-face and µσ =

∑
x∈X axx is a multipoint. By

definitions and the linearity of ιn, we have

ιn
(
ψ(σ)

)
= ιn

(∑

x∈X
ax(σ − ∂(x ∧ σ))

)
=
∑

x∈X
axιn (σ − ∂(x ∧ σ)) .

Let B := Bk

(∣∣∣∆(k)
n

∣∣∣ ;F
)
⊆ C̃k

(∣∣∣∆(k)
n

∣∣∣ ;F
)

be the subgroup of boundaries. First, for

every x ∈ X and a k-face σ ∈ ∆
(k)
s we will construct a singular simplex γσ,x : |∆k| →∣∣∣∆(k)

n

∣∣∣ such that2222 γσ,x ≡ ιn
(
σ − ∂(x ∧ σ)

)
(mod B). The construction generalizes the

concatenation of two paths into higher dimensions.

Then we will construct a singular simplex γσ : |∆k| →
∣∣∣∆(k)

n

∣∣∣ with γσ ≡
∑

x∈X axγσ,x

(mod B). This construction inductively2323 uses higher dimensional analogue of the fol-
lowing idea: If we have three paths γ1, γ2, γ3 between points a and b, we may take a long
walk and go from a to b along γ1, returning to a via γ2 and finally arrive to b by γ3.

Moreover, we construct the maps γσ,x and γσ so that they agree on boundaries with
ιn(σ), i.e., such that for every i = 0, 1, . . . , k the following holds2424: ιn(σ) ◦ δik = γσ,x ◦ δik =
γσ ◦ δik.

It follows that we may define a map f :
∣∣∣∆(k)

s

∣∣∣→
∣∣∣∆(k)

n

∣∣∣ by the following procedure2525:

For a point x ∈
∣∣∣∆(k)

s

∣∣∣ we fix a k-face |σx| containing x and define

f(x) :=
(
γσx ◦

(
ιs(σx)

)−1
)

(x).

We can read the expression in the following way: ιs(σx) is the order-preserving linear
map from |∆k| onto |σx|, we look at the preimage of x in |∆k| and map this preimage via
our map γσx .

It can be checked that f is continuous.
Then if σ ∈ ∆

(k)
s is a k-face, we have

f ◦ ιs(σ) = γσ ◦
(
ιs(σ)−1

)
◦ ιs(σ) = γσ

≡
∑

x∈X
axγσ,x ≡

∑

x∈X
axιn

(
σ − ∂(x ∧ σ)

)
≡ ιn

(
ψ(σ)

)
(mod B),

22The notation x ≡ y (mod B) means x+B = y +B, that is, {x+ b | b ∈ B} = {y + b | b ∈ B}.
23This is the only place where we need that F = Zp for some prime number p.
24See Definition 3.123.12 for the introduction of δik.
25Recall that ιs is the natural inclusion of C∗

(
∆

(k)
s ;F

)
into C∗

(∣∣∣∆(k)
s

∣∣∣ ;F
)

. In particular, ιs(σ) is a

bijection of |∆k| onto |σ|.
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hence f ◦ ιs(σ) ≡ ιn(ψ(σ)) (mod B).
From the definition of homology groups then immediately follows that f∗ ◦ (ιs)∗ =

(ιn)∗ ◦ ψ∗, as desired.
The other claims of the lemma can also be easily checked.

The full proof is relatively long and complicated and contains no essential ideas. For
this reasons we have decided to postpone it to the end of the current chapter.

Now we address the question how to satisfy assumptions of Lemma 3.293.29 in our setting.
Recall that

v(µ) :=
(
ϕ∗
[
∂(µ ∧ σ1)

]
, ϕ∗
[
∂(µ ∧ σ2)

]
, . . . , ϕ∗

[
∂(µ ∧ σm)

])
,

where ϕ : C∗
(

∆
(k)
n ;F

)
→ C∗ (M ;F) is some fixed chain map, M has kth F-Betti number

b and σ1, . . . , σm are all k-faces of ∆
(k)
s .

According to Lemma 3.303.30 we need some multipoints µ with the same value of v(µ).
We would like to use colored algebraic Tverberg theorem (Theorem 2.142.14) or Lemma 2.102.10
to obtain these multipoints. To that end we need to know the dimension of Im v.

Lemma 3.33. If ϕ : C∗
(

∆
(k)
n ;F

)
→ C∗ (M ;F) is given, the image Im v lies in an F-affine

space that has dimension at most
(
s
k

)
b.

Proof. Let X = V
(

∆
(k)
n

)
be the set of vertices of ∆

(k)
n . Let σj, j ∈ J , be all k-faces of

∆
(k)
s that contain the first vertex v0.

We will show that for every k-face τ ∈ ∆
(k)
s there exist a constant cτ ∈ Hk(M ;F) and

coefficients cτ,j ∈ F such that for every µ ∈M(X,F)

ϕ∗
[
∂(µ ∧ τ)

]
= cτ +

∑

j∈J
cτ,jϕ∗

[
∂(µ ∧ σj)

]
. (3.15)

Because all the values ϕ∗
[
∂(µ∧ σj)

]
belong to Hk(M ;F) ∼= Fb and there are

(
s
k

)
faces

σj containing v0, that will finish the proof.
We start with the case when µ = x is an ordinary point.
Let τ = (w0, w1, . . . , wk) be a k-face and τi = (w0, w1, . . . , ŵi, . . . , wk) for every i =

0, . . . , k.
We have ∂∂((x, v0, w0, w1, . . . , wk)) = 0, hence ϕ∗

[
∂∂(x, v0, w0, w1, . . . , wk)

]
= 0. Ex-

panding the innermost ∂ by definition, we have

ϕ∗

[
∂

(
v0 ∧ τ − x ∧ τ +

k∑

i=0

(−1)ix ∧ v0 ∧ τi
)]

= 0.

By linearity of ∂ and ϕ∗ we get

ϕ∗
[
∂ (v0 ∧ τ)

]
− ϕ∗

[
∂ (x ∧ τ)

]
+

k∑

i=0

(−1)iϕ∗
[
∂ (x ∧ v0 ∧ τi)

]
= 0,
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hence

ϕ∗
[
∂ (x ∧ τ)

]
= ϕ∗

[
∂ (v0 ∧ τ)

]
+

k∑

i=0

(−1)iϕ∗
[
∂ (x ∧ v0 ∧ τi)

]
, (3.16)

which is the desired equality (3.153.15).
If µ =

∑
x∈X axx is a multipoint, we sum up the equalities ϕ∗

[
∂(x ∧ τ)

]
= cτ +∑

j∈J cτ,jϕ∗
[
∂(x ∧ σj)

]
and obtain

∑

x∈X
axϕ∗

[
∂(x ∧ τ)

]
=
∑

x∈X
axcτ +

∑

j∈J
cτ,j

(∑

x∈X
axϕ∗

[
∂(x ∧ σj)

])
,

which, together with (3.53.5) and the fact that
∑

x∈X ax = 1, gives (3.153.15).

We are now finally ready to prove Theorem 3.263.26.

Proof of Theorem 3.263.26. Let us first deal with the case s − 2k ≥ 0. In that case n ≥(
s
k

)
b(s− 2k) + s+ 1 ≥ s+ 1. Set d := s− 2k. Let Y = {v0, v1, . . . , vd−1} be the set of the

first d vertices of ∆
(k)
s and X be the set of vertices of ∆

(k)
n that do not lie in ∆

(k)
s . We

partition C = X ∪ Y into disjoint color classes C0 := Y,C1, C2, . . . , C|X|, where each Ci,
i = 1, . . . , |X| contains exactly one point from X.

Let us recall that ϕ = θ ◦ ιn and let v be the affine map from (3.63.6). We have
|C| = (n+ 1)− (s+ 1) + d. By the assumptions of the theorem n ≥

(
s
k

)
bd+ s+ 1. Hence

|C| ≥
(
s
k

)
bd + s + 1 − s + d =

((
s
k

)
b+ 1

)
d + 1. The dimension of Im v is at most

(
s
k

)
b

by Lemma 3.333.33. Hence by Theorem 2.142.14 there exist (d + 1) pairwise disjoint rainbow
multipoints η0, η1, . . . , ηd−1, ηd satisfying

v(ηi) = v(η1) for all i = 0, . . . , d. (3.17)

If we rearrange the multipoints, we may assume that2626

supp ηi ⊂ {vi} ∪X for every i = 0, . . . , d− 1, (3.18)

supp ηd ⊂ X. (3.19)

Let c be Kneser’s coloring from Lemma 3.313.31. If we set µσi := ηc(σi), we can define

ψ : C̃∗
(

∆
(k)
s ;F

)
→ C̃∗

(
∆

(k)
n ;F

)
by

ψ(σ) :=

{
σ if dimension of σ is less than k and

σi − ∂(µσi ∧ σi) if σ is the ith k-dimensional face σi

on the generators and extend it linearly to the whole space.
Then v(µσi) = v(η1). Since v(µσi) does not depend on i, Observations 3.283.28 and 3.293.29

imply that ψ is a well-defined chain map satisfying ϕ∗ ◦ ψ∗ = 0.
To show that ψ is an almost embedding, we verify the assumptions of Lemma 3.303.30.

Let σ be a k-face. If2727 minσ ≤ d, then suppµσ = supp ηc(σ) ⊆ {vc(σ)}∪X ⊆ σ∪X, where

26We note that if we used Lemma 2.102.10 instead of Theorem 2.142.14 and wanted the multipoints satisfy
the next equation, we could only allow Y to contain one point. Hence we would be forced to increase
the size of X by d− 1, which would worsen the bound in Theorem 3.263.26 by d− 1 = s− 2k − 1.

27See the discussion before Lemma 3.313.31, where they symbol minσ is introduced.
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the last inclusion follows from the fact that c(σ) is defined as the minimal number c′, for
which vc′ ∈ σ. If minσ ≥ d + 1, suppµσ = supp ηd+1 ⊆ X ⊆ σ ∪ X. In all cases (3.93.9)
holds true.

We need to check that (3.103.10) is satisfied as well. If σ ∩ τ = ∅, then c(σ) 6= c(τ) by
Lemma 3.313.31. Hence suppµσ ∩ suppµτ = supp ηc(σ) ∩ supp ηc(τ). Since the multipoints
assigned to distinct colors are disjoint, the intersection is empty and (3.103.10) is satisfied.

Hence ψ is an almost embedding by Lemma 3.303.30. As the last step, we use Lemma 3.323.32

construct an almost-embedding g :
∣∣∣∆(k)

s

∣∣∣ →
∣∣∣∆(k)

n

∣∣∣ such that (ιn)∗ ◦ ψ∗ = g∗ ◦ (ιs)∗.

Lemma 3.323.32 also ensures that if ϕ is an almost embedding, so is g and that the image

g(|σ|) is a union of faces in
∣∣∣∆(k)

n

∣∣∣.
The proof for s− 2k ≥ 0 is finished.
If s − 2k < 0, we may use the similar argumentation. The Kneser’s coloring has

only one color in such case, so we may use the same multipoint µσi := η1 for all faces
σi (such assignment satisfies v(µi) = v(µ1) trivially). Since in Theorem 3.263.26 we assume

that n ≥ s + 1, there exists x ∈ V
(

∆
(k)
n

)
\ V

(
∆

(k)
s

)
. We set η1 := x and see that the

conditions of Lemma 3.303.30 are satisfied (with Uσi := {x} for all σi). The rest of the proof
goes through as before.

Now we show that our approach can be regarded as a natural generalization of the case
k = 0, which is rather trivial: If we have a topological space with b + 1 path-connected
components and s(b+ 1) + 1 points in it, there are at least s+ 1 points lying in the same
path-connected component.

This can be proven easily using pigeonhole principle, but it also fits into our frame-
work:2828

Lemma 3.34. Let n, s, b ≥ 0 be integers, p a prime number. Let M be a manifold with

0-th reduced Zp-Betti number at most b. Let f :
∣∣∣∆(k)

n

∣∣∣→M be a continuous map.

If

n ≥
(
s

0

)
b(s− 0) + s = (b+ 1)s and n ≥ s,

then there exists an almost embedding g :
∣∣∣∆(0)

s

∣∣∣ →
∣∣∣∆(0)

n

∣∣∣ such that the induced homo-

morphism (g∗ ◦ f∗) : H∗
(∣∣∣∆(0)

s

∣∣∣ ;Zp
)
→ H∗(M ;Zp) is trivial. Moreover, the image g(|σ|)

of every face σ ∈ ∆
(0)
s has the form

⋃
i∈Iσ |τi|, where τi are some simplices in ∆

(0)
n .

The proof of the lemma is an easy exercise. Here we present a line of argumentation
that agrees with our reasoning in the proof of Theorem 3.263.26.

28Observe that the bound in Theorem 3.253.25 differs by +1. This is caused by the fact the we need

to use a multipoint with support outside of V
(

∆
(k)
s

)
for the faces of the last color. But according to

Lemma 3.303.30 this is only needed if the intersection of all k-faces with that color is empty. Consequently,
we can get rid of this +1 if we use a coloring, where we color each face by the minimal index of its vertex.
This would yield a bound n ≥ max{s,

(
s
k

)
b(s−k)+s} for Theorems 3.253.25 and 3.263.26. Unless k = 0 or b = 0,

the bounds are worse than the provided ones, however, for b = 0 they agree with Volovikov’s theorem.
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Proof. If the 0th reduced Zp-Betti number is at most b, the manifold M has at most

b + 1 path-connected components. It follows that for every 0-dimensional face σ ∈ ∆
(0)
s

its image f]
(
ιs(σ)

)
is uniquely determined by the one element set f

(
ιs(σ)(|∆0|)

)
.

Because there are at most (b + 1) path-connected components of M and ∆
(0)
n has

n+1 > (b+1)s points, there exist s+1 points that are mapped into the same component
P .

For every vertex x from ∆
(0)
s with f(|x|) ∈ P we set µx := x.

We take the remaining points, one after the other. For every such point x, we take
an unused vertex y of ∆

(0)
n with f(|y|) ∈ P and set µx := y.

If we define g :
∣∣∣∆(0)

s

∣∣∣→
∣∣∣∆(0)

n

∣∣∣ by g(|x|) = |µx|, then f ◦ g maps all vertices of
∣∣∣∆(0)

s

∣∣∣
into P . Hence (f ◦g)∗ = 0 and it is not hard to see that g satisfies all the other conditions
as well.

Now we show how this fits into our framework: We have defined µx for every 0-face
x of ∆

(0)
s , hence we may use (3.73.7) to define ψ.

For every 0-face x with f(|x|) ∈ P , we have ∂(µx ∧ x) = ∂(x ∧ x) = 0 and ψ(x) =
x−∂(µx∧x) = x−∂(x−x) = x. If f(|x|) /∈ P , then ψ(x) = x−∂(µx∧x) = x−∂(y∧x) =
x− x+ y = y.

It is then not hard to see that (ιn)∗ ◦ ψ∗ = g∗ ◦ (ιs)∗.

Now we finish the proof of Lemma 3.323.32, hence filling the missing part in the proof of
Theorem 3.263.26.

Proof of Lemma 3.323.32

We carry out the plan which we have outlined earlier. First we start with two technical
lemmas about “addition” of singular simplices, then we finally prove Lemma 3.323.32.

Lemma 3.35. Let X be a topological space, l ≥ 0 an integer and F a field. If τ0, τ1, . . . , τl
are ordered l-dimensional singular simplices in X satisfying2929

τi ◦ δjl = τj ◦ δi+1
l for all integers 0 ≤ i < j ≤ l, (3.20)

then there is an ordered l-dimensional singular simplex τ such that

τ ≡
l∑

i=0

(−1)iτi (mod BO
l (X;F)),

τ ◦ δil = τi ◦ δ0
l for all i = 0, . . . , l and Im τ =

⋃l
i=0 Im τi.

The map τ generalizes concatenation of two paths into higher dimensions, see Fig. 3.53.5.

Proof. Fig. 3.53.5 describes the idea behind the proof. It is useful to keep it in mind while
carrying out the technical details. Let ∆l be an l-dimensional simplex with the standard
geometric realization |∆l| and vertex set {v0 < v1 < . . . < vl}. We recall that |vi| = ei+1,
where ei+1 is the (i + 1)th vector in the standard basis of Rl+1. Let a = v−1 /∈ V (∆l)

29See Definition 3.123.12 which introduces the maps δil .
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τ(1) = τ1(1) τ0(1) = τ(1)

τ0(0) = τ1(0)

τ0
τ1

τ2

v0

v1 v2

v−1

τ0 ◦ δ02

τ1 ◦ δ02τ2 ◦ δ02

τ0 ◦ δ12 = τ1 ◦ δ12

τ1 ◦ δ22 = τ2 ◦ δ22τ0 ◦ δ22 = τ2 ◦ δ12

τ1 τ0

v0

v−1

v1

On the left: the situation of Lemma 3.353.35 for l = 1. Note that we identify |∆1| with the
unit interval [0, 1]. The resulting map τ “corresponds” to τ0 − τ1 = −τ1 + τ0.
On the right: the situation for l = 2, with the singular 2-simplices τi mapping |∆2| onto
the corresponding triangles linearly and vertex order preserving (v−1 < v0 < v1 < v2).
The resulting map τ “corresponds” to τ0− τ1 + τ2. The situation in higher dimensions is
completely analogous, only worse to draw.

Figure 3.5: Illustration of Lemma 3.353.35

be a point, we define its geometric realization |a| to be the barycenter of |∆l|. Let
L := sd (∆l, a) be the stellar subdivision of ∆l with respect to a and let Fi, i = 0, . . . , l,
be the unique l-face of L, that does not contain vertex vi. Let γi : |Fi| → |∆l| be the
vertex order preserving linear isomorphism of |Fi| onto |∆l|.

The resulting map τ : |∆l| → X can now be defined by:

τ(x) := τi ◦ γi(x) if x ∈ Fi. (3.21)

If x belongs to two different l-faces Fi and Fj, 0 ≤ i < j ≤ l, the condition τi◦δjl = τj◦δi+1
l

implies τi ◦ γi(x) = τj ◦ γj(x), hence τ is well defined and continuous.

The formal proof that τ ≡∑l
i=0(−1)iτi (mod BO

l (X;F)) requires a step into dimen-
sion by one higher.

Let L′ be an (l + 1)-dimensional simplex with vertex set {v0 < v1 < . . . < vl < vl+1}
and standard geometric realization. Let b /∈ V (L′) be a point. We define |b| to be the
barycenter of the face F := |{v1, v2, . . . , vl+1}|.

Let γ be the vertex order preserving linear isomorphism of F and |∆l|, in particular
γ(|b|) = |a|. Let π be the projection of |L′| onto F in the direction |b|−|v0|, in particular
π(|v0|) = |b|.

We now define f : |∆l+1| → X as f := τ ◦ γ ◦ π.
We can check that f ◦ δil+1 = τi−1 for all integers 1 ≤ i ≤ l + 1 and f ◦ δ0

l+1 = τ . This
implies

τ ≡
l∑

i=0

(−1)iτi (mod BO
l (X;F)),

as desired. The condition τ ◦ δil = τi ◦ δ0
l for i = 0, . . . , l is also easy to verify.
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f1

f2

f3 ◦ pπ2
f3 ◦ σ2,1

2 ◦ pπ2

f2 ◦ σ2,1
2

v−1

v−2

v1 v2

v0

v0

v1

v−1

v−2

f3 ◦ pπ1

f2

f1

The situation for l = 1 (on the left) and l = 2 (on the right). In both situations we
set v−1 := v1 and v−2 := v0 (but preserve the ordering v−2 < v−1 < v0 < v1). Because
v−1 < v0, but v1 > v0, we have to switch v−1 and v0 for all maps that correspond to
those vertices. The map pπk does exactly that: it is a linear map that switches the first
two vertices of ∆k and leaves other vertices fixed. Because v−1 = v1 and v−2 = v0, some
triangles on the right are degenerated, the degeneracy maps σ2,1

k , describe the situation
(i.e. they fully describe what vertex is mapped where and how does it affect the order of
the vertices in the corresponding triangle).
The proof is then finished by two applications of Lemma 3.353.35. First we apply it to the
simplex v−1, v1, v2, v3, . . . , vk, where we “sum up” the maps appearing in this simplex to
a single map τ ′, then to the simplex v0, v1, v2, v3, . . . , vk.

Figure 3.6: Proof of Lemma 3.363.36

The next lemma is another variation on “addition” of singular simplices. The basic
idea can be described as follows: Let us assume that we have three paths f, g, h with
common starting and ending points. Then we can form the concatenation of these paths
in a way which preserves boundaries: first we traverse f then g in the opposite direction
and finally h. The lemma generalizes this concept into higher dimensions.

In the following lemma if f is an (ordered) singular simplex in Õ∗(X;F), we denote

its unordered image in C̃∗(X;F) by fu, i.e., fu := f + T̃ (X;F).

Lemma 3.36. Let X be a topological space, F a field and l > 0 an integer. Let f1, f2, f3

be ordered l-dimensional singular simplices in X satisfying

f1 ◦ δil = f2 ◦ δil = f3 ◦ δil (3.22)

for all i = 0, 1, . . . , l. Then there exists an ordered l-dimensional singular simplex τ for
which τu ≡ fu1 − fu2 + fu3 (mod Bl(X;F)),

τ ◦ δil = f1 ◦ δil = f2 ◦ δil = f3 ◦ δil (3.23)

for all i = 0, . . . , l and Im τ = Im f1 ∪ Im f2 ∪ Im f3.

Proof. The lemma can be proven by two applications of Lemma 3.353.35, see Fig. 3.63.6.
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Let us now carry out the first step.
Let τ ′0 := f1 and for every i = 1, 2, 3, . . . , l let3030 τ ′i := f2 ◦ σi,i−1

l ◦ σi−1,i−2
l ◦ · · · ◦ σ2,1

l .
Note that τ ′1 = f2 and τ ′i are degenerated for i > 1.

Now we verify that such assignment satisfies the hypotheses of Lemma 3.353.35. We only
need to check that

τ ′i ◦ δjl = τ ′j ◦ δi+1
l for all 0 ≤ i < j ≤ l. (3.24)

We divide the verification of Equation (3.243.24) into two cases:

1. If i = 0, 1 ≤ j ≤ l then the left hand side of (3.243.24) equals f1 ◦ δjl , whereas the right
hand-side is equal to f2 ◦ σj,j−1

l ◦ · · · ◦ σ2,1
l ◦ δ1

l . If we inductively use the relation

σk+1,k
l ◦ δkl = δk+1

l , k = 1, 2, . . . , j − 1 from Observation 3.133.13, we see that the right
hand-side equals f2 ◦ δjl . From (3.223.22) we get the equality f2 ◦ δjl = f1 ◦ δjl , hence
both sides of Equation (3.283.28) are equal.

2. If 1 ≤ i < j ≤ l we use the relations σm+1,m
l ◦δkl = δkl ◦σm+1,m

l−1 for l ≥ k > m+1 and

σk+1,k
l ◦δkl = δk+1

l ; σk+1,k
l ◦δk+1

l = δk+1
l for all k = 0, . . . , l, all from Observation 3.133.13.

Then the left hand side of (3.243.24) equals f2◦σi,i−1
l · · ·◦σ2,1

l ◦δjl = f2◦δjl ◦σi,i−1
l−1 · · ·◦σ2,1

l−1,

whereas the right hand side is equal to f2 ◦ σj,j−1
l · · · ◦ σ2,1

l ◦ δi+1
l = f2 ◦ σj,j−1

l ◦ · · · ◦
σi+2,i+1
l ◦ σi+1,i

l ◦ δi+1
l ◦ σi,i−1

l−1 ◦ · · · ◦ σ2,1
l−1 = f2 ◦ δjl ◦ σi,i−1

l−1 ◦ · · · ◦ σ2,1
l−1.

Hence we see that τ ′i ◦ δjl = τ ′j ◦ δi+1
l for all 0 ≤ i < j ≤ l and the assumptions of

Lemma 3.353.35 are satisfied.
We conclude that there is a map τ ′ such that

τ ′ ◦ δil = τ ′i ◦ δ0
l for all i = 0, 1, . . . , l. (3.25)

and τ ′ ≡∑l
i=0(−1)iτ ′i (mod BO

l (X;F)).

Because τ ′i ∈ T̃l(X;F) for all i = 2, 3, . . . , l this implies

τ ′u ≡ fu1 − fu2 (mod Bl(X;F)). (3.26)

Moreover, since Im τ ′i ⊆ Im f2 for every i ≥ 1 and Im τ ′1 = Im f2, Im τ ′0 = Im f1,
Lemma 3.353.35 implies that

Im τ ′ = Im f1 ∪ Im f2. (3.27)

Now we apply Lemma 3.353.35 for the second time. Let π be the permutation (01) viewed
as an element of S({0, 1, . . . , l}) and π′ be the permutation (01) viewed as an element
of S({0, 1, . . . , l − 1}). Let τ0 := τ ′ and3131 τi := f3 ◦ σi,i−1

l ◦ σi−1,i−2
l ◦ · · · ◦ σ2,1

l ◦ pπl for
i = 1, 2, . . . , l. Note that τ1 = f3 ◦ pπl and τi are degenerated for i > 1. Once again we
verify that the assignment satisfies the assumptions:

τi ◦ δjl = τj ◦ δi+1
l for all 0 ≤ i < j ≤ l. (3.28)

As before, we divide the verification into two cases:

30The maps σj,j−1
l are introduced in Definition 3.123.12. Also recall that an l-dimensional singular simplex

γ is called degenerated, if γ = γ′ ◦ σi,jl for some i 6= j and an l-dimensional singular simplex γ′.
31See Definition 3.123.12 for the introduction of maps pπl .
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1. If i = 0, 1 ≤ j ≤ l then the left hand-side of (3.283.28) equals τ ′◦δjl = τ ′j◦δ0
l = f2◦σj,j−1

l ◦
· · · ◦σ2,1

l ◦ δ0
l , where the equalities follow from (3.253.25) and the definition of τ ′j. Using

the relation σk+1,k
l ◦ δ0

l = δ0
l ◦ σk,k−1

l−1 for k = 1, 2, . . . , j − 1 from Observation 3.133.13,

the left hand-side can be further rewritten as f2 ◦ δ0
l ◦σj−1,j−2

l−1 ◦ · · · ◦σ1,0
l−1. The right

hand-side of (3.283.28) is equal to f3◦σj,j−1
l ◦· · ·◦σ2,1

l ◦pπl ◦δ1
l . By the relation pπl ◦δ1

l = δ0
l

and σk+1,k
l ◦ δ0

l = δ0
l ◦ σk,k−1

l−1 for k = 1, 2, . . . , j − 1 from Observation (3.133.13), we see

that the right hand-side of (3.283.28) is equal to f3 ◦ δ0
l ◦ σj−1,j−2

l−1 ◦ · · · ◦ σ1,0
l−1. If we now

use the assumption (3.223.22) that f2 ◦ δ0
l = f3 ◦ δ0

l , we see that both sides of (3.283.28) are
equal.

2. If 1 ≤ i < j ≤ l then the left hand side of (3.283.28) equals f3 ◦ σi,i−1
l · · ·σ2,1

l ◦ pπl ◦ δjl =
f3 ◦ δjl ◦ σi,i−1

l−1 ◦ · · · ◦ σ2,1
l−1 ◦ pπ

′
l−1, where the equalities follow from Observation 3.133.13,

namely from the relations pπl ◦ δkl = δkl ◦ pπ
′
l−1 for k > 1 and σk+1,k

l ◦ δml = δml ◦ σk+1,k
l−1

for m > k + 1. The right hand-side can be rewritten as follows f3 ◦ σj,j−1
l ◦ · · · ◦

σ2,1
l ◦pπl ◦ δi+1

l = f3 ◦σj,j−1
l ◦ · · · ◦σi+2,i+1

l ◦σi+1,i
l ◦ δi+1

l ◦σi,i−1
l−1 ◦ · · · ◦σ2,1

l−1 ◦pπ
′
l−1, where

the equalities follows by the same relations as for the left hand-side. If we now use
σi+1,i
l ◦ δi+1

l = δi+1
l and σk+1,k

l ◦ δkl = δk+1
l for k = i+ 1, i+ 2, . . . , j − 1, we see that

the right hand side of (3.283.28) equals f3 ◦ δjl ◦ σi,i−1
l−1 ◦ · · · ◦ σ2,1

l−1 ◦ pπ
′
l−1 as well.

Hence we see that τi ◦ δjl = τj ◦ δi+1
l for all 0 ≤ i < j ≤ l and the assumptions of

Lemma 3.353.35 are satisfied.
We conclude that there is a map τ such that τ ≡∑l

i=0(−1)iτi (mod BO
l (X;F)) and

τ ◦ δil = τi ◦ δ0
l for all i = 0, . . . , l.

Because τi = f3 ◦ σi,i−1
l ◦ · · · ◦ σ2,1

l ◦ pπl for i = 2, 3, . . . , l and σ2,1
l ◦ pπl = pπl ◦ σ2,0

l

(Observation 3.133.13), we see that τi ∈ T̃l(X;F) for all i = 2, 3, . . . , l. Because also f3 ◦
pπl − sgn(π)f3 ∈ T̃l(X;F) and sgn(π) = −1, we see that τu ≡ τ ′u + fu3 (mod Bl(X;F)).
Together with (3.263.26) this yields that

τu ≡ fu1 − fu2 + fu3 (mod Bl(X;F)),

as desired.
Now we compute how do τ ◦ δil look like. If i = 0, we have τ ◦ δ0

l = τ0 ◦ δ0
l = τ ′ ◦ δ0

l =
τ ′0 ◦ δ0

l = f1 ◦ δ0
l , where the equalities follow from Lemma 3.353.35 and the definitions of τ0

and τ ′0.
If i ≥ 1, we have τ ◦ δil = τi ◦ δ0

l = f3 ◦ σi,i−1
l ◦ σi−1,i−2

l ◦ · · · ◦ σ2,1
l ◦ pπl ◦ δ0

l . If we now

use the relations pπl ◦ δ0
l = δ1

l and σk+1,k
l ◦ δkl = δk+1

l from Observation 3.133.13, we see that
τ ◦ δil = f3 ◦ δil .

Since Im τi ⊆ Im f3 for all i = 1, 2, . . . , 3 and Im τ1 = Im f3, Im τ0 = Im f1 ∪ Im f2 (see
Equation (3.273.27)), Lemma 3.353.35 implies that Im τ = Im f1 ∪ Im f2 ∪ Im f3.

We may now finally prove Lemma 3.323.32.

Proof of Lemma 3.323.32. Recall that X = V
(

∆
(k)
n

)
. For brevity, we further set Y :=

∣∣∣∆(k)
n

∣∣∣.
Let σ = σi be a k-dimensional face of ∆

(k)
s . Then ψ(σi) = σi − ∂(µσi ∧ σi).

Because µσi is a multipoint in M (X;Zp), it can be expressed as
∑

j∈Ji ai,jxi,j for

some sets Ji, points xi,j ∈ V
(

∆
(k)
n

)
and coefficients ai,j ∈ Zp, where

∑
j∈Ji ai,j = 1 for

all i.
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By definition then

ψ(σi) = σi − ∂(µσi ∧ σi) =
∑

j∈Ji
ai,j
(
σi − ∂

(
xi,j ∧ σi

))
.

Since we work in Zp, we may replace the term ai,j with

1 + 1 + . . .+ 1︸ ︷︷ ︸
ai,j-times

or (−1) + (−1) + . . .+ (−1)︸ ︷︷ ︸
(p−ai,j)-times

.

Hence after rearranging3232, we obtain that

ψ(σi) =

2mi∑

j=0

(−1)j
(
σi − ∂

(
yi,j ∧ σi

))
,

where mi ≥ 0 is an integer and yi,j ∈ V
(

∆
(k)
n

)
.

Let σi = (vi,0, vi,1, . . . , vi,k). For every l = 0, . . . , k we set

σli := (vi,0, vi,1, . . . , v̂i,l, . . . , vi,k).

Then

ψ(σi) =

2mi∑

j=0

(−1)j

(
k∑

l=0

(−1)l
(
yi,j, vi,0, vi,1, . . . , v̂i,l, . . . , vi,k

)
)
.

This yields

ιn
(
ψ(σi)

)
=

2mi∑

j=0

(−1)j

(
k∑

l=0

(−1)lιn
(
yi,j, vi,0, vi,1, . . . , v̂i,l, . . . , vi,k

)
)

=

2mi∑

j=0

(−1)j

(
k∑

l=0

(−1)lιn(yi,j ∧ σi) ◦ δl+1
k+1

)
.

Because the maps τl = ιn(yi,j ∧σi)◦δl+1
k+1, l = 0, 1, . . . , k obviously satisfy the assumptions

of Lemma 3.353.35, we can replace
∑k

l=0(−1)lιn(yi,j∧σi)◦δl+1
k+1 with a single map γσi,j : |∆k| →∣∣∣∆(k)

n

∣∣∣ such that

ιon
(
ψ(σi)

)
≡

2mi∑

j=0

(−1)jγσi,j (mod BO
k (Y ;F)), (3.29)

where ιon is the natural inclusion of O∗
(

∆
(k)
n ;Zp

)
into O∗

(∣∣∣∆(k)
n

∣∣∣ ;Zp
)

.

Moreover, by Observation 3.133.13 the maps γσi,j satisfy γσi,j ◦ δlk = τi ◦ δ0
k = ιn(yi,j ∧σi)◦

δl+1
k+1 ◦ δ0

k = ιn(yi,j ∧ σi) ◦ δ0
k+1 ◦ δlk = ιn(σi) ◦ δlk for all l = 0, 1, . . . , k and

Im γσi,j =
k⋃

l=0

∣∣(yi,j, vi,0, vi,1, . . . , v̂i,l, . . . , vi,k
)∣∣ .

32For example over Z5, the multipoint 3x+ 3y can be rewritten as x− y + x− y + x.
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We can now apply Lemma 3.363.36 to γσi,2mi−2−γσi,2mi−1 +γσi,2mi and replace them with
a single map γ′σi,2m−2. Continuing inductively, in each step decreasing mi in (3.293.29) by

two, we obtain a map γσi : |∆k| →
∣∣∣∆(k)

n

∣∣∣ satisfying

ιn
(
ψ(σi)

)
≡ γuσi (mod Bk(Y ;F)) (3.30)

and γσi ◦ δlk = ιn(σi) ◦ δlk for all l = 0, 1, . . . , k. Moreover, if Nσi is the set of all non-
degenerated simplices ρ appearing in ψ(σi) with a non-zero coefficient, then

Im γσi =
⋃

ρ∈Nσi

|ρ| . (3.31)

Now we define g :
∣∣∣∆(k)

s

∣∣∣→
∣∣∣∆(k)

n

∣∣∣ by

g(x) := γσi

((
ιs(σi)

)−1
(x)
)

if x ∈ |σi|. (3.32)

If x lies in two different σi and σj it has to lie on the boundary of both of them. Because
γσi ◦ δlk = ιn(σi) ◦ δlk, it follows that

g(x) = ιs(σi ∩ σj)
((
ιs(σi ∩ σj)

)−1
(x)
)

= x for all x ∈ |σi| ∩ |σj|. (3.33)

Hence g(x) is well-defined.

Moreover, because σi are all k-dimensional faces of ∆
(k)
s , the value g(x) is defined for

every x ∈ ∆
(k)
s .

From Eq. (3.323.32) follows that g ◦ (ιsσi) = γσi , which together with (3.303.30), (3.333.33) and

(3.73.7) yields g](ιs(c)) ≡ ιn(ψ(c)) (mod Bk(Y ;Zp)) for every chain c ∈ C̃∗
(

∆
(k)
s ;Zp

)
.

Since this equation is true for every chain c, it is also true for every cycle z and
because the homology groups are formed by factoring the group of cycles by the group
of boundaries Bl(X;F), we see that g∗ ◦ (ιs)∗ = (ιn)∗ ◦ ψ∗, as desired.

By the definition and Eq. (3.313.31) g(|σi|) = Im γσi =
⋃
ρ∈Nσi

|ρ|. If ψ is an almost

embedding, the sets Nσi and Nσj are disjoint for disjoint k-faces σi, σj. If follows that g
is an almost embedding in that case.
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4. Van Kampen-Flores type
non-embeddability results for
manifolds

In this chapter we apply Theorem 3.253.25 to provide an upper bound for the following
conjecture by Kühnel [Küh94Küh94].

Conjecture 4.1. Let n, k ≥ 1 be integers. If ∆
(k)
n embeds in a compact, (k−1)-connected

2k-manifold with kth Z2-Betti number bk(M) then
(
n− k − 1

k + 1

)
≤
(

2k + 1

k + 1

)
bk(M). (4.1)

The conjecture generalizes the classical Heawood inequality [Hea90Hea90, Hef91Hef91] and the
Van Kampen-Flores Theorem [vK32vK32, Flo33Flo33].

The main result of this chapter is the following mild generalization11 of Theorem 1.11.1
and its generalization to q-almost embeddings (Theorem 4.44.4).

Theorem 4.2. Let k, n be non-negative integers. Let M be a 2k-dimensional manifold
with kth Z2-Betti number bk. If n ≥ 2bk

(
2k+2
k

)
+ 2k+ 3, then ∆

(k)
n does not almost embed

into M .

Remark 4.3. The reader who skipped the colorful algebraic Tverberg theorem may use
the weaker version of Theorem 3.253.25, see Remark 3.273.27, and obtains that ∆

(k)
n does not

almost embed into M for any n ≥ 2bk
(

2k+2
k

)
+ 2k + 4.

Since an almost embedding is defined as 1-almost embedding, see Definition 3.233.23, one
may wonder: If we have a d-dimensional manifold, what are the necessary conditions on

k and n that ensure that there is no (q − 1)-almost embedding f :
∣∣∣∆(n)

k

∣∣∣→M?

An obvious condition seems to be k ≥
(

1− 1
q

)
d. Otherwise one could consider n

points a1, . . . , an ∈ Rd in general position, e.g. on the moment curve, map the ith vertex

of
∣∣∣∆(k)

n

∣∣∣ to ai and extend the map linearly. The general position assumption then ensures

that this is indeed a (q − 1)-almost embedding. Since every d-dimensional manifold is

locally homeomorphic to Rd, it follows that the condition k ≥
(

1− 1
q

)
d is necessary for

every d-dimensional manifold.

If k ≥
(

1− 1
q

)
d we are able to prove the following bound22:

Theorem 4.4. Let M be a d-dimensional manifold. Let q = pn be a prime power. Let

b be the kth Betti number of M in the homology with Zp coefficients. If k ≥ d
(

1− 1
q

)
,

1Theorem 1.11.1 only asserts non-existence of embeddings, but in fact we prove non-existence of almost
embeddings.

2If we used the weaker version of Theorem 3.253.25 (Remark 3.273.27), we would obtain a bound N ≥(
N0

k

)
b (N0 − 2k) + 2N0 − 2k instead of N ≥

(
N0

k

)
b (N0 − 2k) +N0 + 1.
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N0 = q(k+ 1) + q− 2 and N ≥
(
N0

k

)
b (N0 − 2k) +N0 + 1, then there is no (q− 1)-almost

embedding of ∆
(k)
N into M .

Theorem 4.44.4 not only generalizes Theorem 4.24.2, it also provides a topological variant
of the Tverberg theorem for manifolds.

The original Tverberg theorem can namely be stated as follows:

Theorem 4.5. There is no affine (q − 1)-almost embedding of ∆
(d)
(q−1)(d+1) into Rd.

Theorem 4.44.4 generalizes Theorem 4.54.5 in three ways. Firstly, we need not restrict our
attention to affine maps only, all continuous maps are allowed. Secondly, the theorem
holds for maps into arbitrary manifolds. Thirdly, instead of the d-dimensional skeleton,

we can use k-dimensional skeleton for any k ≥ d
(

1− 1
q

)
.

We will strongly use a result by Volovikov [Vol96bVol96b] which shows that a continuous map

f :
∣∣∣∆(k)

n

∣∣∣→M cannot be a q-almost embedding of ∆
(k)
n , provided that f satisfies certain

homological triviality condition and n is big enough. (Since the homological triviality

condition is satisfied by any continuous map f : ∆
(k)
n → Rd, one can regard the result of

Volovikov as a generalization of both Van Kampen-Flores and Tverberg theorems).

Theorem 4.6 (Volovikov [Vol96bVol96b]). Let M be a compact d-dimensional manifold with

or without boundary and q = pn a prime power. Consider a map f :
∣∣∣∆(k)

q(k+1)+q−2

∣∣∣→ M

such that k ≥ d
(

1− 1
q

)
and the homomorphism f∗ : Hk

(
∆

(k)
q(k+1)+q−2;Zp

)
→ Hk(M ;Zp)

is trivial. Then f is not an (q − 1)-almost embedding of ∆
(k)
q(k+1)+q+2 into M .

We note that we only state a special case of Volovikov’s result that we need in our
proof. It is obtained by setting j = 2 in item 3 of Volovikov’s main result. Moreover, the
original result is stated in terms of cohomology, i.e., it assumes that f ∗ : H∗(M ;Z2) →
H∗
(

∆
(k)
2k+2;Z2

)
is trivial, however, by the Universal Coefficient Theorem [Mun84Mun84, 53.5],

Hk( · ;Z2) and Hk( · ;Z2) are dual vector spaces, and f ∗ is the adjoint of f∗, hence triviality
of f∗ implies that of33 f ∗.

Proof of Theorem 4.44.4. Assume N ≥
(
N0

k

)
b (N0 − 2k) + N0 + 1. Let f :

∣∣∣∆(k)
N

∣∣∣→ M be a

continuous map.

By Theorem 3.253.25 there exists an almost embedding g :
∣∣∣∆(k)

N0

∣∣∣ →
∣∣∣∆(k)

N

∣∣∣, such that

(f ◦ g)∗ = 0 and the g image of every face is a union of faces in ∆
(k)
N . In particular, if f

is a (q − 1)-almost embedding of ∆
(k)
N into M , f ◦ g is an almost embedding of ∆

(k)
N0

into
M , we refer to Observation 3.243.24.

Because (f ◦g)∗ = 0, (f ◦g)(|∂σ|) is a boundary of some chain γσ for every σ ∈ ∆
(k+1)
N0

.
Let

M ′ := Im f ∪
⋃

σ∈∆
(k+1)
N0

supp γσ.

3Moreover, if the homology group Hk(X;Z2) of a space X is finitely generated, then it is (non-
canonically) isomorphic to its dual vector space Hk(X;Z2). Therefore, f∗ is trivial if and only if f∗

is.
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Then M ′ is compact and without loss of generality, we may assume that M ′ is path-
connected. Furthermore M ′ is contained in some compact submanifold M ′′ (possible with
boundary) of M and the map (f ◦ g) viewed as a map into M ′′ still satisfies (f ◦ g)∗ = 0.

But since (f ◦g)∗ = 0, Volovikov’s theorem implies that f ◦g cannot be a (q−1)-almost
embedding. Therefore f could not be a (q − 1)-almost embedding either.
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5. Homological Almost-Embeddings

One may wonder whether Theorem 3.263.26 can be used iteratively to show that certain con-
tinuous maps f cannot exist. More precisely, given a field F, a manifold M and an almost

embedding θ : C∗
(

∆
(k)
N ;F

)
→ C∗ (M ;F), where11 θ = f] ◦ ιN and N is big enough, the

proof of Theorem 3.263.26 ensures an existence of an almost embedding ψ : C∗
(

∆
(k)
n ;F

)
→

C∗
(

∆
(k)
N ;F

)
such that θ∗◦ψ∗ = 0. That means that for every σ ∈ ∆

(k+1)
n , θ

(
ψ
(
∂(σ)

))
is a

boundary of some chain γσ. We can then extend θ◦ψ to a chain map θ′ : C∗
(

∆
(k+1)
n ;F

)
→

C∗ (M ;F) by setting

θ′(σ) :=

{
θ
(
ψ(σ)

)
if σ is a ≤ k-dimensional face,

γσ if σ is a (k + 1)-dimensional face.

Moreover, it is possible to continue this process by induction.
If we reach a contradiction with some non-embeddability result after several steps,

we conclude that the initial map f could not exist. However, there are two issues to
be addressed: Firstly, non-embeddability result only speak about maps, but we are con-
structing chain maps. Secondly, we need some mechanism guaranteeing the constructed
chain maps are almost embeddings (otherwise we cannot obtain a contradiction with
non-embeddability result).

We deal with the first issue in this chapter. We provide several generalizations of non-
embeddability results for chain maps, which we will need later in Chapter 66. The second
issue is addressed in Chapter 66 and requires a non-trivial adjustment22 of Theorem 3.263.26.

We note that we do not need the distinction between ordered and oriented homology
from Chapters 33 anymore. Hence the usual singular chain group, that was called O∗(X)
there, will be denoted C∗(X), as usual, from now on.

We define homological almost-embedding, an analogue of topological embeddings on
the level of chain maps, and show that certain simplicial complexes do not admit homo-
logical almost-embeddings in Rd, in analogy to classical non-embeddability results due
to Van Kampen and Flores. In fact, when this comes at no additional cost we phrase
the auxiliary results in a slightly more general setting, replacing Rd by a general topo-
logical space R. Readers that focus on the proof of Theorem 1.81.8 can safely replace every
occurrence of R with Rd.

We assume that the reader is familiar with basic topological notions and facts concern-
ing simplicial complexes and singular and simplicial homology, as described in textbooks
like [Hat02Hat02, Mun84Mun84]. Throughout the following two chapters we will work with homology
with Z2-coefficients unless explicitly stated otherwise. Moreover, while we will consider

1The symbol ιN is used for the standard inclusion of C∗
(

∆
(k)
N ;F

)
into C∗

(∣∣∣∆(k)
N

∣∣∣ ;F
)

.
2Since the adjustment needs hypergraph Ramsey theorem [Ram29Ram29], the obtained bounds are enor-

mous, regardless whether we use Theorem 3.263.26 or some cruder tool. Since the proof in Chapter 66 is itself
relatively complicated, we have decided to replace Theorem 3.263.26 with a version which is conceptually
easier, but provides worse bounds and only works over Z2.
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singular homology groups for topological spaces in general, for simplicial complexes we
will work with simplicial homology groups. In particular, if X is a topological space then
C∗(X) will denote the singular chain complex of X, while if K is a simplicial complex,
then C∗(K) will denote the simplicial chain complex of K (both with Z2-coefficients).

We use the following notation. Let K be a (finite, abstract) simplicial complex. The
underlying topological space of K is denoted by |K|. Moreover, we denote by K(i) the
i-dimensional skeleton of K, i.e., the set of simplices of K of dimension at most i; in
particular K(0) is the set of vertices of K. For an integer n ≥ 0, let ∆n denote the
n-dimensional simplex.

Given a set X we let 2X and
(
X
k

)
denote, respectively, the set of all subsets of X

(including the empty set) and the set of all k-element subsets of X. If f : X → Y is an
arbitrary map between sets then we abuse the notation by writing f(S) for {f(s) | s ∈ S}
for any S ⊆ X; that is, we implicitly extend f to a map from 2X to 2Y whenever
convenient.

We will consider singular homology groups for topological spaces in general, however,
for simplicial complexes we will work with simplicial homology groups. In particular, if
X is a topological space then C∗(X) will denote the singular chain complex of X, while
if K is a simplicial complex, then C∗(K) will denote the simplicial chain complex of K
(both with Z2-coefficients).

5.1 Non-Embeddable Complexes

We recall that an embedding of a finite simplicial complex K into Rd is simply an injective
continuous map |K| → Rd. As noted before, the fact that the complete graph on five
vertices cannot be embedded in the plane has the following generalization.

Proposition 5.1 (Van Kampen [vK32vK32], Flores [Flo33Flo33]). For k ≥ 0,
∣∣∣∆(k)

2k+2

∣∣∣ cannot be

embedded in R2k.

A basic tool for proving the non-embeddability of a simplicial complex is the so-
called Van Kampen obstruction. To be more precise, we emphasize that in keeping with
our general convention regarding coefficients, we work with the Z2-coefficient version33 of
the Van Kampen obstruction, which will be reviewed in some detail in Section 5.35.3 below.
Here, for the benefit of readers who are willing to accept certain topological facts as given,
we simply collect those statements necessary to motivate the definition of homological
almost-embeddings and to follow the logic of the proof of Theorem 1.81.8.

Given a simplicial complex K, one can define, for each d ≥ 0, a certain cohomology
class od(K) that resides in the cohomology group Hd(K) of a certain auxiliary complex K
(the quotient of the combinatorial deleted product by the natural Z2-action, see below);
this cohomology class od(K) is called the Van Kampen obstruction to embeddability into
Rd because of the following fact:

3There is also a version of the Van Kampen obstruction with integer coefficients, which in general
yields more precise information regarding embeddability than the Z2-version, but we will not need this
here. We refer to [Mel09Mel09] for further background.
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Proposition 5.2. Suppose that K is a finite simplicial complex with od(K) 6= 0. Then
K is not embeddable into Rd. In fact, a slightly stronger conclusion holds: there is no
almost-embedding f : |K| → Rd, i.e., no continuous map such that the images of disjoint
simplices of K are disjoint.

Another basic fact is the following result (for a short proof see, for instance, [Mel09Mel09,
Example 3.5]).

Proposition 5.3 ([vK32vK32, Flo33Flo33]). For every k ≥ 0, o2k
(

∆
(k)
2k+2

)
6= 0.

As a consequence, one obtains Proposition 5.15.1, and in fact the slightly stronger state-
ment that ∆

(k)
2k+2 does not admit an almost-embedding into R2k.

5.2 Van Kampen–Flores Type Result for Homologi-

cal Almost-Embeddings

For the proof of Theorem 1.81.8, we wish to replace homotopy-theoretic notions (like k-
connectedness) by homological assumptions (bounded Betti numbers). The simple but
useful observation that allows us to do this is that in the standard proof of Proposition 5.25.2,
which is based on (co)homological arguments, maps can be replaced by suitable chain
maps at every step.44 The appropriate analogue of an almost-embedding is the following.

Definition 5.4. Let R be a (nonempty) topological space, K be a simplicial complex, and
consider a chain map55 γ : C∗(K) → C∗(R) from the simplicial chains in K to singular
chains in R.

(i) The chain map γ is called nontrivial66 if the image of every vertex of K is a finite
set of points in R (a 0-chain) of odd cardinality.

(ii) The chain map γ is called a homological almost-embedding of a simplicial complex
K in R if it is nontrivial and if, additionally, the following holds: whenever σ and τ
are disjoint simplices of K, their image chains γ(σ) and γ(τ) have disjoint supports,
where the support of a chain is the union of (the images of) the singular simplices
with nonzero coefficient in that chain.

Remark 5.5. Suppose that f : |K| → Rd is a continuous map.

(i) The induced chain map77 f] : C∗(K)→ C∗(Rd) is nontrivial.

4This observation was already used in [Wag11Wag11] to study the (non-)embeddability of certain simplicial
complexes. What we call a homological almost-embedding corresponds to the notion of a homological
minor used in [Wag11Wag11].

5We recall that a chain map γ : C∗ → D∗ between chain complexes is simply a sequence of homomor-
phisms γn : Cn → Dn that commute with the respective boundary operators, γn−1 ◦ ∂C = ∂D ◦ γn.

6If we consider augmented chain complexes with chain groups also in dimension −1, then being
nontrivial is equivalent to requiring that the generator of C−1(K) ∼= Z2 (this generator corresponds to
the empty simplex in K) is mapped to the generator of C−1(R) ∼= Z2.

7See Definition 3.183.18 for the introduction of the induced chain map f], which goes as follows: We
assume that we have fixed a total ordering of the vertices of K. For a p-simplex σ of K, the ordering of
the vertices induces a homeomorphism hσ : |∆p| → |σ| ⊆ |K|. The image f](σ) is defined as the singular
p-simplex f ◦ hσ.
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(ii) If f is an almost-embedding then the induced chain map is a homological almost-
embedding.

Moreover, note that without the requirement of being nontrivial, we could simply take
the constant zero chain map, for which the second requirement is trivially satisfied.

We have the following analogue of Proposition 5.25.2 for homological almost-embeddings.

Proposition 5.6. Suppose that K is a finite simplicial complex with od(K) 6= 0. Then
K does not admit a homological almost-embedding in Rd.

As a corollary, we get the following result, which underlies our proof of Theorem 1.81.8.

Corollary 5.7. For any k ≥ 0, the k-skeleton ∆
(k)
2k+2 of the (2k+ 2)-dimensional simplex

has no homological almost-embedding in R2k.

We conclude this subsection by two facts that are not needed for the proof of the
main result but are useful for the presentation of our method in Section 6.26.2.

If the ambient dimension d = 2k + 1 is odd, we can immediately see that ∆
(k+1)
2k+4 has

no homological almost-embedding in R2k+1 since it has no homological almost-embedding
in R2k+2; this result can be slightly improved:

Corollary 5.8. For any d ≥ 0, the dd/2e-skeleton ∆
(dd/2e)
d+2 of the (d + 2)-dimensional

simplex has no homological almost-embedding in Rd.

Proof. The statement for even d is already covered by the case k = d/2 of Corollary 5.75.7,
so assume that d is odd and write d = 2k + 1. If K is a finite simplicial complex
with od(K) 6= 0 and if CK is the cone over K then od+1(CK) 6= 0 (for a proof, see,

for instance, [BKK02BKK02, Lemma 8]). Since we know that o2k(∆
(k)
2k+2) 6= 0 it follows that

o2k+1(C∆
(k)
2k+2) 6= 0. Consequently, o2k+1(∆

(k+1)
2k+3 ) 6= 0 since C∆

(k)
2k+2 is a subcomplex of

∆
(k+1)
2k+3 . Proposition 5.65.6 then implies that ∆

(k+1)
2k+3 admits no homological almost-embedding

in R2k+1.

The next fact is the following analogue of Radon’s lemma, proved in the next subsec-
tion along the proof of Proposition 5.65.6.

Lemma 5.9 (Homological Radon’s lemma). For any d ≥ 0, od(∂∆d+1) 6= 0. Conse-
quently, the boundary of (d+ 1)-simplex ∂∆d+1 admits no homological almost-embedding
in Rd.

5.3 Deleted Products and Obstructions

Here, we review the standard proof of Proposition 5.25.2 and explain how to adapt it to
prove Proposition 5.65.6, which will follow from Lemma 5.135.13 and Lemma 5.145.14 (b) below.
The reader unfamiliar with cohomology and willing to accept Proposition 5.65.6 can safely
proceed to Chapter 66.
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Z2-spaces and equivariant maps. We begin by recalling some basic notions of equiv-
ariant topology: An action of the group Z2 on a space X is given by an automorphism
ν : X → X such that ν◦ν = 1X ; the action is free if ν does not have any fixed points. If X
is a simplicial complex (or a cell complex), then the action is called simplicial (or cellular)
if it is given by a simplicial (or cellular) map. A space with a given (free) Z2-action is
also called a (free) Z2-space.

A map f : X → Y between Z2-spaces (X, ν) and (Y, µ) is called equivariant if it
commutes with the respective Z2-actions, i.e., f ◦ ν = µ ◦ f . Two equivariant maps
f0, f1 : X → Y are equivariantly homotopic if there exists a homotopy F : X × [0, 1]→ Y
such that all intermediate maps ft := F (·, t), 0 ≤ t ≤ 1, are equivariant.

A Z2-action ν on a space X also yields a Z2-action on the chain complex C∗(X), given
by the induced chain map ν] : C∗(X)→ C∗(X) (if ν is simplicial or cellular, respectively,
then this remains true if we consider the simplicial or cellular chain complex of X instead
of the singular chain complex), and if f : X → Y is an equivariant map between Z2-spaces
then the induced chain map is also equivariant (i.e., it commutes with the Z2-actions on
the chain complexes).

Spheres. Important examples of free Z2-spaces are the standard spheres Sd, d ≥ 0,
with the action given by antipodality, x 7→ −x. There are natural inclusion maps Sd−1 ↪→
Sd, which are equivariant. Antipodality also gives a free Z2-action on the union S∞ =⋃
d≥0 Sd, the infinite-dimensional sphere. Moreover, one can show that S∞ is contractible,

and from this it is not hard to deduce that S∞ is a universal Z2-space, in the following
sense (see, for instance, [Koz08Koz08, Prop. 8.16 and Thm. 8.17]).

Proposition 5.10. If X is any cell complex with a free cellular Z2-action, then there
exists an equivariant map f : X → S∞. Moreover, any two equivariant maps f0, f1 : X →
S∞ are equivariantly homotopic.

Any equivariant map f : X → S∞ induces a nontrivial equivariant chain map

f] : C∗(X)→ C∗(S∞).

A simple fact that will be crucial in what follows is that Proposition 5.105.10 has an analogue
on the level of chain maps.

We first recall the relevant notion of homotopy between chain maps: Let C∗(X) and
C∗(Y ) be (singular or simplicial, say) chain complexes, and let ϕ, ψ : C∗(X) → C∗(Y )
be chain maps. A chain homotopy η between ϕ and ψ is a family of homomorphisms
ηj : Cj(X)→ Cj+1(Y ) such that

ϕj − ψj = ∂Yj+1 ◦ ηj + ηj−1 ◦ ∂Xj
for all j.88 If X and Y are Z2-spaces then a chain homotopy is called equivariant if it
commutes with the (chain maps induced by) the Z2-actions.99

8Here, we use subscripts and superscripts on the boundary operators to emphasize which dimension
and which chain complex they belong to; often, these indices are dropped and one simply writes ϕ−ψ =
∂η + η∂.

9We also recall that if f, g X → Y are (equivariantly) homotopic then the induced chain maps are
(equivariantly) chain homotopic. Moreover, chain homotopic maps induce identical maps in homology
and cohomology.
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Lemma 5.11. If X is a cell complex with a free cellular Z2-action then any two nontrivial
equivariant chain maps ϕ, ψ : C∗(X)→ C∗(S∞) are equivariantly chain homotopic.1010

Proof of Lemma 5.115.11. Let the Z2-action on X be given by the automorphism ν : X → X.
For each dimension i ≥ 0, the action partitions the i-dimensional cells of X (the basis
elements of Ci(X)) into pairs σ, ν(σ). For each such pair, we arbitrarily pick one of the
cells and call it the representative of the pair.

We define the desired equivariant chain homotopy η between ϕ and ψ by induction
on the dimension, using the fact that all reduced homology groups of S∞ are zero.1111

We start the induction in dimension at j = −1 (and for convenience, we also use
the convention that all chain groups, chain maps, and ηi are understood to be zero in
dimensions i < −1). Since we assume that both ϕ and ψ are nontrivial, we have that
ϕ−1, ψ−1 : C−1(X) → C−1(S∞) are identical, and we set η−1 : C−1(X) → C0(S∞) to be
zero.

Next, assume inductively that equivariant homomorphisms ηi : Ci(X)→ Ci(S∞) have
already been defined for i < j and satisfy

ϕi − ψi = ηi−1 ◦ ∂ + ∂ ◦ ηi (5.1)

for all i < j (note that initially, this holds true for j = 0).
Suppose that σ is a j-dimensional cell of X representing a pair σ, ν(σ). Then ∂σ ∈

Cj−1(X), and so ηj−1(∂σ) ∈ Cj(S∞) is already defined. We are looking for a suitable
chain c ∈ Cj+1(S∞) which we can take to be ηj(σ) in order to satisfy the chain homotopy
relation (5.15.1) also for i = j, such a chain c has to satisfy ∂c = b, where

b := ϕj(σ)− ψj(σ)− ηj−1(∂(σ)).

To see that we can find such a c, we compute

∂b = ∂ϕj(σ)− ∂ψj(σ)− ∂ηj−1(∂(σ))

= ϕj−1(∂σ)− ψj−1(∂σ)−
(
ϕj−1(∂σ)− ψj−1(∂σ)− ηj−2(∂∂σ)

)
= 0

Thus, b is a cycle, and since Hj(S∞) = 0, b is also a boundary. Pick an arbitrary chain
c ∈ Cj+1(S∞) with ∂c = b and set ηj(σ) := c and ηj(ν(σ)) := ν](c). We do this for all
representative j-cells σ and then extend ηj by linearity. By definition, ηj is equivariant
and (5.15.1) is now satisfied also for i = j. This completes the induction step and hence the
proof.

Deleted products and Gauss maps. Let K be a simplicial complex. Then the
Cartesian product K × K is a cell complex whose cells are the Cartesian products of
pairs of simplices of K. The (combinatorial) deleted product K̃ of K is defined as the
polyhedral subcomplex of K ×K whose cells are the products of vertex-disjoint pairs of
simplices of K, i.e., K̃ := {σ× τ : σ, τ ∈ K, σ ∩ τ = ∅}. The deleted product is equipped
with a natural free Z2-action that simply exchanges coordinates, (x, y) 7→ (y, x). Note
that this action is cellular since each cell σ × τ is mapped to τ × σ.

10We stress that we work with the cellular chain complex for X.
11This just mimics the argument for the existence of an equivariant homotopy, which uses the con-

tractibility of S∞.

74



Lemma 5.12. If f : |K| ↪→ Rd is an embedding or an almost embedding, then1212 there

exists an equivariant map f̃ : K̃ → Sd−1.

Proof. Define f̃(x, y) := f(x)−f(y)
‖f(x)−f(y)‖ . This map, called the Gauss map, is clearly equivari-

ant.

For the proof of Proposition 5.65.6, we use the following analogue of Lemma 5.125.12.

Lemma 5.13. Let K be a finite simplicial complex. If γ : C∗(K)→ C∗(Rd) is a homolog-
ical almost-embedding then there is a nontrivial equivariant chain map (called the Gauss

chain map) γ̃ : C∗(K̃)→ C∗(Sd−1).

The proof of this lemma is not difficult but a bit technical, so we postpone it until
the end of this section.

Obstructions. Here, we recall a standard method for proving the non-existence of
equivariant maps between Z2-spaces. The arguments are formulated in the language of
cohomology, and, as we will see, what they actually establish is the non-existence of
nontrivial equivariant chain maps.

Let K be a finite simplicial complex and let K̃ be its (combinatorial) deleted product.

By Proposition 5.105.10, there exists an equivariant map GK : K̃ → S∞, which is unique
up to equivariant homotopy. By factoring out the action of Z2, this induces a map
GK : K → RP∞ between the quotient spaces K = K̃/Z2 and RP∞ = S∞/Z2 (the infinite-
dimensional real projective space), and the homotopy class of the map GK depends only1313

on K. Passing to cohomology, there is a uniquely defined induced homomorphism

G
∗
K : H∗(RP∞)→ H∗(K).

It is known that Hd(RP∞) ∼= Z2 for every d ≥ 0. Letting ξd denote the unique generator
of Hd(RP∞), there is a uniquely defined cohomology class

od(K) := G
∗
K(ξd),

called the van Kampen obstruction (with Z2-coefficients) to embedding K into Rd. For
more details and background regarding the van Kampen obstruction, we refer the reader
to [Mel09Mel09].

The basic fact about the van Kampen obstruction (and the reason for its name) is
that K does not embed (not even almost-embed) into Rd if od(K) 6= 0 (Proposition 5.25.2).
This follows from Lemma 5.125.12 and Part (a) of the following lemma:

Lemma 5.14. Let K be a simplicial complex and suppose that od(K) 6= 0.

12We remark that a classical result due to Haefliger and Weber [Hae63Hae63, Web67Web67] asserts that if dimK ≤
(2d− 3)/3 (the so-called metastable range) then the existence of an equivariant map from K̃ to Sd−1 is
also sufficient for the existence of an embedding K ↪→ Rd (outside the metastable range, this fails); see
[Sko08Sko08] for further background.

13We stress that this does not mean that there is only one homotopy class of continuous maps K →
RP∞; indeed, there exist such maps that do not come from equivariant maps K̃ → S∞, for instance the
constant map that maps all of K to a single point.
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(a) Then there is no equivariant map K̃ → Sd−1.

(b) In fact, there is no nontrivial equivariant chain map C∗(K̃)→ C∗(Sd−1).

Together with Lemma 5.135.13, Part (b) of the lemma also implies Proposition 5.65.6, as
desired. The simple observation underlying the proof of Lemma 5.145.14 is the following

Observation 5.15. Suppose ϕ : C∗(K̃)→ C∗(S∞) is a nontrivial equivariant chain map
(not necessarily induced by a continuous map). By factoring out the action of Z2, ϕ
induces a chain map ϕ : C∗(K)→ C∗(RP∞). The induced homomorphism in cohomology

ϕ∗ : H∗(RP∞)→ H∗(K)

is equal to the homomorphism G
∗
K used in the definition of the Van Kampen obstruction,

hence in particular
od(K) = ϕ∗(ξd).

Proof. By Lemma 5.115.11, ϕ is equivariantly chain homotopic to the nontrivial equivariant
chain map (GK)] induced by the map GK . Thus, after factoring out the Z2-action, the
chain maps ϕ and (GK)] from C∗(K) to C∗(RP∞) are chain homotopic, and so induce
identical homomorphisms in cohomology.

Proof of Lemma 5.145.14. If there exists an equivariant map f : K̃ → Sd−1, then the induced
chain map f] : C∗(K̃)→ C∗(Sd−1) is equivariant and nontrivial, so (b) implies (a), and it
suffices to prove the former.

Next, suppose for a contradiction that ψ : C∗(K̃) → C∗(Sd−1) is a nontrivial equiv-
ariant chain map. Let i : Sd−1 → S∞ denote the inclusion map, and let i] : C∗(Sd−1) →
C∗(S∞) denote the induced equivariant, nontrivial chain map. Then the composition

ϕ = (i] ◦ ψ) : C∗(K̃)→ C∗(S∞) is also nontrivial and equivariant, and so, by the preced-
ing observation, for the induced homomorphism in cohomology, we get

od(K) = (i] ◦ ψ)
∗
(ξd) = ψ

∗ (
i
∗
(ξd)

)
.

However, i
∗
(ξd) ∈ Hd(RPd−1) = 0 (for reasons of dimension), hence od(K) = 0, contra-

dicting our assumption.

Remark 5.16. The same kind of reasoning also yields the well-known Borsuk–Ulam The-
orem, which asserts that there is no equivariant map Sd → Sd−1, using the fact that
the inclusion i : RPd → RP∞ (induced by the equivariant inclusion i : Sd → S∞) has the
property that i

∗
(ξd), the pullback of the generator ξd ∈ Hd(RP∞), is nonzero.1414 In fact,

once again one gets a homological version of the Borsuk–Ulam theorem for free: there is
no nontrivial equivariant chain map C∗(Sd)→ C∗(Sd−1).

Proof of Lemma 5.95.9. It is not hard to see that the deleted product ∂̃∆d+1 = ∆̃d+1 of the
boundary of (d + 1)-simplex is combinatorially isomorphic to the boundary of a certain
convex polytope and hence homeomorphic to Sd(respecting the antipodality action), see
[Mat03Mat03, Exercise 5.4.3]. Thus, the assertion od(∂∆d+1) 6= 0 follows immediately from the

14In fact, it is known that H∗(RP∞) is isomorphic to the polynomial ring Z2[ξ], that H∗(RPd) ∼=
Z2[ξ]/(ξd+1), and that i

∗
is just the quotient map.
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preceding remark (the homological proof of the Borsuk–Ulam theorem). Together with
Proposition 5.65.6, this implies that there is no homological almost-embedding of ∂∆d+1 in
Rd.

The proof of Proposition 5.65.6 is complete, except for the following:

Proof of Lemma 5.135.13. Once again, we essentially mimic the definition of the Gauss map
on the level of chains. There is one minor technical difficulty due to the fact that the
cells of K̃ are products of simplices, whereas the singular homology of spaces is based on
maps whose domains are simplices, not products of simplices (this is the same issue that
arises in the proof of Künneth type formulas in homology).

Assume that γ : C∗(K) → C∗(Rd) is a homological almost-embedding. The desired

nontrivial equivariant chain map γ̃ : C∗(K̃)→ C∗(Sd−1) will be defined as the composition
of three intermediate nontrivial equivariant chain maps

C∗(K̃)

γ̃=p]◦β◦α

22

α // D∗
β
// C∗(R̃d)

p]
// C∗(Sd−1).

These maps and intermediate chain complexes will be defined presently.
We define D∗ as a chain subcomplex of the tensor product C∗(Rd) ⊗ C∗(Rd). The

tensor product chain complex has a basis consisting of all elements of the form s ⊗ t,
where s and t range over the singular simplices of Rd, and we take D∗ as the subcomplex
spanned by all s ⊗ t for which s and t have disjoint supports (note that D∗ is indeed a
chain subcomplex, i.e., closed under the boundary operator, since if s and t have disjoint
supports, then so do any pair of simplices that appear in the boundary of s and of t,
respectively). The chain complex C∗(K̃) has a canonical basis consisting of cells σ × τ ,
and the chain map α is defined on these basis elements by “tensoring” γ with itself, i.e.,

α(σ × τ) := γ(σ)⊗ γ(τ).

Since γ is nontrivial, so is α, the disjointness properties of γ ensure that the image of α
does indeed lie in D∗, and α is clearly Z2-equivariant.

Next, consider the Cartesian product Rd × Rd with the natural Z2-action given by
flipping coordinates. This action is not free since it has a nonempty set of fixed points,
namely the “diagonal” ∆ = {(x, x) : x ∈ Rd}. However, the action on Rd × Rd restricts

to a free action on the subspace R̃d := (Rd ×Rd) \∆ obtained by removing the diagonal
(this subspace is sometimes called the topological deleted product of Rd). Moreover,

there exists an equivariant map p : R̃d → Sd−1 defined as follows: we identify Sd−1 with
the unit sphere in the orthogonal complement ∆⊥ = {(w,−w) ∈ Rd : w ∈ Rd} and

take p : R̃d → Sd−1 to be the orthogonal projection onto ∆⊥ (which sends (x, y) to
1
2
(x− y, y − x)), followed by renormalizing,

p(x, y) :=
1
2
(x− y, y − x)

‖1
2
(x− y, y − x)‖ ∈ Sd−1 ⊂ ∆⊥.

The map p is equivariant and so the induced chain map p] is equivariant and nontrivial.
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∆p

∆q

∆q

∆p

Figure 5.1: A simplex in a triangulation of ∆p ×∆q and its twin in ∆q ×∆p.

It remains to define β : D∗ → C∗(R̃d). For this, we use a standard chain map

EML: C∗(Rd)⊗ C∗(Rd)→ C∗(Rd × Rd),

sometimes called the Eilenberg–Mac Lane chain map, and then take β to be the restriction
to D∗.

Given a basis element s ⊗ t of C∗(Rd) ⊗ C∗(Rt), where s : ∆p → Rd and t : ∆q → Rd

are singular simplices, we can view s ⊗ t as the map s ⊗ t : ∆p × ∆q → Rd × Rd with
(x, y) 7→ (s(x), t(y)). This is almost like a singular simplex in Rd × Rd, except that
the domain is not a simplex but a prism (product of simplices). The Eilenberg–Mac
Lane chain map is defined by prescribing a systematic and coherent way of triangulating
products of simplices ∆p×∆q that is consistent with taking boundaries; then EML(s⊗t) ∈
Cp+q(Rd × Rd) is defined as the singular chain whose summands are the restrictions of
the map σ ⊗ τ : ∆p × ∆q to the (p + q)-simplices that appear in the triangulation of
∆p × ∆q. We refer to [GDR05GDR05] for explicit formulas for the chain map EML. What
is important for us is that the chain map EML is equivariant and nontrivial. Both
properties follow more or less directly from the construction of the triangulation of the
prisms ∆p×∆q, which can be explained as follows: Implicitly, we assume that the vertex
sets {0, 1, . . . , p} and {0, 1, . . . , q} are totally ordered in the standard way. The vertex set
of ∆p×∆q is the grid {0, 1, . . . , p}×{0, 1, . . . , q}, on which we consider the coordinatewise
partial order defined by (x, y) ≤ (x′, y′) if x ≤ x′ and y ≤ y′. Then the simplices
of the triangulation are all totally ordered subsets of this partial order. Thus, if σ =
{(x0, y0), (x1, y1), . . . , (xr, yr)} is a simplex that appears in the triangulation of ∆p ×∆q

then the simplex σ = {(y0, x0), (y1, x1), . . . , (yr, xr)} obtained by flipping all coordinates
appears in the triangulation of ∆q×∆p; see Figure 5.15.1. This implies equivariance of EML
(and it is nontrivial since it maps a single vertex to a single vertex).

78



6. A general Helly type theorem

In this chapter we finally prove the general Helly type theorem 1.81.8. Let us recall its
statement: There exists a function h(b, d) such that the following holds. If F is a finite
family of sets in Rd such that β̃i (

⋂G;Z2) ≤ b for any G ( F and every 0 ≤ i ≤ dd/2e−1,
then F has Helly number at most h(b, d). If we are only interested whether the Helly
numbers are bounded or not, this theorem subsumes a broad class of Helly type theorems
for sets in Rd.

Before we prove the theorem, we show that it is qualitatively sharp (Example 6.16.1)
and provide a lower bound for the function h(b, d) (Example 6.26.2).

Example 6.1. Fix some k with 0 ≤ k ≤ dd/2e − 1. For n arbitrarily large, consider
a geometric realization in Rd of the k-skeleton of the (n − 1)-dimensional simplex (see
[Mat03Mat03, Section 1.6]); more specifically, let V = {v1, . . . , vn} be a set of points in general
position in Rd (for instance, n points on the moment curve) and consider all geometric
simplices σA := conv(A) spanned by subsets A ⊆ V of cardinality |A| ≤ k+1. By general
position, σA ∩ σB = σA∩B, so this yields indeed a geometric realization.

For 1 ≤ j ≤ n, let Uj be the union of all the simplices not containing the vertex vj.
We set F = {U1, . . . , Un}. Then,

⋂F = ∅, and for any proper sub-family G ( F , the
intersection

⋂G is either Rd (if G = ∅) or (homeomorphic to) the k-dimensional skeleton
of a (n− 1−|G|)-dimensional simplex. Thus, the Helly number of F equals n. Moreover,

the k-skeleton ∆
(k)
m−1 of an (m−1)-dimensional simplex has reduced Betti numbers β̃i = 0

for i 6= k and β̃k =
(
m−1
k+1

)
. Thus, we can indeed obtain arbitrarily large Helly number as

soon as at least one β̃k is unbounded.

Example 6.2. First, we observe that for every d ≥ 2 there is a geometric simplicial complex
Kd with d+ 2 vertices, embedded in Rd, such that every nonempty induced subcomplex
L of Kd is connected and βi(L) = β̃i(L) ≤ 1 for any i ≥ 1.

Indeed, it is sufficient to consider Kd as the stellar subdivision of the d-simplex (a. k. a.
the cone over the boundary of the d-simplex): Among the vertices of Kd, d+ 1 of them,
say v1, . . . , vd+1, form a simplex, and the last one, say w, is situated in the barycenter of
that simplex. The maximal simplices of Kd contain w and d of the v-vertices. Given an
induced subcomplex L, either L misses one of the v-vertices, and then L is a subcomplex
of a simplex; or L contains all the v-vertices, and then L = K or L is the boundary of
the simplex formed by the v-vertices.

Now, with the knowledge of K, we can construct a set-system F with b(d + 2) sets
such that

⋂F = ∅, the intersection of any proper subsystem of F is nonempty, and the
reduced Betti numbers of the intersection of any proper subsystem are bounded by b: We
consider a complex Kb,d which consists of b disjoint copies of Kd, embedded in Rd. For
any vertex v of Kb,d we let Fv be the induced subcomplex of Kb,d on all vertices but v.
We set F to be the collection of Fvs for all possible v. It follows that

⋂F = ∅ and also
that

⋂G is a nonempty induced subcomplex of Kb,d for any nonempty G ( F . Therefore,⋂G is nonempty and its reduced Betti numbers are bounded by b from the construction
of Kd.
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p1

p2

p3

p4

p5

s2,5

s1,4

Two edges (arcs) with no common vertices intersect (in this case s1,4 and s2,5). The point
in the intersection then belongs to all sets in F .

Figure 6.1: Illustration of the planar case

6.1 Proof outline

Using the machinery of Chapter 55, we prove Theorem 1.81.8 in two steps. First we present,
in Section 6.26.2, variations of the technique that derives Helly type theorems from non-
embeddability. We finally introduce our refinement of this technique and the proof of
Theorem 1.81.8 in Section 6.56.5.

We derive Theorem 1.81.8 from obstructions to embeddability using a technique we
learned from the work of Matoušek [Mat97Mat97]. First, we illustrate this technique, which
in fact already appears in the classical proof of Helly’s convex theorem from Radon’s
lemma, on a few examples, then formalize its ingredients.

6.2 Helly type theorems from homotopic assump-

tions

Let F = {U1, U2, . . . , Un} denote a family of subsets of Rd. We assume that F has empty
intersection and that any proper subfamily of F has nonempty intersection. Our goal is
to show how various conditions on the topology of the intersections of the subfamilies of
F imply bounds on the cardinality of F . For any (possibly empty) proper subset I of
[n] = {1, 2, . . . , n} we write UI for

⋂
i∈[n]\I Ui. We also put U[n] = Rd.

Path-connected intersections in the plane. Consider the case where d = 2 and the
intersections

⋂G are path-connected for all subfamilies G ( F . Since every intersection
of n − 1 members of F is nonempty, we can pick, for every i ∈ [n], a point pi in U{i}.
Moreover, as every intersection of n− 2 members of F is connected, we can connect any
pair of points pi and pj by an arc si,j inside U{i,j}. We thus obtain a drawing of the

complete graph on [n] in the plane in a way that the edge between i and j is contained
in U{i,j} (see Figure 6.16.1). If n ≥ 5 then the stronger form of non-planarity of K5 implies

that there exist two edges {i, j} and {k, `} with no vertex in common and whose images
intersect (see Proposition 5.25.2 and Lemma 5.35.3). Since U{i,j} ∩ U{k,`} =

⋂F = ∅, this
cannot happen and F has cardinality at most 4.
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dd/2e-connected intersections in Rd. The previous argument generalizes to higher
dimension as follows. Assume that the intersections

⋂G are dd/2e-connected11 for all
subfamilies G ( F . Then we can build by induction a function f from the dd/2e-skeleton
of ∆n−1 to Rd in a way that for any simplex σ, the image f(σ) is contained in Uσ. The
previous case shows how to build such a function from the 1-skeleton of ∆n−1. Assume
that a function f from the `-skeleton of ∆n−1 is built. For every (` + 1)-simplex σ of
∆n−1, for every facet τ of σ, we have f(τ) ⊂ Uτ ⊆ Uσ. Thus, the set

⋃

τ facet of σ

f(τ)

is the image of an `-dimensional sphere contained in Uσ, which has vanishing homotopy
of dimension `. We can extend f from this sphere to an (`+ 1)-dimensional ball so that
the image is still contained in Uσ. This way we extend f to the (`+ 1)-skeleton of ∆n−1.

The Van Kampen-Flores theorem asserts that for any continuous function from ∆
(k)
2k+2

to R2k there exist two disjoint faces of ∆
(k)
2k+2 whose images intersect (see Proposition 5.25.2

and Lemma 5.35.3). So, if n ≥ 2dd/2e + 3, then there exist two disjoint simplices σ and

τ of ∆
(dd/2e)
2dd/2e+2 such that f(σ) ∩ f(τ) is nonempty. Since f(σ) ∩ f(τ) is contained in

Uσ ∩ Uτ =
⋂F = ∅, this is a contradiction and F has cardinality at most 2dd/2e+ 2.

By a more careful inspection of odd dimensions, the bound 2dd/2e+2 can be improved
to d + 2. We skip this in the homotopic setting, but we will do so in the homological
setting (which is stronger anyway); see Corollary 6.36.3 below.

Contractible intersections. Of course, the previous argument works with other non-
embeddability results. For instance, if the intersections

⋂G are contractible for all sub-
families then the induction yields a map f from the d-skeleton of ∆n−1 to Rd with the
property that for any simplex σ, the image f(σ) is contained in Uσ. The topological
Radon theorem [BB79BB79] (see also [Mat03Mat03, Theorem 5.1.2]) states that for any continuous
function from ∆d+1 to Rd there exist two disjoint faces of ∆d+1 whose images intersect.
So, if n ≥ d + 2 we again obtain a contradiction (the existence of two disjoint simplices
σ and τ such that f(σ) ∩ f(τ) 6= ∅ whereas Uσ ∩ Uτ =

⋂F = ∅), and the cardinality of
F must be at most d+ 1.

6.3 From homotopy to homology

The previous reasoning can be transposed to homology as follows. Assume that for
i = 0, 1, . . . , k − 1 and all subfamilies G ( F we have β̃i(

⋂G) = 0. We construct a

nontrivial22 chain map f from the simplicial chains of ∆
(k)
n−1 to the singular chains of Rd

by increasing dimension:

• For every {i} ⊂ [n] we let pi ∈ U{i}. This is possible since every intersection of n−1

members of F is nonempty. We then put f({i}) = pi and extend it by linearity

into a chain map from ∆
(0)
n−1 to Rd. Notice that f is nontrivial and that for any

0-simplex σ ⊆ [n], the support of f(σ) is contained in Uσ.

1Recall that a set is k-connected if it is connected and has vanishing homotopy in dimension 1 to k.
2See Definition 5.45.4.
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• Now, assume, as an induction hypothesis, that there exists a nontrivial chain map
f from the simplicial chains of ∆

(`)
n−1 to the singular chains of Rd with the property

that for any (≤ `)-simplex σ ⊆ [n], ` < k, the support of f(σ) is contained in Uσ.

Let σ be a (`+1)-simplex in ∆
(`+1)
n−1 . For every `-dimensional face τ of σ, the support

of f(τ) is contained in Uτ ⊆ Uσ. It follows that the support of f(∂σ) is contained
in Uσ, which has trivial homology in dimension ` + 1. As a consequence, f(∂σ) is
a boundary in Uσ. We can therefore extend f to every simplex of dimension ` + 1
and then, by linearity, to a chain map from the simplicial chains of ∆

(`+1)
n−1 to the

singular chains of Rd. This chain map remains nontrivial and, by construction, for
any (≤ `+ 1)-simplex σ ⊆ [n], the support of f(σ) is contained in Uσ.

If σ and τ are disjoint simplices of ∆
(k)
n−1 then the intersection of the supports of f(σ) and

f(τ) is contained in Uσ ∩Uτ =
⋂F = ∅ and these supports are disjoint. It follows that f

is not only a nontrivial chain map, but also a homological almost-embedding in Rd. We
can then use obstructions to the existence of homological almost-embeddings to bound
the cardinality of F . Specifically, since we assumed that F has empty intersection and
any proper subfamily of F has nonempty intersection, Corollary 5.85.8 implies:

Corollary 6.3. Let F be a family of subsets of Rd such that β̃i(
⋂G) = 0 for every G ( F

and i = 0, 1, . . . , dd/2e − 1. Then the Helly number of F is at most d+ 2.

The homological Radon’s lemma (Lemma 5.95.9) yields (noting ∂∆d+1 = ∆
(d)
d+1):

Corollary 6.4. Let F be a family of subsets of Rd such that β̃i(
⋂G) = 0 for every G ( F

and i = 0, 1, . . . , d− 1. Then the Helly number of F is at most d+ 1.

Remark 6.5. The following modification of Example 6.16.1 shows that the two previous
statements are sharp in various ways. First assume that for some values k, n there exists
some embedding f of ∆

(k)
n−1 into Rd. Let Ki be the simplicial complex obtained by deleting

the ith vertex of ∆
(k)
n−1 (as well as all simplices using that vertex) and put Ui := f(Ki).

The family F = {U1, . . . , Un} has Helly number exactly n, since it has empty intersection
and all its proper subfamilies have nonempty intersection. Moreover, for every G ⊆ F ,⋂G is the image through f of the k-skeleton of a simplex on |F \G| vertices, and therefore
β̃i(
⋂G) = 0 for every G ⊆ F and i = 0, . . . , k − 1. Now, such an embedding exists for:

k = d and n = d+ 1, as the d-dimensional simplex easily embeds into Rd. Consequently,
the bound of d+ 1 is best possible under the assumptions of Corollary 6.46.4.

k = d− 1 and n = d+ 2, as we can first embed the (d − 1)-skeleton of the d-simplex
linearly, then add an extra vertex at the barycenter of the vertices of that simplex
and embed the remaining faces linearly. This implies that if we relax the condition
of Corollary 6.46.4 by only controlling the first d− 2 Betti numbers then the bound of
d + 1 becomes false. It also implies that the bound of d + 2 is best possible under
(a strengthening of) the assumptions of Corollary 6.36.3.

(Recall that, as explained in Example 6.16.1, the dd/2e−1 in the assumptions of Corollary 6.36.3
cannot be reduced without allowing unbounded Helly numbers.)
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An example of a constrained map γ : K → R2. A label at a face σ of K denotes Φ(σ).
Note, for example, that the support of γ({a, b, c}) needn’t be a triangle since we work
with chain maps. Constrains by Φ mean that a set Ui must contain cover images of all
faces without label i. It is demonstrated by U3 and U8 for example.

Figure 6.2: An example of a constrained map

Constrained chain map. Let us formalize the technique illustrated by the previous
example. We focus on the homological setting, as this is what we use to prove Theo-
rem 1.81.8, but this can be easily transposed to homotopy.

Considering a slightly more general situation, we let F = {U1, U2, . . . , Un} denote a
family of subsets of some topological space R. As before for any (possibly empty) proper
subset I of [n] = {1, 2, . . . , n} we write UI for

⋂
i∈[n]\I Ui and we put U[n] = R.

Let K be a simplicial complex and let γ : C∗(K) → C∗(R) be a chain map from the
simplicial chains of K to the singular chains of R. We say that γ is constrained by (F ,Φ)
if:

(i) Φ is a map from K to 2[n] such that Φ(σ ∩ τ) = Φ(σ) ∩ Φ(τ) for all σ, τ ∈ K and
Φ(∅) = ∅.

(ii) For any simplex σ ∈ K, the support of γ(σ) is contained in UΦ(σ).

See Figure 6.26.2. We also say that a chain map γ from K is constrained by F if there exists
a map Φ such that γ is constrained by (F ,Φ). In the above constructions, we simply set
Φ to be the identity. As we already saw, constrained chain maps relate Helly numbers to
homological almost-embeddings (see Definition 5.45.4) via the following observation:

Lemma 6.6. Let γ : C∗(K) → C∗(R) be a nontrivial chain map constrained by F . If⋂F = ∅ then γ is a homological almost-embedding of K.

Proof. Let Φ : K → 2[n] be such that γ is constrained by (F ,Φ). Since γ is nontrivial, it
remains to check that disjoint simplices are mapped to chains with disjoint support. Let
σ and τ be two disjoint simplices of K. The supports of γ(σ) and γ(τ) are contained,
respectively, in UΦ(σ) and UΦ(τ), and

UΦ(σ) ∩ UΦ(τ) = UΦ(σ)∩Φ(τ) = UΦ(σ∩τ) = UΦ(∅) = U∅ =
⋂
F .

Therefore, if
⋂F = ∅ then γ is a homological almost-embedding of K.
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6.4 Relaxing the connectivity assumption

In all the examples listed so far, the intersections
⋂G must be connected. A relaxation of

this condition was given by Matoušek [Mat97Mat97] who allowed “having a bounded number of
connected components”, the assumptions then being on the topology of the components,
by using Ramsey’s theorem. The gist of our proof is to extend his idea to allow a bounded
number of homology classes not only in the first dimension but in any dimension. Let us
illustrate how Matoušek’s idea works in two dimension:

Theorem 6.7 ([Mat97Mat97, Theorem 2 with d = 2]). For every positive integer b there is
an integer h(b) with the following property. If F is a finite family of subsets of R2 such
that the intersection of any subfamily has at most b path-connected components, then the
Helly number of F is at most h(b).

Let us fix b from above and assume that for any subfamily G ( F the intersection
⋂G

consists of at most b path-connected components and that
⋂F = ∅. We start, as before,

by picking for every i ∈ [n], a point pi in U{i}. This is possible as every intersection of

n− 1 members of F is nonempty. Now, if we consider some pair of indices i, j ∈ [n], the
points pi and pj are still in U{i,j} but may lie in different connected components. It may
thus not be possible to connect pi to pj inside U{i,j}. If we, however, consider b+1 indices
i1, i2, . . . , ib+1 then all the points pi1 , pi2 , . . . , pib+1

are in U{i1,i2,...,ib+1} which has at most
b connected components, so at least one pair among of these points can be connected by
a path inside U{i1,i2,...,ib+1}. Thus, while we may not get a drawing of the complete graph
on n vertices we can still draw many edges.

To find many vertices among which every pair can be connected we will use the
hypergraph version of the classical theorem of Ramsey:

Theorem 6.8 (Ramsey [Ram29Ram29]). For any x, y and z there is an integer Rx(y, z) such
that any x-uniform hypergraph on at least Rx(y, z) vertices colored with at most y colors
contains a subset of z vertices inducing a monochromatic sub-hypergraph.

From the discussion above, for any b + 1 indices i1 < i2 < . . . < ib+1 there exists a pair
{k, `} ∈

(
[b+1]

2

)
such that pik and pi` can be connected inside U{i1,i2,...,ib+1}. Let us consider

the (b + 1)-uniform hypergraph on [n] and color every set of indices i1 < i2 < . . . < ib+1

by one of the pairs in
(

[b+1]
2

)
that can be connected inside U{i1,i2,...,ib+1} (if more than one

pair can be connected, we pick one arbitrarily). Let t be some integer to be fixed later.
By Ramsey’s theorem, if n ≥ Rb+1

((
b+1

2

)
, t
)

then there exist a pair {k, `} ∈
(

[b+1]
2

)
and

a subset T ⊆ [n] of size t with the following property: for any (b + 1)-element subset
S ⊂ T , the points whose indices are the kth and `th indices of S can be connected inside
US.

Now, let us set t = 5 +
(

5
2

)
(b − 1) = 10b − 5. We claim that we can find five indices

in T , denoted i1, i2, . . . , i5, and, for each pair {iu, iv} among these five indices, some
(b+ 1)-element subset Qu,v ⊂ T with the following properties:

(i) iu and iv are precisely in the kth and `th position in Qu,v, and

(ii) for any 1 ≤ u, v, u′, v′ ≤ 5, Qu,v ∩Qu′,v′ = {iu, iv} ∩ {iu′ , iv′}.
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We first conclude the argument, assuming that we can obtain such indices and sets.
Observe that from the construction of T , the iu’s and the Qu,v’s we have the following
property: for any u, v ∈ [5], we can connect piu and piv inside UQu,v . This gives a drawing
of K5 in the plane. Since K5 is not planar, there exist two edges with no vertex in
common, say {u, v} and {u′, v′}, that cross. This intersection point must lie in

UQu,v ∩ UQu′,v′ = UQu,v∩Qu′,v′ = U{iu,iv}∩{iu′ ,iv′} = U∅ =
⋂
F = ∅,

a contradiction. Hence the assumption that n ≥ Rb+1

((
b+1

2

)
, t
)

is false and F has cardi-

nality at most Rb+1

((
b+1

2

)
, 10b− 5

)
− 1, which is our h(b).

The selection trick. It remains to derive the existence of the iu’s and the Qu,v’s. It is
perhaps better to demonstrate the method by a simple example to develop some intuition
before we formalize it.

Example. Let us fix b = 4 and {k, `} = {2, 3} ∈
(

[4+1]
2

)
. We first make a ‘blueprint’

for the construction inside the rational numbers. For any two indices u, v ∈ [5] we form
a totally ordered set Q′u,v ⊆ Q of size b + 1 = 5 by adding three rational numbers
(different from 1, . . . , 5) to the set {u, v} in such a way that u appears at the second and
v at the third position of Q′u,v. For example, we can set Q′1,4 to be {0.5; 1; 4; 4.7; 5.13}.
Apart from this we require that we add a different set of rational numbers for each
{u, v}. Thus Q′u,v ∩ Q′u′,v′ = {u, v} ∩ {u′, v′}. Our blueprint now appears inside the set
T ′ :=

⋃
1≤u<v≤5Q

′
u,v; note that both this set T ′ and the set T in which we search for the

sets Qu,v have 35 elements. To obtain the required indices iu and sets Qu,v it remains
to consider the unique strictly increasing bijection π0 : T ′ → T and set iu := π0(u) and
Qu,v := π0(Q′u,v).

The general case. Let us now formalize the generalization of this trick that we will use
to prove Theorem 1.81.8. Let Q be a subset of [w]. If e1 < e2 < . . . < ew are the elements
of a totally ordered set W then we call {ei : i ∈ Q} the subset selected by Q in W .

Lemma 6.9. Let 1 ≤ q ≤ w be integers and let Q be a subset of [w] of size q. Let
Y and Z be two finite totally ordered sets and let A1, A2, . . . , Ar be q-element subsets of
Y . If |Z| ≥ |Y | + r(w − q), then there exist an injection π : Y → Z and r subsets
W1,W2, . . . ,Wr ∈

(
Z
w

)
such that for every i ∈ [r], Q selects π(Ai) in Wi. We can further

require that Wi ∩Wj = π(Ai ∩ Aj) for any two i, j ∈ [r], i 6= j.

Proof. Let π0 denote the monotone bijection between Y and [|Y |]. For i ∈ [r] we let Di

denote a set of w−q rationals, disjoint from [|Y |], such that Q selects π0(Ai) in Di∪π0(Ai).

We further require that the Di are pairwise disjoint, and put Z ′ = [|Y |] ∪
(⋃

i∈[r] Di

)
.

Since |Z| ≥ |Y | + r(w − q) = |Z ′| there exists a strictly increasing map ν : Z ′ → Z. We
set π := ν ◦ π0 and Wi := ν(Di ∪ π0(Ai)) ∈

(
Z
w

)
. The desired condition is satisfied by this

choice. See Figure 6.36.3.

6.5 Constrained chain maps and Helly number

We now generalize the technique presented in Section 6.26.2 to obtain Helly type theorems
from non-embeddability results. We will construct constrained chain maps for arbitrary
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The situation for w = 4 and Q = {1, 3, 4}.
Figure 6.3: Illustration for the proof of Lemma 6.96.9

complexes. As above, F = {U1, U2, . . . , Un} denotes a family of subsets of some topo-
logical space R and for I ⊆ [n] we keep the notation UI as used in the previous section.
Note that although so far we only used the reduced Betti numbers β̃, in this section it
will be convenient to work with standard (non-reduced) Betti numbers β, starting with
the following proposition.

Proposition 6.10. For any finite simplicial complex K and non-negative integer b there
exists a constant hK(b) such that the following holds. For any finite family F of at least
hK(b) subsets of a topological space R such that

⋂G 6= ∅ and βi (∩G) ≤ b for any G ( F
and any 0 ≤ i < dimK, there exists a nontrivial chain map γ : C∗(K) → C∗(R) that is
constrained by F .

The case K = ∆
(k)
2k+2, with k = dd/2e and R = Rd, of Proposition 6.106.10 implies Theo-

rem 1.81.8.

Proof of Theorem 1.81.8. Let b and d be fixed integers, let k = dd/2e and let K = ∆
(k)
2k+2.

Let hK(b+1) denote the constant from Proposition 6.106.10 (we plug in b+1 because we need
to switch between reduced and non-reduced Betti numbers). Let F be a finite family of
subsets of Rd such that β̃i (

⋂G) ≤ b for any G ( F and every 0 ≤ i ≤ dimK = dd/2e−1,
in particular βi (

⋂G) ≤ b+ 1 for such G. Let F∗ denote an inclusion-minimal sub-family
of F with empty intersection:

⋂F∗ = ∅ and
⋂

(F∗ \ {U}) 6= ∅ for any U ∈ F∗. If F∗ has
size at least hK(b+ 1), it satisfies the assumptions of Proposition 6.106.10 and there exists a
nontrivial chain map from K that is constrained by F∗. Since F∗ has empty intersection,
this chain map is a homological almost-embedding by Lemma 6.66.6. However, no such
homological almost-embedding exists by Corollary 5.75.7, so F∗ must have size at most
hK(b + 1)− 1. As a consequence, the Helly number of F is bounded and the statement
of Theorem 1.81.8 holds with h(b, d) = hK(b+ 1)− 1.
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The rest of this section is devoted to proving Proposition 6.106.10. We proceed by induction
on the dimension of K, Section 6.5.16.5.1 settling the case of 0-dimensional complexes and
Section 6.5.36.5.3 showing that if Proposition 6.106.10 holds for all simplicial complexes of dimen-
sion i then it also holds for all simplicial complexes of dimension i+1. As the proof of the
induction step is quite technical, as a warm-up, we provide the reader with a simplified
argument for the induction step from i = 0 to i = 1 in Section 6.5.26.5.2. We let V (K) and
v(K) denote, respectively, the set of vertices and the number of vertices of K.

6.5.1 Initialization (dimK = 0)

IfK is a 0-dimensional simplicial complex then Proposition 6.106.10 holds with hK(b) = v(K).
Indeed, consider a family F of at least v(K) subsets of R such that all proper subfamilies
have nonempty intersection. We enumerate the vertices of K as {v1, v2, . . . , vv(K)} and
define Φ({vi}) = {i}; in plain English, Φ is a bijection between the set of vertices of K
and {1, 2, . . . , v(K)}. We first define γ on K by mapping every vertex v ∈ K to a point
p(v) ∈ UΦ(v), then extend it linearly into a chain map γ : C0(K)→ C0(R). It is clear that

γ is nontrivial and constrained by (F ,Φ), so Proposition 6.106.10 holds when dimK = 0.

6.5.2 Principle of the induction mechanism (dimK = 1)

As a warm-up, we now prove Proposition 6.106.10 for 1-dimensional simplicial complexes.
While this merely amounts to reformulating Matoušek’s proof for embeddings [Mat97Mat97]
in the language of chain maps, it still introduces several key ingredients of the induction
while avoiding some of its complications. To avoid further technicalities, we use the
non-reduced version of Betti numbers here.

Let K be a 1-dimensional simplicial complex with vertices {v1, v2, . . . , vv(K)} and
assume that F is a finite family of subsets of a topological space R such that for any
G ( F ,

⋂G 6= ∅ and β0 (∩G) ≤ b. Let s ∈ N denote some parameter, to be fixed later.
We assume that the cardinality of F is large enough (as a function of s) so that, as

argued in Subsection 6.5.16.5.1, there exist a bijection Ψ : ∆
(0)
s → [s + 1] and a nontrivial

chain map γ′ : C∗(∆
(0)
s )→ C∗(R) constrained by (F ,Ψ). We extend Ψ to ∆s by putting

Ψ(σ) = ∪v∈σΨ(v) for any σ ∈ ∆s and Ψ(∅) = ∅. Remark that for any σ, τ ∈ ∆s we have
Ψ(σ ∩ τ) = Ψ(σ) ∩Ψ(τ).

We now look for an injection f of V (K) into V (∆s) such that the chain map γ′ ◦
f] : C∗(K(0))→ C∗(R) can be extended into a chain map γ : C∗(K)→ C∗(R) constrained
by F . Let e = {u, v} be an edge in K. If we could arrange that γ′(f(u) + f(v)) is a
boundary in UΨ({f(u),f(v)}) then we could simply define γ(e) to be a chain in UΨ({f(u),f(v)})
bounded by γ′(f(u) + f(v)) (see Figure 6.46.4). Unfortunately this is too much to ask for
but we can still follow the Ramsey-based approach of Subsection 6.46.4: we add “dummy”
vertices to {Ψ({f(u), f(v)})} to obtain a set We such that γ′(f(u) + f(v)) is a boundary
in UWe

. If we use different dummy vertices for distinct edges then setting γ(e) to be a
chain in UWe

bounded by γ′(f(u) + f(v)) still yields a chain map constrained by F . We
spell out the details in four steps.
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Injecting V (K) into V (∆s) by f in a way that the constrained chain map γ′ from
V (∆s) (top) can give rise to a constrained chain map from V (K) (bottom); for the sake

of illustration we use maps instead of chain maps. The situation considered here is
simple, for instance γ′(a+ b) is a boundary in UΨ({a,b}) so γ′ ◦ f] can be extended to the

edge {f−1(a), f−1(b)} of K. Note that if we wanted to use the edge ad, since γ′(a+ d) is
not a boundary in UΨ({a,d}) we would need to add “dummy” elements to Ψ({a, d}).

Figure 6.4: Injecting V (K) into V (∆s)

Step 1. Any set S of 2b + 1 vertices of ∆s contains two vertices uS, vS ∈ S such that
γ′(uS + vS) is a boundary in UΨ(S).

33 Indeed, notice first that for any u ∈ S, the

support of γ′(u) is contained in UΨ(S). The assumption on F about bounded Betti

numbers of intersections of subfamilies of F then ensures that there are at most 2b

distinct elements44 in H0(UΨ(S)). Thus, there are two vertices uS, vS ∈ S such that

γ′(uS) and γ′(vS) are in the same homology class in H0(UΨ(S)). Since we consider
homology with coefficients over Z2, the sum of two chains that are in the same
homology class is always a boundary. In particular, γ′(uS + vS) = γ′(uS) + γ′(vS)
is a boundary in UΨ(S).

Step 2. We use Ramsey’s theorem (Theorem 6.86.8) to ensure a uniform “2-in-(2b + 1)”
selection. Let t be some parameter to be fixed in Step 3 and let H denote the
(2b + 1)-uniform hypergraph with vertex set V (∆s). For every hyperedge S ∈ H
there exists (by Step 1) a pair QS ∈

(
[2b+1]

2

)
that selects a pair whose sum is mapped

by γ′ to a boundary in UΨ(S). We color H by assigning to every hyperedge S the

“color” QS. Ramsey’s theorem thus ensures that if s ≥ R2b+1

((
2b+1

2

)
, t
)

then there

3We could require that γ′ sends every vertex to a point in U
Ψ(S)

, i.e. is a chain map induced by a

map, and simply argue that since U
Ψ(S)

has at most b connected components, any b + 1 vertices of ∆s

contains some pair that can be connected inside U
Ψ(S)

. This argument does not, however, work in higher

dimension and its higher dimensional analogue, Theorem 3.263.26 would cause unnecessary technicalities
later on. Since Section 6.5.26.5.2 is meant as an illustration of the general case, we choose to follow the
general simple argument.

4H0(U
Ψ(S)

) ' Zm2 for some m ≤ b.
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exist a set T of t vertices of ∆s and a pair Q∗ ∈
(

[2b+1]
2

)
so that Q∗ selects in any

S ∈
(

T
2b+1

)
a pair {uS, vS} such that γ′(uS + vS) is a boundary in UΨ(S).

Step 3. Now, let r be the number of edges of K and let σ1, σ2, . . . , σr denote the edges
of K. We define

hK(b) = R2b+1

((
2b + 1

2

)
, r(2b − 1) + v(K)

)
+ 1

and assume that s ≥ hK(b) − 1. We set the parameter t introduced in Step 2 to
t = r(2b−1)+v(K). We can now apply Lemma 6.96.9 with Y = V (K), Z = T , q = 2,
w = 2b + 1, and Ai = σi for i ∈ [r]. As a consequence, there exist an injection
f : V (K) → T and W1,W2, . . . ,Wr in

(
T

2b+1

)
such that (i) for each i, Q∗ selects

f(σi) in Wi, and (ii) Wi ∩Wj = f(σi ∩ σj) for i, j ∈ [r], i 6= j.

Step 4. We define Φ by

Φ(∅) = ∅
Φ({vi}) = Ψ(f(vi)) for i = 1, 2, . . . , v(K)
Φ(σi) = Ψ(Wi) for i = 1, 2, . . . , r

We define γ on the vertices of K by putting γ(v) = γ′(f(v)) for any v ∈ V (K). Now
remark that for any edge σi = {u, v} of K, γ′(f(u) + f(v)) is a boundary in UΨ(Wi)

;

this follows from the definition of T and the fact that Q∗ selects {f(u), f(v)} in
Wi. We can therefore define γ({u, v}) to be some (arbitrary) chain in UΨ(Wi)

with

boundary γ′(f(u) + f(v)). We then extend this map linearly into a chain map
γ : C∗(K)→ C∗(R).

To conclude the proof of Proposition 6.106.10 for 1-dimensional complexes it remains
to check that the chain map γ and the function Φ defined in Step 4 have the desired
properties.

Observation 6.11. γ is a nontrivial chain map constrained by (F ,Φ).

Proof. First, it is clear from the definition that γ is a chain map. Moreover, the definition
of γ′ ensures that for every vertex v ∈ K the support of γ(v) is a finite set of points with
odd cardinality. So γ is indeed a nontrivial chain map.

The map Φ is from K to 2[s+1] and Φ(∅) is by definition the empty set. The next
property to check is that the identity Φ(σ ∩ τ) = Φ(σ) ∩ Φ(τ) holds for all σ, τ ∈ K.
When σ and τ are vertices this follows from the injectivity of Ψ and f . When σ and τ
are edges this follows from the same identity for Ψ and the fact that Step 4 guaranteed
that Wi ∩Wj = f(σi ∩ σj) for i, j ∈ [r], i 6= j. The remaining case is when σ = σi is an
edge and τ a vertex. Then, by construction, τ ∈ σi if and only if f(τ) ∈ Wi, and

Φ(σi) ∩ Φ(τ) = Ψ(Wi) ∩Ψ(f(τ)) = Ψ(Wi ∩ f(τ))

=

{
Ψ(∅) if f(τ) /∈ Wi

Ψ(f(τ)) if f(τ) ∈ Wi

}
= Φ(σi ∩ τ).

It remains to check that for any simplex σ ∈ K, the support of γ(σ) is contained in
UΦ(σ). When σ = {v} is a vertex then γ(σ) = γ′(f(v)). Since γ′ is constrained by (F ,Ψ),

the support of γ′(f(v)) is contained in UΨ(f(v)) = UΦ(v), so the property holds. When

σ = σi is an edge, γ(σi) is, by construction, a chain in UΨ(Wi)
= UΦ(σi)

and the property
also holds.

89



1

2 3 4 5

Figure 6.5: No trivial triangles

6.5.3 The induction

Let k ≥ 2, let K be a simplicial complex of dimension k and assume that Proposition 6.106.10
holds for all simplicial complexes of dimension k − 1 or less. Let F be a finite family of
subsets of a topological space R such that for any G ( F and any 0 ≤ i ≤ k−1,

⋂G 6= ∅
and βi (∩G) ≤ b. Assuming that F contains sufficiently many sets, we want to construct
a nontrivial chain map γ : C∗(K)→ C∗(R) constrained by F .

Preliminary example. When going from k = 0 to k = 1, the first step (as described
in Section 6.5.26.5.2) is to start with a constrained chain map γ′ : C∗(K(0)) → C∗(R) and
observe that for some 1-simplices {u, v} ∈ K the chain γ′(∂{u, v}) must already be a

boundary. To see that this is not the case in general, consider the drawing of ∆
(1)
4 in an

annulus depicted in Fig. 6.56.5. Observe that for every triangle {i, j, k} ∈ ∆
(2)
4 the image, in

this drawing, of ∂{i, j, k} is a cycle going around the hole of the annulus and is therefore
not a boundary. So, if we start with a chain map γ′ corresponding to that drawing, we
will not be able to extend it by “filling” any triangle directly. This is not a peculiar
example, and a similar construction can easily be done with arbitrarily many vertices.
Observe, though, that the cycle going from 1 to 2, then 4, then 3 and then back to 1 is
a boundary; in other words, if we replace, in the triangle ∂{1, 2, 3}, the edge from 2 to 3
by the concatenation of the edges from 2 to 4 and from 4 to 3, we build, using a chain
map of ∆

(1)
4 where no 2-face can be filled, a chain map of ∆

(2)
2 where the 2-face can be

filled. We systematize this observation using the barycentric subdivision of K.

Barycentric subdivision. The idea behind the notion of barycentric subdivision is
that the geometric realization of a simplicial complex K ′ can be subdivided by inserting
a vertex at the barycenter of every face, resulting in a new, finer, simplicial complex,
denoted sdK ′, that is still homeomorphic to K ′. Formally, the vertices of sdK ′ consist
of the faces of K ′, except for the empty face, and the faces of sdK ′ are the collections
{σ1, . . . , σ`} of faces of K ′ such that

∅ 6= σ1 ( σ2 ( · · · ( σ`.

In other words, the set of vertices of sdK ′ is K ′ \{∅} and the faces of sdK ′ are the chains
of K ′ \ {∅}. For σ ∈ K ′ we abuse the notation and let sdσ denote the subdivision of σ
regarded as a subcomplex of sdK ′, that is,

sdσ = {{σ1, . . . , σ`} ⊆ K ′ : ∅ 6= σ1 ( σ2 ( · · · ( σ` ⊆ σ}.
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We will mostly manipulate barycentric subdivisions through the sd σ. For further reading
on barycentric subdivisions we refer the reader, for example, to [Mat03Mat03, Section 1.7].

Overview of the construction of γ. Let s ∈ N be some parameter depending on K
and to be determined later. To construct γ we will define three auxiliary chain maps

C∗
(
K(k−1)

) α−−−→ C∗
(
(sdK)(k−1)

) β]−−−−−→ C∗
(
∆(k−1)
s

) γ′−−−→ C∗(R)

As before, γ′ is a chain map from C∗(∆
(k−1)
s ) constrained by F and is obtained by applying

the induction hypothesis. Unlike in Section 6.5.26.5.2, we do not inject the vertices of K into
those of ∆s directly but proceed through sdK, the barycentric subdivision of K. We
“inject” K(k−1) into sdK(k−1) by means of a chain map α. We then construct an injection
β of the vertices of sdK into the vertices of ∆s which we extend linearly into a chain
map β]. The key idea is the following:

The boundary of any k-simplex σ of K is mapped, under α, to a sum of
k! boundaries of k-simplices of sdK, all of which are mapped through β] to
chains with the same homology in some appropriate UWσ

.

Since k! is even and we consider homology with coefficients in Z2, it follows that γ′ ◦ β] ◦
α(σ) is a boundary in UWσ

. We therefore construct γ as an extension of γ′ ◦ β] ◦ α.

Definition of γ′. Since ∆
(k−1)
s has dimension k − 1, the induction hypothesis ensures

that if the cardinality of F is large enough then there exists a nontrivial chain map γ′ :
C∗(∆

(k−1)
s )→ C∗(R) constrained by F . We denote by Ψ a map such that γ′ is constrained

by (F ,Ψ). Remark that Ψ must be monotone over ∆
(k−1)
s as for any σ ⊆ τ ∈ ∆

(k−1)
s we

have Ψ(σ) = Ψ(σ ∩ τ) = Ψ(σ)∩Ψ(τ) ⊆ Ψ(τ). It follows that for any σ ∈ ∆
(k−1)
s we have

Ψ(σ) =
⋃

τ∈∆
(k−1)
s ,τ⊆σ

Ψ(τ)

We use this identity to extend Ψ to ∆s, that is we define:

∀A ⊆ V (∆s), Ψ(A) =
⋃

τ∈∆
(k−1)
s ,τ⊆A

Ψ(τ).

Remark that the extended map still commutes with the intersection:

Lemma 6.12. For any A,B ⊆ V (∆s) we have Ψ(A) ∩Ψ(B) = Ψ(A ∩B).

Proof. For any A,B ⊆ V (∆s) we have

Ψ(A) ∩Ψ(B) =


 ⋃

σ∈∆
(k−1)
s ,σ⊆A

Ψ(σ)


 ∩


 ⋃

τ∈∆
(k−1)
s ,τ⊆B

Ψ(τ)




Distributing the union over the intersections we get

Ψ(A) ∩Ψ(B) =
⋃

σ,τ∈∆
(k−1)
s ,σ⊆A,τ⊆B

Ψ(σ) ∩Ψ(τ)
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σ α(σ)
α(∂σ)

∑
τ∈sdσ

dim τ=dimσ

∂τ

=

The map α applied to a simplex σ (left) and to ∂σ (right). Significant parts of the
boundaries ∂τ cancel out.

Figure 6.6: Map α

and as Ψ(σ ∩ τ) = Ψ(σ) ∩Ψ(τ) if σ, τ are simplices of ∆
(k−1)
s , this rewrites as

Ψ(A) ∩Ψ(B) =
⋃

σ,τ∈∆
(k−1)
s ,σ⊆A,τ⊆B

Ψ(σ ∩ τ).

Finally, observing that

{σ ∩ τ : σ, τ ∈ ∆(k−1)
s , σ ⊆ A, τ ⊆ B} = {ϑ : ϑ ∈ ∆(k−1)

s , ϑ ⊆ A ∩B}

we get

Ψ(A) ∩Ψ(B) =
⋃

ϑ∈∆
(k−1)
s ,ϑ⊆A∩B

Ψ(ϑ) = Ψ(A ∩B)

which proves the desired identity.

Definition of α. Now we define a chain map α : C∗
(
K(k−1)

)
→ C∗

(
sdK(k−1)

)
by first

putting

α : σ ∈ K(k−1) 7→
∑

τ∈sdσ
dim τ=dimσ

τ,

and then extending that map linearly to C∗
(
K(k−1)

)
. See Figure 6.66.6. Remark that α

behaves nicely with respect to the differential:

α(∂σ) =
∑

τ∈sdσ
dim τ=dimσ

∂τ.

Note that the formula above makes sense and is valid even if σ is a k-simplex although
we define α only up to dimension k − 1.

Definition of β. We now construct the injection β : V (sdK) → V (∆s) and, for con-
straining purposes, an auxiliary function κ associating with every k-dimensional simplex
of K some simplex of ∆s. We want these functions to satisfy:

(P1) For any simplex σ ∈ K, κ(σ) ∩ Im β = β(V (sdσ)).

(P2) For any k-simplices σ, τ ∈ K, κ(σ) ∩ κ(τ) = β(V (sdσ)) ∩ β(V (sd τ)).

92



(P3) For any k-simplex σ ∈ K, when τ ranges over all k-simplices of sdσ, all chains γ′ ◦
β](∂τ) have support in UΨ(κ(σ)) and are in the same homology class inHk−1(UΨ(κ(σ))).

The intuition behind these properties is that κ(σ) should augment β(V (sdσ)) by “dum-
my” vertices (P1) in a way that distinct simplices use disjoint sets of “dummy” vertices
(P2). Property (P3), will allow building γ over k-simplices as explained in the preceding
overview.

We start the construction of β and κ with a combinatorial lemma. Let ` = 2k+1 − 1
stand for the number of vertices of the barycentric subdivision of a k-dimensional simplex,
and set m = Rk+1(2b, `).

Claim 6.1. For any integer t, if s ≥ Rm

((
m
`

)
, t
)

then there exist a set T of t vertices

of ∆s and a set Q∗ ∈
(

[m]
`

)
such that Q∗ selects in any M ∈

(
T
m

)
a subset LM with the

following property: when σ ranges over all k-simplices of ∆s with σ ⊆ LM , all chains

γ′(∂σ) are in the same homology class in Hk−1

(
UΨ(M)

)
.

Proof. Let M be a subset of m vertices of ∆s. Since γ′ is constrained by (F ,Ψ), for every
k-simplex σ ⊆M the support of γ′(∂σ) is contained in UΨ(∂σ) ⊆ UΨ(σ) ⊆ UΨ(M). We can

therefore color the (k + 1)-uniform hypergraph on M by assigning to every hyperedge σ

the homology class of γ′(∂σ) in UΨ(M). Since βk−1

(
UΨ(M)

)
≤ b, there are at most 2b

colors in this coloring. As m = Rk+1(2b, `), Ramsey’s Theorem implies that there exists
a subset L ⊂M of ` vertices inducing a monochromatic hypergraph. We let QM denote
an element of

(
[m]
`

)
that selects such a subset L.

It remains to find a subset T of vertices of ∆s so that all m-element subsets M ⊆ T
give rise to the same QM . This is done by another application of Ramsey’s theorem to
the m-uniform hypergraph on the vertices of ∆s where each hyperedge M is colored by
the `-element subset QM . The subset T can have size t as soon as s ≥ Rm

((
m
`

)
, t
)
, which

proves the statement.

Now, back to the construction of β and κ. We first want a subset of V (∆s) with
a “uniform `-in-m selection” property of Claim 6.16.1 large enough so that we can inject
V (sdK) using Lemma 6.96.9. We set:

t = v(sdK) + r(m− `) and s∗ = Rm

((
m

`

)
, t

)
,

and assume that s ≥ s∗; since s∗ only depends on b and K, this merely requires that
F is large enough, again as a function of b and K, so that γ′ still exists. We let T
and Q∗ denote the subset of V (∆s) and the element of

(
[m]
`

)
whose existence follows from

applying Claim 6.16.1. Let σ1, σ2, . . . , σr denote the k-dimensional simplices of K. We apply
Lemma 6.96.9 with

Y = V (sdK), Z = T, Ai = V (sdσi), q = `, and w = m,

and obtain an injection π : Y → Z and W1,W2, . . . ,Wr ∈
(
Z
m

)
such that (i) for every

i ≤ r, Q∗ selects π(Ai) in Wi, and (ii) for any i 6= j ≤ r, Wi ∩Wj = π(Ai ∩ Aj). This
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injection π is our map β and we put κ(σi) = Wi. It is clear that Property (P1) holds,
and since

κ(σi)∩κ(σj) = Wi∩Wj = π(Ai∩Aj) = β(V (sdσi)∩V (sdσj)) = β(V (sdσi))∩β(V (sdσj)),

Property (P2) also holds. The set Q∗ selects π(Ai) in Wi (Lemma 6.96.9) so Claim 6.16.1
ensures that when τ ranges over all k-simplices of ∆s with τ ⊆ π(Ai), all chains γ′(∂τ)

have support in UΨ(Wi)
and are in the same homology class inHk−1

(
UΨ(Wi)

)
. Substituting

π(Ai) = β(V (sdσi)) and Wi = κ(σi), we see that (P3) holds.

Construction of γ. Recall that we have the chain maps55:

C∗
(
K(k−1)

) α−−−→ C∗
(
(sdK)(k−1)

) β]−−−−−→ C∗
(
∆(k−1)
s

) γ′−−−→ C∗(R).

We define γ = γ′ ◦ β] ◦ α as a chain map from C∗
(
K(k−1)

)
to C∗(R). Let σ be a

k-dimensional simplex of K. From the definition of α we have

γ (∂σ) =
∑

τ∈sdσ
dim τ=dimσ

γ′ ◦ β](∂τ).

By property (P3), all summands in the above chain have support in UΨ(κ(σ)) and belong

to the same homology class in Hk−1

(
UΨ(κ(σ))

)
. There is an even number of summands,

namely k! and we are using homology over Z2, so γ′ ◦ β] ◦ α(∂σ) has support in UΨ(κ(σ))

and is a boundary in UΨ(κ(σ)). We can therefore extend γ into a chain map from C∗(K)

to C∗(R) in a way that for any k-simplex σ of K, the support of γ(σ) is contained in
UΨ(κ(σ)).

Properties of γ. First we verify that γ is nontrivial. If v is a vertex of K then sd v
consists of a single simplex, also a vertex. The chain α(v) is thus a single vertex of sdK,
and β] ◦ α(v) is still a single vertex β(sd v). Since γ′ is nontrivial, the support of γ(v) is
an odd number of points and therefore γ is also nontrivial. It remains to argue that γ is
constrained by (F ,Φ) where:

Φ :





K → 2F

σ 7→
{

Ψ(β(V (sdσ))) if dimσ ≤ k − 1
Ψ(κ(σ)) if dimσ = k

It is clear that Φ(∅) = Ψ(∅) = ∅ by definition of Ψ. Also, the construction of γ immedi-
ately ensures that for any σ ∈ K the support of γ(σ) is contained in UΦ(σ). To conclude

the proof that γ is constrained by (F ,Φ) and therefore the induction it only remains to
check that Φ commutes with the intersection:

Claim 6.2. For any σ, τ ∈ K, Φ(σ ∩ τ) = Φ(σ) ∩ Φ(τ).

5β] is the chain map induced by β restricted to chains of dimension at most (k − 1).
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Proof. The claim is obvious for σ = τ , so from now on assume that this is not the case.
First assume that σ and τ have dimension at most k − 1. Then,

Φ(σ) ∩ Φ(τ) = Ψ(β(V (sdσ))) ∩Ψ(β(V (sd τ))) = Ψ(β(V (sdσ)) ∩ β(V (sd τ))),

the last equality following from Lemma 6.126.12. Since the map β on subsets of V (∆s) is
induced by a map β on vertices of ∆s we have β(V (sdσ)) ∩ β(V (sd τ)) = β(V (sdσ) ∩
V (sd τ)). Moreover, by the definition of the barycentric subdivision we have V (sdσ) ∩
V (sd τ) = V (sd(σ ∩ τ)). Thus,

Ψ(β(V (sdσ)) ∩ β(V (sd τ))) = Ψ(β(V (sd(σ ∩ τ)))) = Φ(σ ∩ τ),

and the statement holds for simplices of dimension at most k − 1.

Now assume that σ and τ are both k-dimensional so that

Φ(σ) ∩ Φ(τ) = Ψ(κ(σ)) ∩Ψ(κ(τ)) = Ψ(κ(σ) ∩ κ(τ)) = Ψ(β(V (sdσ)) ∩ β(V (sd τ))),

the last identity following from Property (P2) of the map κ. Again, from the definition
of β and the barycentric subdivision we have

β(V (sdσ)) ∩ β(V (sd τ)) = β(V (sd(σ ∩ τ))).

We thus obtain
Φ(σ) ∩ Φ(τ) = Ψ ◦ β ◦ V (sd(σ ∩ τ)) = Φ(σ ∩ τ),

the last identity following from the definition of Φ on simplices of dimension at most
k − 1. The statement also holds for simplices of dimension k.

Finally assume that σ and τ are of dimension k and at most k−1 respectively. Then,
applying Lemma 6.126.12 we have:

Φ(σ) ∩ Φ(τ) = Ψ(κ(σ)) ∩Ψ(β(V (sd τ))) = Ψ(κ(σ) ∩ β(V (sd τ))).

Note that β(V (sd τ)) ⊆ Im β and that, by property (P1), κ(σ) ∩ Im β = β(V (sdσ)). We
thus have

κ(σ) ∩ β(V (sd τ)) = β(V (sdσ)) ∩ β(V (sd τ)) = β(V (sd(σ ∩ τ))),

the last equality following, again, from the definition of barycentric subdivision. As σ∩ τ
has dimension at most k − 1 we have

Φ(σ) ∩ Φ(τ) = Ψ(β(V (sd(σ ∩ τ)))) = Φ(σ ∩ τ)

and the statement holds for the last case.
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List of Symbols

Common symbols

⋂G the intersection of G, i.e., the set of all elements that
belong to every single set from the family G

A \B the set difference, i.e.,
the set of all elements contained in A but not in B

A ∼= B symbol used to denote isomorphism of objects A and B⊕
Vi,
⊕

fi the direct sum of vector spaces or maps between them
a,b points in an affine space
A,B affine spaces
aff the affine closure
cl the closure operator of a matroid, see Definition 2.52.5
conv the convex hull of a set
|C| cardinality of set C
d an integer, usually used to denote dimension
Di the d-dimensional disk
ei ith standard basis vector of Fm
dimA, dimV dimension of an affine space A or vector space V , respectively
f a continuous map
f ◦ g a composition of maps
F a field
FX the Cartesian product of F, i.e., all functions from X to F

with addition and multiplication defined coordinate-wise
F ,G families of sets
i, j, k, l,m, n, r, s integers
K,L simplicial complexes
Kn complete graph on n vertices
M a topological manifold or a matroid
N the set of all non-negative integers
O(f(n)) the O-notation, a function g : N→ N satisfies g = O(f(n))

if there exists C1, C2 ∈ N such that
g(n) ≤ C1f(n) for all n ≥ C2

p a prime number
Q the field of rationals
R an arbitrary commutative ring
R the field of reals
Si the i-dimensional sphere
U, V vector spaces
wcl weak closure operator

(satisfying only (CL2) and (CL3) of Definition 2.52.5)
X, Y topological spaces or arbitrary sets
Zp the unique p-element field
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Z the ring of integers

Chapter 2

ax an element of the field F
c the coloring from Definition 2.112.11
C a set split into color classes C0, . . . , Cm
C0, . . . , Cm color classes
CI a shorthand for

⋃
i∈I Ci

F1, . . . , Fr the pairwise disjoint rainbow sets with intersecting affine hulls
these are the sets we want to find

Gj a rainbow set with |Gj| = j + 1 and dim aff ψ(Gj) = j
Kk the set of “allowed” colors
µ a multipoint (see Definition 2.22.2)
M(X;F) the set of all multipoints in X (see Definition 2.22.2)
ψ a map from a set C to affine space A
suppµ support of a multipoint (see Definition 2.22.2)
r(M) the rank of matroid M
Rk subset of Gj

Rp
k a subset of C containing p and satisfying certain additional conditions

y,xi points

Chapter 3

X ↪→ Y a symbol for the inclusion of X into Y
γ ≡ τ (mod B) a shorthand for {γ + b | b ∈ B} = {τ + b | b ∈ B}
2V (K) the abstract simplicial complex of all subsets of V (K);

note that K ⊆ 2V (K)

a ∧ σ for an ordered l-face σ = (v0, . . . , vl),
the ordered (l + 1)-face (a, v0, . . . , vl)
(see also Definition 3.83.8)

b an upper bound for the kth reduced F-Betti number
of the manifold M

Bl the lth group of boundaries of the chain complex C∗
(see Definition 3.63.6)

Bo
l (K;F) the lth ordered simplicial boundary group

(see Definition 3.113.11)
BO
l (X;F) the lth ordered singular boundary group

(see Definition 3.173.17)
Bl(K;F) the lth unordered simplicial boundary group

(see Definition 3.113.11)
Bl(X;F) the lth unordered singular boundary group

(see Definition 3.173.17)
c the Kneser’s coloring (see Lemma 3.313.31)
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C∗, D∗ a chain complexes (see Definition 3.53.5)
Cl the set of all elements of C∗ of degree l (see Definition 3.53.5)

C̃l(K;F) Õl(K;F)/T̃l(K;F) (see Definition 3.93.9)

C̃l(X;F) Õl(X;F)/T̃l(X;F) (see Definition 3.153.15)

C̃∗(K;F) Õ∗(K;F)/T̃∗(K;F) (see Definition 3.113.11)

C̃∗(X;F) Õ∗(X;F)/T̃∗(X;F) (see Definition 3.173.17)
∂C , ∂D boundary operators for chain complexes C or D, respectively

∂ol the lth boundary operator for Õl(K;F) (see Definition 3.103.10)

∂Ol the lth boundary operator for Õl(X;F) (see Definition 3.163.16)

∂o the boundary operator for Õ∗(K;F) (see Definition 3.113.11)

∂O the boundary operator for Õ∗(X;F) (see Definition 3.173.17)

∂l the lth boundary operator for C̃l(K;F) or C̃l(X;F)
(see Definitions 3.103.10 and 3.163.16)

∂ the boundary operator for C̃∗(K;F) or C̃∗(X;F)
(see Definitions 3.103.10 and 3.163.16)

|∆l| the standard l-dimensional simplex in Rl+1

∆d the abstract d-dimensional simplex, i.e.,
set of all subsets of {0, 1, . . . , d}

δil the standard ith face map,
mapping |∆l−1| onto the facet of |∆l|
that does not contain the ith vertex
(see Definition 3.123.12)

Dl the set of all elements of D∗ of degree l (see Definition 3.53.5)
cardS cardinality of a set S

f] the chain map between C̃∗(X;F) and C̃∗(Y ;F)
induced by the continuous map f : X → Y
(see Definition 3.183.18)

f 0
] the chain map between Õ∗(X;F) and Õ∗(Y ;F)

induced by the continuous map f : X → Y
(see Definition 3.183.18)

f∗ the chain map between H̃∗(X;F) and H̃∗(Y ;F)
induced by the continuous map f : X → Y
(see Definition 3.183.18)

f 0
∗ the chain map between H̃O

∗ (X;F) and H̃O
∗ (Y ;F)

induced by the continuous map f : X → Y
(see Definition 3.183.18)

γ, γ′ (ordered) singular simplices (see Definition 3.143.14)
Hl the lth homology group of the chain complex C∗

(see Definition 3.63.6)
H∗ the chain complex of homology groups

(see Definition 3.63.6)

H̃o
l (K;F) the lth reduced ordered simplicial homology group

(see Definition 3.113.11)

H̃O
l (X;F) the lth reduced ordered singular homology group
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(see Definition 3.173.17)

H̃l(K;F) the lth reduced unordered simplicial homology group
(see Definition 3.113.11)

H̃l(X;F) the lth reduced unordered singular homology group
(see Definition 3.173.17)

ιoK the natural inclusion of Õ∗(K;F) into Õ∗(|K| ;F)
(see Definition 3.193.19)

ιK the natural inclusion of C̃∗(K;F) into C̃∗(|K| ;F)
(see Definition 3.193.19)

ιs the natural inclusion of C̃∗(∆
(k)
s ;F) into C̃∗(

∣∣∣∆(k)
s

∣∣∣ ;F)

(see Definition 3.193.19)

ιn the natural inclusion of C̃∗(∆
(k)
n ;F) into C̃∗(

∣∣∣∆(k)
n

∣∣∣ ;F)

(see Definition 3.193.19)
|K| geometric realization of an abstract simplicial complex

(see Definition 3.23.2)

m the number of all k-faces of ∆
(k)
s

minσ if σ is a face of ∆
(k)
s with vertex set

V
(

∆
(k)
s

)
= {v0, v1, . . . , vs},

the minimal index of a vertex in σ
ϕ the chain map θ ◦ (ιn)
ϕ : C∗ → D∗ a chain map (see Definition 3.53.5)
ϕ∗ for a chain map ϕ, the induced homomorphism in homology

(see Definition 3.73.7)
ϕ∗[z] a shorthand for ϕ∗([z])
pπl the linear automorphism of |∆l|

induced by a permutation π of vertices
(see Definition 3.123.12)

π(σ) the ordered face σ permuted according to permutation π
(see Definition 3.83.8)

K(k) the k-skeleton of a simplicial complex K, i.e.,
all faces up to dimension k

Õl(K;F) the lth augmented chain group of ordered simplices
(see Definition 3.93.9)

Õl(X;F) the lth augmented chain group of ordered singular simplices
(see Definition 3.153.15)

Õ∗(K;F) the augmented simplicial chain complex
of a simplicial simplices in K
(see Definition 3.113.11)

Õ∗(X;F) the augmented singular chain complex
of singular simplices in X
(see Definition 3.173.17)

P a path-connected component of a topological space
S({0, 1, . . . , l}) the group of permutations on {0, 1, . . . , s}, i.e.,
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set of all bijections π : {0, 1, . . . , s} → {0, 1, . . . , s},
endowed with the composition of maps

sd(K, a) the stellar subdivison of K with respect to a
(see Definition 3.43.4)

σ1, . . . , σm all the k-faces of ∆
(k)
s , linearly ordered

σ, τ (ordered) faces of an abstract simplicial complex

σi,jl the degeneracy map for |∆l| that maps
ith vertex onto jth and leaves others unchanged
(see Definition 3.123.12)

|σ| geometric realization of a face σ (see Definition 3.23.2)
supp γ support of the (ordered or unordered) singular chain γ

(see Definition 3.223.22)

T̃l(K;F) the lth augmented chain group
of degenerated chains of simplices
(see Definition 3.93.9)

T̃l(X;F) the lth augmented chain group
of degenerated chains of singular simplices
(see Definition 3.153.15)

θ a chain map from C̃∗
(∣∣∣∆(k)

n

∣∣∣ ;Zp
)

to C̃∗ (M ;Zp)
v0, . . . , vl vertices of an abstract simplicial complex
(v0, . . . , vl) an ordered l-simplex in K (see Definition 3.83.8)
(v0, . . . , v̂i, . . . , vl) a shorthand for (v0, . . . , vi−1, vi+1, . . . , vl)

v(µ) v(µ) :=
(
ϕ∗
[
∂(µ ∧ σ1)

]
, ϕ∗
[
∂(µ ∧ σ2)

]
, . . . , ϕ∗

[
∂(µ ∧ σm)

])

(See Equation (3.63.6))
V (K) vertex set of an abstract simplicial complex K
Zl the lth group of cycles of the chain complex C∗

(see Definition 3.63.6)
Zo
l (K;F) the lth ordered simplicial cycle group

(see Definition 3.113.11)
ZO
l (X;F) the lth ordered singular cycle group

(see Definition 3.173.17)
Zl(K;F) the lth unordered simplicial cycle group

(see Definition 3.113.11)
Zl(X;F) the lth unordered singular cycle group

(see Definition 3.173.17)
[z] the homology class of a cycle Z

in the corresponding homology group

Chapter 4

M , M ′, M ′′ manifolds, M ′′ is assumed to be compact
N , N0 non-negative integers
q an integer
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Chapter 5

⊗ the tensor product
2X the set of all subsets of X
CK the cone over K
C∗(K) the simplicial chain complex of K with Z2 coefficients
C∗(X) the singular chain complex of X with Z2 coefficients

note that its augmented analogues is denoted Õ∗(X;Z2) in Chapter 33
Hd(K) the dth singular) cohomology group of K with coefficients in Z2

K̃ the combinatorial deleted product of K
od(K) the Z2-Van Kampen obstruction to embeddability of K into Rd

R an arbitrary topological space, e.g. Rd

RPd the d-dimensional projective space over the reals
RP∞ the infinitely dimensional projective space over the reals
Sd the d-dimensional sphere
S∞ the infinitely dimensional sphere(
X
k

)
the set of all k-element subsets of X

Chapter 6

F a fixed family of sets
γ a chain map
H a hypergraph
[m] the set {1, 2, . . . ,m}
n the number of sets in the family F , i.e., F = {U1, . . . , Un}
Φ,Ψ constraning maps (see the discussion before Lemma 6.66.6)
UI a shorthand for

⋂
i∈[n]\I Ui

Un defined as Rd

S an edge of an hypergraph
sdK the barycentric subdivision of K
v(K) the number of vertices of K
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[Web67] C. Weber. Plongements de polyèdres dans le domaine métastable. Comment.
Math. Helv., 42:1–27, 1967.

[Weg75] G. Wegner. d-collapsing and nerves of families of convex sets. Archiv der
Mathematik, 26:317–321, 1975.

[Wen04] R. Wenger. Helly-type theorems and geometric transversals. In Jacob E.
Goodman and Joseph O’Rourke, editors, Handbook of Discrete & Computa-
tional Geometry, chapter 4, pages 73–96. CRC Press LLC, Boca Raton, FL,
2nd edition, 2004.

[Zie95] G. M. Ziegler. Lectures on polytopes, volume 152 of Graduate Texts in Math-
ematics. Springer-Verlag, New York, 1995.

110


	Contents
	Introduction
	Thesis outline
	Non-embeddability results
	Non-embeddability
	Multiple intersections
	Homological non-embeddability

	General Helly type theorem
	Relation to previous work.
	Further consequences


	Colorful algebraic Tverberg type theorem
	Preliminaries – Affine spaces
	Prelude
	Statement of the colorful algebraic theorem
	The proof

	Ramsey type result for simplicial chain maps
	Preliminaries
	Simplicial complexes
	Chain complexes
	Simplicial homology
	Singular homology
	Almost embeddings

	Statement of the main result
	Proof of the main result

	Van Kampen-Flores type non-embeddability results for manifolds
	Homological Almost-Embeddings
	Non-Embeddable Complexes
	Van Kampen–Flores Type Result for Homological Almost-Embeddings
	Deleted Products and Obstructions

	A general Helly type theorem
	Proof outline
	Helly type theorems from homotopic assumptions
	From homotopy to homology
	Relaxing the connectivity assumption
	Constrained chain maps and Helly number
	Initialization
	Principle of the induction mechanism
	The induction


	List of Figures
	List of Symbols
	Bibliography

