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takovd, ze kdykoli mame konecny systém F mnozin v R? takovy, ze ; (N G;Zs) < bpro
viechny G C F a vSechna 0 < ¢ < [d/2] — 1, pak Hellyho éislo systému F je nejvyse
h(b,d). Pokud nés pouze zajima, zda je Hellyho ¢islo omezené, tato véta shrnuje sirokou
tifdu difvejsich vét Hellyho typu pro mnoziny v RZ.
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1. Introduction

In this thesis we introduce a general framework which combines algebra, algebraic topol-
ogy and combinatorial arguments to yield non-embeddability results. The novelty of our
approach is to examine non-embeddability arguments from a homological point of view.
This turns out to be a surprisingly effective idea, as homological analogues of embed-
dings appear to be much richer and easier to build than their homotopic counterparts.
So far, we have two main applications of the developed methods: an upper bound for
Kiihnel’s conjecture | , Conjecture B] of non-embeddability of skeleta of simplices
into manifolds (Theorem 1.1) and a very general topological Helly type theorem for sets
in R? (Theorem 1.8).
The thesis is based on the following papers:

1. X. Goaoc, I. Mabillard, P. Paték, Z. Patakova, M. Tancer, U. Wagner: On Gener-
alized Heawood Inequalities for Manifolds: a Van Kampen—Flores Type Nonembed-
dability Result, conference version in Proceedings of Symposium of Computational
Geometry, 2015
Here we show that if n > 2b;, (%,: 2) + 2k 4 5, then the k-dimensional skeleton of
n-dimensional simplex does not embed into any 2k-dimensional manifold with kth
Zo-Betti number at most by (Theorem 1.1). This generalizes van Kampen-Flores

theorem | ; |, although with a slightly suboptimal bound, and constitutes
the first finite upper bound for Kiihnel’s conjecture | , Conjecture B, so far
as we know. Moreover, our bound is roughly only kth power of the conjectured
value.

2. X. Goaoc, P. Paték, Z. Patakova, M. Tancer, U. Wagner: Bounding Helly numbers
via Betti numbers, conference version in Proceedings of Symposium of Computa-
tional Geometry, 2015
Using induction, we obtain a very general topological Helly type theorem (Theo-
rem 1.8): There exists a function h(b, d) such that the following holds. If F is a finite
family of sets in R? such that the reduced Betti numbers satisfy 5; (G;Z2) < b
for any G C F and every 0 < ¢ < [d/2] — 1, then F has Helly number at most
h(b,d). If we are only interested whether the Helly numbers are bounded or not,
this theorem subsumes a broad class of Helly type theorems for sets in R

3. P. Patak: Colorful Algebraic Tverberg Type Theorem, In preparation

Tverberg’s theorem states that given (r —1)(d+ 1)+ 1 points in R?, it is possible to
split them into r parts F, Fs, ..., F, such that conv Fy Nconv FyN---Nconv F, # ().
There is also a colorful version that places some additional constraints onto the
resulting sets FY,..., F.. So far the colorful version can only be proven if r is a
prime number. Here we prove a variant of colorful Tverberg Theorem, where we
replace convex combinations with affine ones. The result does hold for all fields
and arbitrary non-negative integer values of r; and enables us to reduce the bound
n > 2b;,(**+?) + 2k + 5 in Theorem 1.1 to n > 2by (**7%) + 2k + 3.

Before we describe main ideas of our method, some definitions are needed.'.

'Proper definitions can be found in Section 3.1, here we only sketch the most important ones.



Given a field F and a topological space X, there is a certain vector space C, (X;F) as-
signed to X. It is called the augmented chain complex. Augmented chain complexes also
exist for simplicial complexes. Any continuous map f: X — Y between two topological
spaces X, Y induces a chain map (a special homomorphism) f;: C.(X;F) — C.(Y;F)
between the corresponding chain complexes. The induced chain map sends the empty
chain, the generator of C_1(X;F), onto the empty chain, generator of C_;(Y;F). We call
chain maps satisfying this condition nontrivial. Furthermore, if f is an embedding, the
induced chain map maps chains with disjoint supports to chains with disjoint supports.
We call nontrivial chain maps satisfying this condition homological almost embeddings.

Now the main idea of our method can be described as follows:

Suppose that L is a finite simplicial complex and f: A® 5 X is a continuous map
of the k-dimensional skeleton of n-dimensional simplex, Ag{), into a topological space
X. If F is finite and n is big enough (depending on X, L, F and k), we can, using

Ramsey theory and the additive structure of the finite chain group C\ (A%k); ]F), find a

homological almost embedding ¢: C, (L;F) — C, (Ag{); IF) such that the composition
f1 0 ¢ is homologically trivial.

In the proof of Theorem 1.1, we combine this idea with a result by Volovikov | ]
that every embedding f of Ag,?JrQ into a 2k-dimensional compact manifold M satisfies
f« #0.

7;1 the proof of Theorem 1.8, assuming that the Helly number of a family F is un-
bounded, we inductively use the construction to obtain a homological almost embedding

of C, (Ang)JrQ; Zg) into C, (R%; Zg), which contradicts our homological version of the Van

Kampen-Flores theorem (Theorem 1.7).

1.1 Thesis outline

The thesis is divided into chapters as follows:
1. Chapter 1 relates our work to known results.

2. Chapter 2 contains a variant of colorful Tverberg theorem for affine combinations
(Theorem 1.3). Although interesting on its own, the result is mainly used to find
suitable combinations of non-trivial chain maps in Chapter 3. Since the proof is
technical, we also provide an easier version (Lemma 2.8) for the readers who do
not want to go through all the technical details and are willing to accept a slightly
worse® bounds in Chapters 3 and 4.

3. In Chapter 3 we show that given a manifold M with bounded kth Betti number,
a k-dimensional simplicial complex L and a continuous map f from a “sufficiently
large” k-dimensional simplex K into M, f can be used to construct amap g: L — K
satisfying (f o g). = 0 and some additional properties (Theorem 1.2). The chapter
concentrates on the affine structure of non-trivial chain maps and shows that an

2Volovikov’s original result is stated in terms of cohomology but if F is a field, it implies that f, # 0.
3We note that for the Kiihnel’s conjecture (Theorem 1.1), the bounds differ only by one. The gap
becomes larger for other theorems.



affine combination ¢ = Y a;h; satisfying certain properties can be turned into a
continuous map h such that h, = ¢,. We combine this idea with Theorem 1.3 to
obtain the desired result.

4. Chapter 4 provides the first striking application of our methods: Given a 2k-
dimensional manifold M, we prove non-embeddability of “sufficiently large” k-
dimensional simplicial complexes into M (Theorem 1.1) and hence provide an up-
per bound for Kiihnel’s conjecture | , Conjecture B|. The proof is based on
a combination of Theorem 1.2 with Volovikov’s result that there is no embedding
f: Ag,?w — M into a compact 2k-dimensional manifold M for which f, = 0. We
also provide several generalizations of Theorem 1.1.

5. Chapter 5 shows the nonexistence of homological embeddings of C. (A,gj:l;Zg>
or C, (Ag’;@; Zz> into C,(R¥; Zy) or C, (R%; Zg), respectively (Theorems 1.6 and

1.7). The proofs are based on the fact that the classical cohomological arguments
easily translate into the setting of non-trivial chain maps.

6. Chapter 6 shows another striking application of our approach, our very general
Helly type theorem (Theorem 1.8): There exists a function h(b,d) such that the
following holds. If F is a finite family of sets in R? such that f3; (" G;Zy) < b for
any G C F and every 0 < i < [d/2] — 1, then F has Helly number at most h(b, d).
The proof is obtained by contradiction. If the Helly number of F is sufficiently
large, we use an inductive construction to build a homological almost embedding
of C, <Ag,?+2; Zg) into C, (R% : Zg). Existence of such an embedding contradicts

Theorem 1.7 from Chapter 5, hence the Helly number of F has to be smaller.

The logical dependency of the chapters is as follows:

Chapter 1

Introduction
Chapter 2 / \ Chapter 5
Colorful algebraic Homological
Tverberg type theorem Almost-Embeddings
Chapter 3 Chapter 6
Ramsey type result for A general Helly type
simplicial chain maps theorem

Chapter 4 l
Van Kampen-Flores type
non-embeddability results
for manifolds

The remaining part of the introduction shows our results in the context of related
work. It also depicts relations between various chapters of this thesis. In Section 1.2
we investigate non-embeddability results and provide a motivation for Theorem 1.1. In

5



Section 1.3 we investigate Helly type theorems and show that if one only concentrates
on the question “Are Helly numbers bounded, or not?”, that many of the Helly type
theorems are subsumed by our Theorem 1.8. Unfortunately, the bounds on Helly numbers
it provides are enormous, so the main application of Theorem 1.8 is a quick identification
of situations for which Helly numbers are bounded and for which a new Helly type
theorems can be obtained by proving effective bounds.

1.2 Non-embeddability results

1.2.1 Non-embeddability

The fact that the complete graph K5 does not embed in the plane has been generalized
in two independent directions. On the one hand, the solution of the classical Heawood
problem established that for surfaces other than the Klein bottle?, complete graph K,
embeds into a closed surface M if and only if (n — 3)(n —4) < 6b; (M), where b; is the
first Zo-Betti number of M. See | , ] for the original statement of the problem
and | ] for the history and detailed references to the series of work by Gustin, Guy,
Mayer, Ringel, Terry, Welch, and Youngs that solved the problem in 1950-1960.

On the other hand, it is possible to replace complete graphs K, with their higher
dimensional analogues AS{“), k-dimensional skeletons of n-dimensional simplices, and ask
when they embed into R™. Since every finite k-dimensional simplicial complex embeds
into R?**1 the first interesting value of m is 2k. In this case the optimal solution is

known: Van Kampen | | and Flores | ] proved that AP embeds into R if and
only if n <2k + 1.
Two decades ago Kiihnel conjectured | , Conjecture B| that AP embeds in a

compact, (k — 1)-connected 2k-dimensional manifold with kth Z,-Betti number by only
if the following generalized Heawood inequality holds:

n—k—1 2k +1
< b 1.1
<k+1>—(k+1)’“ (L)
This is a common generalization of the case of graph on surfaces (kK = 1) as well as
the Van Kampen-Flores theorem (b = 0). So far the conjecture remained essentially

untouched.
In Chapter 4, we are able to prove the following bound for Kiihnel’s conjecture:

Theorem 1.1. Let M be a 2k-dimensional manifold with kth Zs-Betti number by. If
n > 2by (Zk]jz) + 2k + 3, then Ag’“) does not embed into M .

Our assumptions are weaker and apply to a much broader class of manifolds than the
original conjecture, but our bound on n is approximately kth power of the value proposed
by Kiihnel.

We note that Volovikov | | has also generalized Van Kampen-Flores theorem
for manifolds, however, his version does not answer the question what is the largest
integer n, for which AP embeds into a 2k-dimensional manifold with kth Betti number

4Klein bottle does not allow an embedding of K+, only of K.

6



bi. Volovikov’s theorem concerns® 2k- dlmensional compact manifolds M and states that
there exists no almost embedding® f: A2 wro — M, for which the induced homomorphism’

fe: H, <A2k+2, ) — H.(M,Zs) is trivial.

We deduce Theorem 1.1 from Volovikov’s result by using the following sophisticated
reduction:

Theorem 1.2. Let n,s,k,b > 0 be integers. Let M be a manifold with k-th reduced
Zo-Betti number at most b. Let f: AP 5 M be an almost embedding. If

n > (2)b(s—2k)+s+1 and n>s+ 1.

then there exists an almost embedding g: Agk) — M such that the induced homomorphism
in homology g.: H, (A( ). Z2> — H.(M;Zs) is trivial.

The details of the reduction and its proof can be found in Chapter 4.

1.2.2 Multiple intersections

We have asked when does AL embed into R™. We already know the answer for the
extremal value m = 2k, due to Van Kampen-Flores Theorem | , |. Since no
(k + 1)-dimensional complex can be embedded into R* for dimension reasons, the other
extremal value is k = m. Even in that case an optimal solution is known: the topological
Radon’s theorem | | (see also [ , Theorem 5.1.2]) asserts that Ak 11 does not
embed into R*.

However, there is another direction, in which non-embeddability results can be gen-
eralized. We can namely restate “A¥) does not embed into R™ as follows: “For ev-
ery continuous map f: AP R™, there exist two distinct points x1, x5 € AP such
that f(z1) = f(22).” So it is natural to ask which conditions guarantee that for ev-

ery continuous map f: Aff) — R™ there are r distinct points xq,...,z, € A,(f) with
f(z1) = f(z2) = ... = f(x,). A generalization of the topological Radon’s theorem in
this direction is known as topological Tverberg’s theorem | , ]: If r is a prime

power® then for every continuous map A(,41y—1) — R™ there are r pairwise disjoint
faces 01,..., 0, of Apnt1)e—1) such that f(o)N f(o2)N---Nf(0,) # 0. Consequently, if r
is a prime power then for every continuous map f: A¢pny1)—1) — R™ there are r distinct
points x1, ..., z, satisfying f(z1) = f(x2) = ... = f(z,) if and only if n > (m+1)(r —1).

5Here we only state a special case of Volovikov’s result. It is obtained by setting j = ¢ = 2, m = 2k,
s=k+1and N =2k + 2 in item 3 of Volovikov’s main result. Moreover, the original result is stated
in terms of cohomology, i.e., it asserts that f*: H,(M;Zs) — H* (Agl?ﬁ; ) cannot be trivial. The
condition then implies f, # 0 by the following argument. By the Universal Coefficient Theorem |
53.5], Hy(-;Zy) and H¥(-;Zs) are dual vector spaces, and f* is the adjoint of f., hence triviality of f*
implies that of f*.

6An almost embedding is a continuous map for which disjoint faces of Ag]i—z have disjoint images.

"Since H,.(R?*,Z,) = 0, this result can be viewed as a generalization Van Kampen-Flores theorem.

81t was an open question whether the result can be extended to general 7, see | , D- 154]. Recently
Frick announced a counterexample | ], which is built on methods of Mabillard and Wagner | ].

7



For r prime Blagojevié¢, Matschke and Ziegler | | proved a version of the topo-
logical Tverberg theorem where the position of the points xq,...,z, € A is some-
what controlled. Their topological ‘optimal colored Tverberg theorem’ asserts that if
n = (m+ 1)(r — 1) and we divide the n + 1 vertices of A into color classes such that
each class contains at most r — 1 points, then we always find r disjoint rainbow” faces
o1y, 0, C AT such that f(o1)Nf(02)N---Nf(o,) # 0. Matousek, Tancer and Wagner
provided an alternative geometric proof | .

We replace the convex hulls with affine ones and obtain an algebraic analogue of the
‘optimal colored Tverberg theorem’ that is valid for all positive integers r and all fields

I

Theorem 1.3. Let F be a field, r > 1 an integer and A a finitely dimensional affine
space over F. If N > (r — 1)(dimA + 1) + 1 is an integer and C is an N-element set
partitioned into m + 1 “color classes”

C=Cow... WG ,,

where |Co| <1 and |C;| <r —1 foralli=1,...,m, then for every map ¥: C — A, it is
possible to split C into r sets Fi, ..., F,. C C satisfying

(A) |C;NFj| <1 foreveryi e {0,1,...,m}, je€{l,...,r}, and

(B) aff(W(F1) N--- N aff(U(F,)) # 0.

We prove this theorem in Chapter 2. We use it then in Chapter 3 to prove!’ Theo-
rem 1.2.

Since our proof only uses the fact that aff is a closure operator, we also obtain the
following matroidal version:

Theorem 1.4. Let M be a matroid (not necessary finite) with rank function r. Suppose
further that the rank r(M) is finite. Let k > 1 be an integer. If N > (k — 1)r(M) is an
integer and C' is an N-element set partitioned into m = r(M) “color classes”

C=Cow... WG ,,

where |Co| <1 and |C;| <r —1 foralli=1,...,m, then for every map ¢: C — A, it is
possible to split C into r sets Fy, ..., F,. C C satisfying

(A) |C;NFj| <1 for everyi e {0,1,...,m}, je{1,...,r}, and
(B) cl(v(F)) N Nel((F)) # 0,

where cl is the closure operator on M.

9A face is called rainbow if all its vertices lie in distinct color classes.

107f we used an uncolored version of algebraic Tverberg theorem (Lemma 2.8), we would obtain a
slightly worse bounds in Theorems 1.2, 1.1 and 1.5, otherwise the proofs would go through. If the reader
does not want to go through the technical proof of Theorem 1.3 and is willing to accept worse bounds,
we advise him/her to skip Theorems 1.3 and 1.4 and use Lemma 2.8 instead.



Observe that Theorem 1.3 differs from “optimal colored Tverberg theorem” | ]
by considering affine hulls and allowing |Cy| to contain 7 points instead of r — 1. We also
note that without requiring the color constraints (condition (A)), the algebraic Tverberg
theorem is easy to prove, see Lemma 2.8.

We relate Theorem 1.4 to the refuted Eckhoff’s partition conjecture | ]: Let X
be a set and wcl: 2%X — 2% a map satisfying wel(wel(X)) = wel(X) and A C B =
wel(A) € wel(B). (We call such a map a weak closure operator on X.) Define t,(X)
to be the largest size of a (multi)set in X which cannot be partitioned into r parts
whose weak closures have a point in common. Eckhoff asked whether it is true that for
every such weak closure operator one has ¢, < t5(r — 1). An affirmative answer would
have implied a combinatorial proof of topological Tverberg theorem. The question was
answered negatively'! by Bukh [ ].

However, it is still possible to prove Tverberg type theorems for some classes of weak
closure operators: Theorem 1.4 is a very strong Tverberg type theorem for matroids.

We also note that the proof of Theorem 1.4 provides some insight into the difficulties
one encounters when trying to prove Rota basis conjecture | , Conjecture 4]. Rota
conjectured that given a matroid of rank r and r of its bases, it is possible to arrange
them into an r X r matrix such that the rows are permutations of the given bases and
the columns of the matrix are also bases.

If we let C;, ¢ = 0,...,m — 1 be the ith basis, our proof of Theorem 1.4 goes
through, yielding rainbow sets F;, ¢ = 1,...,r that are “almost bases”: F; is the ba-
sis of cl (F; U Fjo 1 U...UF,). A careful investigation of the cases where F; fails to be a
basis of the whole matroid may help to understand Rota basis conjecture better.

At the beginning of this section, we have asked when for every continuous map
f: AP 5 R™ there are r points xy,...,x, satisfying f(z1) = f(z2) = ... = f(x,).
When r is a prime power, topological Tverberg theorem provides an answer for the
extremal case k = n, in that case the existence of r such points is ensured for every
n>(m+1)(r—1).

But what happens if £ < n?

If r is a prime number and m(r — 1) < rk, Sarkaria | | proved that every con-
tinuous map f: Af,’,?jLQT_Q — R™ has r distinct points xy,...,2, € Aﬁ’,?JrQT_Q satisfying
f(x1) = f(z2) = ... = f(x,). Volovikov goes even further and shows that'? if p is a prime

number, ¢ = p”, M is an m-dimensional compact manifold and m(q — 1) < gk, then for

every continuous map f: A(qIZLQq_Q — M for which f,: H, <ASZLQQ+2; Zp> — H.(M;Z,)

is trivial, there exist ¢ disjoint points x1,...,z, with f(z1) = f(x2) = ... = f(z,).
Using similar combinatorial reduction to Volovikov’s result as for Theorem 1.1, we
obtain a version of Theorem 1.1 for multiple intersections.

Theorem 1.5. Let M be a d-dimensional manifold. Let ¢ = p" be a prime power. Let
b be the kth Betti number of M in the homology with Z, coefficients. If k > d <1 — %),

A negative answer is also implied by Frick’s example | ] that the topological Tverberg theorem
cannot be extended to non-prime values of r.

12Tn fact, he proved a result which is more general than stated here, however, we do not need the full
statement.



No = q(k+1)+q—2, and N > (7°)b(No — 2k)+No+1 then for every map f: Ag\lf) — M
there exist q disjoint simplices o, ...,0, C AE\];) with f(o1) N f(og) NN fog) # 0.

Theorem 4.4 has very weak assumptions and the bound is relatively weak.

In contrast, the tight version of the Tverberg Theorem for manifolds by Blagojevic,
Maschke and Ziegler | | provides the optimal bound N > (¢ — 1)(dim M + 1),
if one maps the whole simplex: There is no (¢ — 1)-almost embedding of Ay into any
d-dimensional M, provided that N > (¢ — 1)(d + 1) and ¢ is a prime power.

If ¢ is a prime number, they even get colored version: For every continuous map

f: ‘Ag\’;)‘ — M and every coloring of vertices of Ag\];) such that no ¢ vertices of Ay get

the same color, there exist ¢ disjoint rainbow faces oy, ...,0, € Ay such that f(|oy]) N

N f(logl) # 0.

1.2.3 Homological non-embeddability

Chapter 5 is the last in the non-embeddability part of the thesis. In that chapter we
provide analogues of Radon’s theorem and Van Kampen-Flores theorem for non-trivial
chain maps.

Before we state the results precisely, we define a support of a singular chain v =
S, 0 € Ci(M;Zy), where 6; are I-dimensional singular simplices in M, by

t t
supp Z t0; = U 0:(A).
i=1 i=1
(Recall that an [-dimensional singular simplex in M is any continuous map 6;: A; — M.)

Theorem 1.6 (Homological Radon’s lemma). If ¢: C, (Agi)l;Zg> — C.(R%Zy) is a
nontrivial chain map, then there exist two disjoint faces 01,09 € Agﬁl with supp ¢(o1) N
supp p(o2) # 0.

Theorem 1.7 (Homological Van Kampen-Flores). If ¢: C. (ASZ)JFQ;ZQ> — CL(RF; Zy)

15 a nontrivial chain map, then there exist two disjoint faces 01,05 € AQZ)JFQ satisfying
supp ¢(a1) N supp p(o2) # (.

These theorems provide a valuable tool in our study of Helly types theorems in Chap-
ter 6.

The next section of the introduction shows our Helly type result in the context of
related theorems.

1.3 General Helly type theorem

Helly’s classical theorem | ] states that a finite family of convex subsets of R? must
have a point in common if any d + 1 of the sets have a point in common. Together
with Radon’s and Caratheodory’s theorems, two other “very finite properties” of con-
vexity, Helly’s theorem is a pillar of combinatorial geometry. Along with its variants
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(e.g. colorful or fractional), it underlies many fundamental results in discrete geometry,
from the centerpoint theorem | | to the existence of weak e-nets | | or the
(p, q)-theorem | ].

In the contrapositive, Helly’s theorem asserts that any finite family of convex subsets
of R? with empty intersection contains a sub-family of size at most d 4+ 1 that already
has empty intersection. This inspired the definition of the Helly number of a family F of
arbitrary sets. If F has empty intersection then its Helly number is defined as the size of
the largest sub-family G C F with the following properties: G has empty intersection and
any proper sub-family of G has nonempty intersection; if F has nonempty intersection
then its Helly number is, by convention, 1. With this terminology, Helly’s theorem simply
states that any finite family of convex sets in R? has Helly number at most d + 1.

Helly already realized that bounds on Helly numbers independent of the cardinality of
the family are not a privilege of convexity: his topological theorem | | asserts that a
finite family of open subsets of R? has Helly number at most d+ 1 if the intersection of any
sub-family of at most d members of the family is either empty or a homology cell.'> Such
uniform bounds are often referred to as Helly type theorems. In discrete geometry, Helly
type theorems were found in a variety of contexts, from simple geometric assumptions
(e.g. homothets of a planar convex curve | |) to more complicated implicit conditions
(sets of lines intersecting prescribed geometric shapes | , , |, sets
of norms making a given subset of R? equilateral | , Theorem 5], etc.) and several
surveys | , : | were devoted to this abundant literature. These Helly
numbers give rise to similar finiteness properties in other areas, for instance in variants
of Whitney’s extension problem | ] or the combinatorics of generators of certain
groups | ].

Many Helly numbers are established via ad hoc arguments, and decades sometimes
go by before a conjectured bound is effectively proven, as illustrated by Tverberg’s
proof | ] of a conjecture of Griinbaum | ]. Note that this is true not on-
ly for the quantitative question (what is the best bound?) but also for the existential
question (is the Helly number uniformly bounded?); in this example, establishing a first
bound | | was already a matter of decades. Substantial effort was devoted to iden-
tify general conditions ensuring bounded Helly numbers, and topological conditions, as
opposed to more geometric ones like convexity, received particular attention. The gener-
al picture that emerges is that requiring that intersections have trivial low-dimensional
homotopy | ] or have trivial high-dimensional homology [ | is sufficient (see
below for a more comprehensive account).

In the last part of the thesis, we focus on the existential question and give the following
new homological sufficient condition for bounding Helly numbers. Note that we consider
homology with coefficients over Zj,, denote by 5;(X) the ith reduced Betti number (over
Zs) of a space X, and use the notation () F := (). U as a shorthand for the intersection
of a family of sets.

Theorem 1.8. For any non-negative integers b and d there exists an integer h(b, d) such

that the following holds. If F is a finite family of subsets of R? such that 3; (G) < b

13By definition, a homology cell is a topological space X all of whose (reduced, singular, integer
coefficient) homology groups are trivial, as is the case if X = R? or X is a single point. Here and in
what follows, we refer the reader to standard textbooks like | , ] for further topological
background and various topological notions that we leave undefined.
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for any G C F and every 0 < i < [d/2] — 1 then F has Helly number at most h(b,d).

Our proof hinges on a general principle, which we learned from Matousek | | but
already underlies the classical proof of Helly’s theorem from Radon’s lemma, to derive
Helly type theorems from results of non-embeddability of certain simplicial complexes.
The novelty of our approach is to examine these non-embeddability arguments from a ho-
mological point of view. This turns out to be a surprisingly effective idea, as homological
analogues of embeddings appear to be much richer and easier to build than their homo-
topic counterparts. More precisely, our proof of Theorem 1.8 builds on two contributions
of independent interest:

e In Chapter 5 we reformulate some non-embeddability results in homological terms.
We obtain a homological analogue of the Van Kampen-Flores Theorem (Corol-
lary 5.7) and, as a side-product, a homological version of Radon’s lemma (Lem-
ma 5.9). This is part of a systematic effort to translate various homotopy technique
to a more tractable homology setting. It builds on, and extends, previous work on
homological minors | ].

e By working with homology rather than homotopy, we can then generalize a tech-
nique of Matousek | ] that uses Ramsey’s theorem to find embedded struc-
tures. This part is contained in Chapter 6.

Our method also proves a bound of d+ 1 on the Helly number of any family F such that
Bi(NG)=0foralli<dandall GC F:

Theorem 1.9. Let F be a family of subsets of R? such that &(ﬂ G) =0 for everyG C F
andi=20,1,...,d—1. Then the Helly number of F is at most d + 1.

Theorem 1.9 is a variant of Helly’s topological theorem, where the sets of F are not
assumed to be open.'* Under the weaker assumption that 3; ((1G) = 0 for all subfamilies
G C F but only for i < [d/2] — 1, our method still yields a bound of d + 2 on the Helly
number:

Theorem 1.10. Let F be a family of subsets of RY such that &(ﬂ G) = 0 for every
GC Fandi=0,1,...,[d/2] — 1. Then the Helly number of F is at most d + 2.

In both cases the bounds are tight, as shown by Remark 6.5.

Quantitatively, the bound on h(b,d) that we obtain in the general case is very large
as it follows from successive applications of Ramsey’s theorems. The conditions of Theo-
rem 1.8 relax the conditions of a Helly type theorem of Amenta | | (see the discus-
sion below) for which a lower bound of b(d + 1) is known | ]; we note that a stronger
lower bound is possible for h(b, d) (see Example 6.2) but consider narrowing this gap to
be outside the scope of the thesis. Qualitatively, Theorem 1.8 is sharp in the sense that
all (reduced) Betti numbers 3; with 0 < i < [d/2] — 1 need to be bounded to obtain a
bounded Helly number (see Example 6.1).

141n the original proof, this assumption is crucial and used to ensure that the union of the sets must
have trivial homology in dimensions larger than d; this may fail if the sets are not open.
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1.3.1 Relation to previous work.

The search for topological conditions that ensure bounded Helly numbers started with
Helly’s topological theorem | | (see also | | for a modern version of the proof)
and organized along several directions related to classical questions in topology. Theo-
rem 1.8 unifies topological conditions originating from two different approaches:

e Helly type theorem can be derived from non-embeddability results, in the spirit of
the classical proof of Helly’s theorem from Radon’s lemma. Using this approach,
Matousek | | showed that it is sufficient to control the low-dimensional ho-
motopy of intersections of sub-families to ensure bounded Helly numbers: for any
non-negative integers b and d there exists a constant ¢(b,d) such that any finite
family of subsets of R? in which every sub-family intersects in at most b connected
components, each ([d/2] — 1)-connected,' has Helly number at most c(b,d). By
Hurewicz” Theorem and the Universal Coefficient Theorem | , Theorem 4.37
and Corollary 3A.6], a k-connected space X satisfies BZ(X ) =0 for all ¢ < k. Thus,
our condition indeed relaxes Matousek’s, in two ways: by using Z,-homology in-
stead of the homotopy-theoretic assumptions of k-connectedness'®, and by allowing
an arbitrary fixed bound b instead of b = 0.

e Helly’s topological theorem can be easily derived from classical results in algebraic
topology relating the homology /homotopy of the nerve of a family to that of its

union: Leray’s acyclic cover theorem | , Sections 111.4.13, V1.4 and VI.13]
for homology, and Borsuk’s Nerve theorem | , | for homotopy (in that
case one considers finite open good cover'”). More general Helly numbers were
obtained via this approach by Dugundji | |, Amenta | ]'8, Kalai and
Meshulam | ], and™ Colin de Verdiere et al. | |. The outcome is that if a

family of subsets of R? is such that any sub-family intersects in at most b connected
components, each a homology cell (over QQ), then it has Helly number at most
b(d+1). This therefore relaxes Helly’s original assumption by allowing intersections
of sub-families to have 3y’s bounded by an arbitrary fixed bound b instead of b = 0.
Theorem 1.8 makes the same relaxation for the 8;’s, Ba’s, ...B[dm,l’s and drops
all assumptions on higher-dimensional homology, including the requirement that
the sets are open (which is used to control the (> d)-dimensional homology of
intersections).

15We recall that a topological space X is k-connected, for some integer k > 0, if every continuous map
8% — X from the i-dimensional sphere to X, 0 < i < k, can be extended to a map D**! — X from the
(i 4+ 1)-dimensional disk to X.

16We also remark that our condition can be verified algorithmically since Betti numbers are easily
computable, at least for sufficiently nice spaces that can be represented by finite simplicial complexes,
say. By contrast, it is algorithmically undecidable whether a given 2-dimensional simplicial complex is
1-connected, see, e.g., the survey | ].

17 An open good cover is a finite family of open subsets of R? such that the intersection of any sub-family
is either empty or is contractible (and hence, in particular, a homology cell).

8The role of nerves is implicit in Amenta’s proof but becomes apparent when compared to an earlier
work of Wegner [ ] that uses similar ideas.

The result of Colin de Verdiere et al. | ] holds in any paracompact topological space; Theo-
rem 1.8 only subsumes the R? case.
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Let us highlight two Helly numbers that stand out in this line of research as not subsumed
(qualitatively) by Theorem 1.8. On the one hand, Eckhoff and Nischke | | gave a
purely combinatorial argument that derives the theorems of Amenta | | and Kalai
and Meshulam | | from Helly’s convex and topological theorems. On the other hand,
Montejano | ] relaxed Helly’s original assumption on the intersection of sub-families
of size k < d+ 1 from being a homology cell into having trivial d — k& homology (so only
one Betti number needs to be controlled for each intersection, but it must be zero). These
results neither contain nor are contained in Theorem 1.8.

We notice that other non-topological structural conditions, known to ensure bounded
Helly numbers, also fall under the umbrella of Theorem 1.8. As already observed by
Motzkin | , Theorem 7] (see also Deza and Frankl | ]), any family of real al-
gebraic subvarieties of R? defined by polynomials of degree at most k& has Helly number
bounded by a function of d and k (more precisely, by the dimension of the vector subspace

of Rlzy, 9, ..., x4 spanned by these polynomials); since the Betti numbers of an alge-
braic variety in R can be bounded in terms of the degree of the polynomials that define
it | , |, this also follows from Theorem 1.8. We give some other examples in

Section 1.3.2, where we easily derive from Theorem 1.8 generalizations of various existing
Helly type theorems.

Note that Theorem 1.8 is similar, in spirit, to some of the general relations between
the growth of Betti numbers and fractional Helly theorems conjectured by Kalai and
Meshulam | , Conjectures 6 and 7]. Kalai and Meshulam, in their conjectures, allow
a polynomial growth of the Betti numbers in |[[G|. As the following example shows,
Theorem 1.8 is also sharp in the sense that even a linear growth of Betti number, already
in R!, may yield unbounded Helly numbers. In particular, the conjectures of Kalai and
Meshulam cannot be strengthened to include Theorem 1.8.

Ezxample 1.11. Consider a positive integer n and open intervals [; := (i — 1.1;4 + 0.1) for
i € [n]. Let X; :=[0,n]\ ;. The intersection of all X; is empty but the intersection of any
proper subfamily is nonempty. In addition, the intersection of k£ such X; can be obtained
from [0, n] by removing at most k open intervals, thus the reduced Betti numbers of such
intersection are bounded by k.

1.3.2 Further consequences

We conclude this introduction with a few implications of our main result.

New geometric Helly type theorems. The main strength of our result is to show
that very weak assumptions on families of sets are enough to guarantee a bounded Helly
number. This can be used to identify new Helly type theorems, for instance by detecting
easily generalizations of known results, as we now illustrate on two Helly type theorems
of Swanepoel.

A first example is given by a Helly type theorem for hollow boxes | |, which
generalizes (qualitatively) as follows:

Corollary 1.12. For any integers s, k,d there ezists an integer h(s,k,d) such that the
following holds. Let S be a set of s vectors in R?, and let F = {Uy,Us, ..., U,} where U;
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is the k-skeleton of some polytope in R whose facets all have their normal vector in S.
Then F has Helly number at most h(s, k,d).

Swanepoel’s result corresponds to the case k = d—1 and S = {£eq, +es, ..., teq} where
(e1,€3,...,eq) is a basis of R

Proof. We need to verify the assumptions of Theorem 1.8, that is, we consider a subfamily
G ={U;: i € I} C F and we check that £;((G) is bounded by a function of s and d for
any 7 > 0 (according to the assumptions of Theorem 1.8, it would be sufficient to consider
i < [d/2] — 1, but in this case, there is no difference in reasoning for other values of 7).

Let P = P(S) be the set of all polytopes which can be obtained as an intersection of
half-spaces with the normal vectors to their boundary hyperplanes in S. Let P; € P be
a polytope such that U; is a (polyhedral) subcomplex of P;.

Let us consider the polytope P = (,.; ;. From the definition of P we immediately
deduce that P € P. Moreover, the intersection U := (G is a polyhedral subcomplex of
P. (The faces U are of form (,_; 0; where o; is a face of U;; see | , Exercise 2.8(5)
+ hint].)

Since P € P we deduce that it has at most 2s facets. By the dual version of the
upper bound theorem | , Theorem 8.23], the number of faces of P is bounded by a
function of s and d. Consequently, BZ(U ) is bounded by a function of s and d, since U is
a subcomplex of P. O

el

A second example concerns a Helly type theorem for families of translates and homo-
thets of a convex curve | ], which are special cases of families of pseudo-circles. More
generally, a family of pseudo-spheres is defined as a set F = {Uy,Us,...,U,} of subsets
of R? such that for any G C F, the intersection ()G is homeomorphic to a k-dimension
sphere for some k € {0,1,...,d — 1} or to a single point. The case b = 1 of Theorem 1.8
immediately implies the following:

Corollary 1.13. For any integer d there exists an integer h(d) such that the Helly number
of any finite family of pseudo-spheres in R? is at most h(d).

Note that the case of Euclidean spheres, contained in Corollary 1.13, also received some
attention | , ].

Generalized linear programming. Theorem 1.8 also has consequences in the di-
rection of optimization problems. Various optimization problems can be formulated as
the minimization of some function f : R — R over some intersection [)._, C; of subsets
C1,Cy, ..., Crof R If fort € R, welet Ly = f~1 ((—o0,t]) and F; = {C1,Cy, ..., Ch, L}
then

n (@) =min{t B (V7 £0}.
R J0 =t R: (1740
If the Helly number of the families F; can be bounded uniformly in ¢ by some constant
h then there exists a subset of h — 1 constraints C;,,C},, ..., C;, _, that suffice to define
the minimum of f:

min  f(x)= min f(x).
reMiiy Ci (=) zeN)=} Ci; (=)
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A consequence of this observation, noted by Amenta [ |, is that the minimum of f
over C1NCyN...NC, can? be computed in randomized O(n) time by generalized linear
programming | |]. Together with Theorem 1.8, this implies that an optimization
problem of the above form can be solved in randomized linear time if it has the property
that every intersection of some subset of the constraints with a level set of the function
has bounded “topological complexity” (measured in terms of the sum of the first [d/2]
Betti numbers). Let us emphasize that this linear-time bound holds in a real-RAM
model of computation, where any constant-size subproblems can be solved in O(1)-time;
it therefore concerns the combinatorial difficulty of the problem and says nothing about
its numerical difficulty.

Since we use many notions and facts from different areas of mathematics and since
some chapters are independent of the others, we provide, for the readers’ convenience, the
basic definitions and fact at the beginning of the corresponding chapter. However, to omit
repetitions, we respect the logical dependency of the chapters. For further convenience,
we also provide a list of used symbols at the end of the thesis.

20This requires f and Cq,Cs,...,C, to be generic in the sense that the number of minima of f over
NierC; is bounded uniformly for I C {1,2,...,n}.
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2. Colorful algebraic Tverberg type
theorem

This chapter contains the proof of the colorful algebraic Tverberg type theorem (The-
orem 1.3) and its matroidal generalization, Theorem 1.4. The proof is algorithmic but
somewhat technical. Hence we also provide Lemma 2.8, a variant of Theorem 1.3, which
is more accessible, but provides worse bounds in later applications. Therefore, readers
who do not want to go through all the technicalities and are willing to accept a slightly
worse bound in Theorems 1.2, 1.1 and 1.5 may jump to Chapter 3 directly after the proof
of Lemma 2.8 and hence skip sections 2.3 and 2.4.

Because of the algorithmic character of the proof, we can also address the complexity
question and hence state stronger versions of Theorems 1.3 and 1.4 — Theorems 2.12 and
2.13.

2.1 Preliminaries — Affine spaces

Before we state the main results, we recall some definitions and basic facts from linear
algebra. The notions that we leave undefined can be found in any linear algebra textbook,
see e.g. | ]. We also refer the reader to | | for detailed proofs of all here
mentioned statements, although all of them are relatively straightforward.

Throughout the text we use the symbol Z, to denote Z/nZ, e.g., for p prime Z, is
the p-element field.

Definition 2.1 (Affine space). Let F be a field and V' a vector space over F. A subset
A CV is called an affine space over F (or F-affine space), if A has the form A = {a+v |
v € U}, where a € V and U is a vector subspace of V. In this case the dimension dim A
1s defined as dim U.

If X is an arbitrary set and [ a field, we can turn X into an F-affine space M(X;TF)
in the following way:

Definition 2.2. Let X be a set and F a field. A multipoint p over F in X is a formal

1
= Zaxxy

sum
zeX

where a, € F, only finitely many a, are non-zero and ) .y a, = 1. The set of all
multipoints over F in X is denoted by M (X;F), where the field F may be omitted if it
is clear from the context. The support supp p of a multipoint p =3\ a,x is defined

as supp = {x € X | a, # 0}.

'We have chosen the name multipoint for the following reason: Imagine we are tourists and we want
to go from valley a to mountain peek b and we have three possibilities: either to go through cottage cq,
co or c3. A trip through a combination ¢; — ¢ + ¢3 then corresponds to visiting multiple cottages in the
following order: climbing the mountain up via the path around c¢;, then going down around cs and then
climbing up around c3. The “route” then goes through multiple points. It is useful to keep this image
in mind during some proofs in Chapter 3.
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It can be easily checked that M (X;F) is an affine subspace of F¥X. Because the map
x + 1 is an inclusion of X into M (X;F), we regard M (X;F) as a superset of X.

Definition 2.3. Let A be an affine space over F and B C A a set. We define the affine
hull of B as

affp B := {Zaibi | I is a finite set, b; € B,a; € F and Zai = 1} ) (2.1)

el icl

If F is an ordered field, we further define the convex hull of B as

convy B = {Zaibi | I is a finite set, b; € Bya; € F,0<a; <1 and Zai = 1}.
iel iel
(2.2)
If the field ¥ is clear from the context, we omit it from the subscript.

It can be easily proven that aff B is an affine space over F and the operator aff satisfies
the following axioms:

Observation 2.4. For every X,Y C A and x,y € A:
(CL1) X C aff(X),
(CL2) X CY = aff(X) C aff(Y),
(CL3) aff (aff(X)) = aff(X) and
(CL4) y € aff(X Ux) \ aff(X) = x € af (X Uy) (Mac Lane-Steinitz exchange property)

Let us briefly demonstrate that aff really satisfies the exchange axiom: If y € aff (X U
{x}) \ aff X, then y = >, ; a;x;, where all x; € X U {x}. Without loss of generality, we
may assume that all x; are distinct. Since y ¢ aff X, one x;, say x;, equals x and the
corresponding coefficient a; is nonzero. So we may write y = a1x + ) .. N1y @i where
a1+ 3 jenqiy @ = 1, hence x = a—lly = Dienf1y X, where a—ll = Dieny o = 1 (note
that a; # 0) and the exchange axiom follows.

Definition 2.5. If M is a set and cl: 2" — 2M o map satisfying (CL1)-(CL4) we say
that cl is a closure operator’. A set with a closure operator is called a (not necessary
finite) matroid.

Definition 2.6. Let A be an affine space over a field F. A set B C A is called affinely
independent, if b ¢ aff(B\{b}) holds true for every element b € B. Note that the notion
of independence makes sense for any closure operator cl. In such a case, we define the
rank r(C) of a set C' as the size of an inclusion mazimal independent subset of C.

Note that (CL4) implies that the rank is well-defined and in fact equals the size of
any maximal independent subset in cl(C'). Moreover, for affine spaces we have r(B) =
dim B + 1.

2A typical examples of closure operators are: identity on any set, affine closure on an affine space,
linear span in a vector space, algebraic closure, etc.; there are also some closure operators arising in
graph theory | ]
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Observation 2.7. Let A be an affine space over a field F.
1. FEvery affinely independent set B C A has at most dim A + 1 elements.
2. If B is affinely independent, then dimaff B + 1 = card B.

3. If B C A is an affinely independent set and ¢ € A\ aff B, then BU{c} is an affinely
independent set.

4. For all B,C C A the following equality holds: aff(BUC') = aff(B U aff C’).

The proof of Observation 2.7 is an easy exercise, Moreover, the properties in fact follow
from axioms (CL1)—(CL4). Hence the observation remains valid, even if we replace aff
with an arbitrary closure operator and dim A with r(A) — 1.

Let us briefly demonstrate that Observation 2.7 is indeed implied by (CL1)—(CL4)
and does not depend on any other properties of aff:

Proof. Properties 1 and 2 are trivial (noting that the definition of dimension (or rank)
does not depend on the chosen maximal independent set).

Let us now prove 3: If BU{c} is affinely dependent, there exists a point b € BU {c}
such that b € aff (BU {c}) \ {b}). Clearly b # c, hence b € B. Because B is affinely
independent, b ¢ aff (B\ {b}), hence b € aff(BU{c}) \ b) \ aff (B\ {b}). Using (CL4),
we see that ¢ € aff((B\ {b}) U{b}) = aff(B) — a contradiction.

To prove 4, we use axioms (CL1)—(CL3). By (CL1) and (CL2) we have B C aff(BUC')
and aff(C) C aff(BUC). Altogether B U aff(C') C aff(B U C). Using (CL1) and (CL2)
once again, we see that aff(B U C) C aff(B U aff(C)) C aff(aff(B U C)). By (CL3) the
leftmost and the rightmost term coincide, hence aff(BUaff(C)) = aff(BUC) as well. [

2.2 Prelude

In this section we prove a simple algebraic Tverberg type result (Lemma 2.8), so far with-
out any color restriction. We include this lemma for two reasons. Firstly, its proof clearly
demonstrates the basic idea which we use while proving the full colorful version, whereas
in the full proof the idea is somewhat obfuscated by the technical details. Secondly, the
readers who do not want to go through the technical details in the proof of the colorful
version, may use Lemma 2.8 instead of the full colorful version in the proofs of Chapters 3
and 4. The proofs then go through, although with slightly worse bounds.

Lemma 2.8. Let A be an affine space over a field ¥, C C A a (multi)set and r > 0 an
integer. If |C| > (dim A + 1)(r — 1), then there exist r disjoint sets Fy, Fy, ..., F, C C
such that aff Fy Naff Fy N ---Naff F, # (.

Proof. We prove the statement by induction over r. If » = 1, then C' is nonempty and
we may choose F; = C.

So assume that » > 1. Let B = aff C. Because B C A, the dimension of B is
at most dim A. Therefore, there exists a set F,, C C' with at most dim A + 1 points
such that aff [, = B. We set C' := C' \ F,. Then |C'| > (dimA + 1)(r — 2), so we
may apply induction and obtain r — 1 pairwise disjoint sets Fi, Fy, ..., F,_; € C’ with
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af i nNaff [N ---Naff F,_; # (. Since F; C C\ F}, the r sets Fy, ..., F, are also
pairwise disjoint. For alli =1,...,7 — 1 we have F; CC\ F, = C' C aff B = aff F.. It
follows that aff F} Naff F, N ---Naff F,_; Naff F, # () and the proof is finished. O

We note that the bound |C| > (dim A + 1)(r — 1) in Lemma 2.8 is optimal.

Observation 2.9. Let r > 0 be an integer, F a field and A an affine space. Then there
exists a set C' having exactly |C| = (dim A + 1)(r — 1) elements and a map ¢: C — A,
such that every r pairwise disjoint subsets Fy, ..., F, C C satisfy (;_, affg (¢ (F})) = 0.

For simplicity we show the observation only for finitely dimensional affine spaces A.
We note that if dim A is infinite, the same construction goes through, the only difficulty
is how to write down infinite sequences properly.

Proof of Observation 2.9. Let F be a field and let A be an m-dimensional affine space
over F. Without loss of generality, we may assume A = F™. Let ej,..., e, be the
standard basis vectors of F™™. Let C' be a set containing exactly (m + 1)(r — 1) elements.
We group the elements in C' into (m + 1) groups, each containing (r — 1) elements. We
define v as follows:

() e; if x is in the ¢th group, where i < m,
xT) =
0 if z is in the (m + 1)th group.
Since {ei, ey, ...,e,,0} are affinely independent, and every point e; or 0 is missing it
at least one Fj;, we see that there are no r pairwise disjoint subsets Fy, Fy, ..., F. C C
satisfying
(afte (4 () # 0,
i=1
which proves the optimality of Lemma 2.8. n

Now we reformulate Lemma 2.8 in the terms of multipoints®, which provides some
geometric intuition for the proofs in Chapter 3. If u, ¢’ are two multipoints satisfying
supp(u) Nsupp(') = 0, we say that p and u' are disjoint.

If X is a set, [F a field, A an affine space over F and ¢: X — A a map, then the map
¥ can be extended to a map 1: M(X;F) — A via

Y (Z amx> = a(x).

zeX reX

Lemma 2.10. Let A be an affine space over a field F, ¢b: C — A a set and r > 0 an
integer. If |C| > (dim A+1)(r—1), then there exists r disjoint multipoints piy, pio, . . ., pr €
M(C;F) such that ¢(p1) = ¢(p2) = ... = ¥(ur).

3See Definition 2.2.
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Proof. Let C" = ¢(C') be a multiset. If we apply Lemma 2.8, we obtain r sets Fy, ..., F! C
C" with aff F{ naff FyN---Naff F. 0.

If F" C Cis a set and a is a point in aff (F”), then a = ) __ a,, for some a,, where
only finitely many of a, are non-zero and ) a, = 1.

If ais a point in aff F] Naff F; N ---Naff F, we have

a= Z ap1(z) = Z apoh(z) =... = Z az (),

xEF z€F} zEF).
where only finitely many a,; are nonzero and » ja,; =1foralli=1,...,7.
If we set u; = ZmeFi ay;x € M(C;F) for all i = 1,...,r, the equality rewrites as
a=Y(u) =Y(pu2) = ... = P(u); in particular P (u1) = Y(p2) = ... = Y(u,). O

2.3 Statement of the colorful algebraic theorem

Before we formulate the result precisely, we introduce some terminology.

Definition 2.11. Let m > 0 be an integer. Let a set C' be partitioned into (m + 1)
pairwise disjoint non-empty sets Cy, Cy,...,C,,. We call the sets C; color classes. A
subset S C C satisfying |[SNC;| <1 for alli=0,...,m, is called rainbow. We further
define the coloring c: C — {0,1,...,m} via

c(x) =1 if and only if x € C;. (2.3)

To simplify the notation, we introduce the following convention. If I C Z is a subset
of {0,...,m}, we set
¢ =Jau (2.4)
iel
We can now restate Theorem 1.3 in more precise form, addressing also the algorithmic
aspects.

Theorem 2.12. Let m > 0,r > 1 be integers, C' a set, F a field, A a finitely dimensional
affine space over F and ¢: C — A a map. Let C be partitioned into (m + 1) non-
empty color classes Cy,...,Cp with |Co| < 7 and |C;| < r—1 foralli=1,...,m. If
|C| > (dim A + 1)(r — 1) then there exist r pairwise disjoint rainbow sets Fy, ..., F, CC
satisfying

(affs (v (F) # 0. (25)
i=1
Furthermore, if dim A can be computed in time polynomial in m, r and u is the
mazximal time needed to decide whether a point p € C and a set S C C satisfy ¥ (p) €
aﬂ:(w(S)), then such sets F; can be algorithmically found in time polynomial in w,m,r
and |C|.
Note that the assumptions |C] > (dim A + 1)(r — 1), |Cy| <7 and |C;| < r — 1 imply
that m > dim A.

Since the proof only uses the fact that the operator aff satisfies axioms (CL1)—(CL4),
we also obtain the following matroidal version*:

4See Definition 2.5.
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Theorem 2.13. Let M be a matroid (not necessary finite) with rank function r. Let
k > 1 be an integer. If N > (k — 1)r(M) is an integer and C' an N-element set with a
partition into m + 1 parts (“color classes”)

C:COH‘JL‘UCm,

with |Col < k and |Cy| <k —1 for alli=1,...,m, then for every map : C — M, it is
possible to split C into k sets Iy, ..., F, C C satisfying

(A) |CinF;| <1 for everyi € {0,1,....,m}, j €{l,...,k}, and
(B) cl(¢(F1)) N---Nel(v(Fy)) # 0,

where cl is the closure operator on M.

Since we only use properties of the closure operator aff that follow from axioms (CL1)—
(CL4) in our proof of Theorem 2.12, the proof of Theorem 2.13 follows from the proof
of Theorem 2.12, if we replace all occurrences of aff with cl, only the reduction of Theo-
rem 2.12 to Theorem 2.15 needs small adjustment, which we address in Remark 2.16.

Although it would be possible to write the proof down in the more abstract matroidal
setting, we prefer the proof with aff for two reasons: Firstly, it provides some geometric
intuition, which helps to understand the proof, secondly, we only need the affine version
in later constructions.

Before we proceed with the proof, we restate Theorem 2.12 using Definition 2.2 (mul-
tipoints). The reformulation provides nice geometric intuition for Chapter 3.

If m > 0is an integer and a set C' is partitioned into (m+1) color classes Cy, C1, ..., Cpp,
we say that a multipoint u € M (C;F) is rainbow, if supp p is.

Using the definition of multipoints, Theorem 2.12 implies the following:

Theorem 2.14. Let m > 0,7 > 1 be integers, C' a set, F a field, A a finitely dimensional
affine space over F and 1p: C' — A a map. Let C' be partitioned into (m + 1) non-empty
color classes Cy,...,Cpnp with |Co| < r and |Ci| < r —1 for alli=1,....,m. If|C| >
(dim A+1)(r—1) then there exist r pairwise disjoint rainbow multipoints puy, pia, . . ., fr
M (C;F) satisfying

() = Y(p2) = ... =(p). (2.6)

Since we are only interested in theoretical applications, we do not address the com-
plexity question in Theorem 2.14.

Proof. In the setting of Theorem 2.14, the assumptions of Theorem 2.12 are satisfied, so
there exist r pairwise disjoint rainbow sets F1, ..., F, with aff (¢(Fy)) Naff (¢(Fo)) N---N
aff (¢(F,)) # 0. Let a be a point in the intersection.

Then according to the same considerations as in the proof of Lemma 2.10, a = ¢(u1) =

(p2) = ... =v(u,), where u; € M (F;; F) C M (C;F) for every i = 1,2,...,7.
Because the sets F;, ¢« = 1,...,r, are pairwise disjoint and rainbow and supp u; C Fj;,
the multipoints pu; are pairwise disjoint and rainbow as well. O]

For a better presentation, we reduce Theorem 2.12 to the following statement.
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Theorem 2.15. Let m > 0 andr > 1 be integers, C' a set, F a field, A an m-dimensional
affine space over F and 1p: C' — A a map. Let C' be partitioned into (m+ 1) color classes
Co,...,Cp with |Co| > 1 and |C;| > (r — 1) for alli = 1,....,m. Then there exist r
pairwise disjoint rainbow sets Fy, ..., F, C C satisfying

r

(Mafte (v (F) # 0.

i=1

Furthermore, if u is the mazimal time needed to decide whether a point p € C' and a set
S C C satisfy ¥(p) € aff(w(S)), then such sets F; can be algorithmically found in time
O((m+7)|Clm*u +|C]).

Note that in Theorem 2.15 we replace the conditions |Cy| < r and |C;] < r — 1
from Theorem 2.12 by |Cy| > r and |C;] > r — 1 and add a condition that there are
exactly (dim A + 1) colors. The main purpose of the conditions |Co| < r, |C;] < 1 —1
in Theorem 2.12 is to ensure that we have enough color classes, in Theorem 2.15 this
is stated explicitly as the additional condition; what becomes implicit is the fact that
|IC| > (r — 1)(dim A + 1).

The reduction of Theorem 2.12 to Theorem 2.15 follows a well known pattern, a
similar reduction previously appeared in the proof of the optimal colored Tverberg theo-
rem | ] or in Sarkaria’s proof for the prime power Tverberg theorem [ , 2.7.3],
see also de Longueville’s exposition | , Prop. 2.5]. Nevertheless, there is a subtle
difference, since we do not now how the affine space A is represented and it may be
unpractical to search for an isomorphism of A and F.

Observation 2.9 shows that the bound |C| > (dim A + 1)(r — 1) in Theorem 2.12 is
optimal, which also proves optimality of Theorem 2.13 and Theorem 2.15.

In general, the assumption |Cy| < r in Theorem 2.12 is also necessary. For example
fA=F=R, r=3 m=1,Cy:=1{0,1,2,3}, C; := {4} and ¢ is the identity map,
then |C| > (m + 1)(r — 1), but there are no three pairwise disjoint rainbow subsets
satisfying (2.5). We note that it is not true that the condition is necessary in all cases.
E.g. if A =TF = Z,, Theorem 2.12 without any restriction on |Cy| easily follows from the
pigeonhole principle.

2.4 Proof of Theorem 2.12

The reduction of Thm. 2.12 to Thm. 2.15. Let d = dim A. Let 0 be the origin in F™~¢
and ey, ..., e, 4 be the standard basis of F™"~%. Then A = A x {0} C A x F™~4.

If |C] > (d+1)(r — 1) + 1, we throw the superfluous elements of C' away. This does
not increase the size of any color class, therefore all the assumptions of Theorem 2.12
remain preserved. So we may assume that |C] = (d+1)(r — 1) + 1.

Now we add (m + 1)(r — 1) +1 —|C| = (m — d)(r — 1) points to C' to obtain set
C’. We partition C" into color classes Cf, ..., C], in such a way that Cy C C{, |C{| =,
C; CCland |C]|=r—1foralli=1,...,m. This is clearly possible.

We group the (m — d)(r — 1) added points into (m — d) groups of (r — 1) points. Now
we construct map ¢': C’ — A x F™~? as follows: Let o be a fixed element from C. We
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set

() = {{1/1(0)} x e; for all elements x in the ith group (i =1,...,m — d),
P(z) x {0} for x € C.
Since dim A x F™~¢ = m, the assumptions of Theorem 2.15 are satisfied, so there are
r rainbow sets FY, ..., F/ C C" satistying (;_, affr (¢/(F})) # 0.
Observe that by the construction only (r — 1) points got mapped onto a fixed point
{1(0)} x e;; in particular every point {1)(0)} X e; is missing in at least one ¢'(F}). More-
over, the points {¢(0)} xe;, t = 1, ..., m—d, are affinely independent and aff{{w(o)} xe; |

i=1,... ,m—d}ﬂ (Ax {O}) = (). It follows that (;_, affr (¢/(F])) € Ax{0}. Moreover,
because ¢’ | C' = ¢ x {0}, we immediately see that the sets F; := F/ N C are rainbow
subsets of C' that satisfy

Matte (V(F)) £ 0.
i=1
If d can be computed in polynomial time, the reduction time is also polynomial.
Let u be the time needed to decide whether a point p € C' satisfies ¢(p) € aff (¥(S5)),
where S C C. Then the time u' needed to decide whether a point p’ € C' satisfies
Y(p') € aff(@/)(S’)), where S’ C (', is polynomial in u,d. O

Remark 2.16. The proof generalizes to matroids as follows. Instead of increasing dimen-
sion, we add (m — d) points py, pa, . .., Pm—a to the matroid M and make them mutually
independent and also independent on all others. Since we add (r — 1)(m — d) points to
C, we may simply extend the map by mapping first » — 1 added elements to p;, second
r — 1 added elements to py, etc. The rest of the proof follows.

Proof of Theorem 2.15

We show that there is a recursive algorithm that performs the task in time O((m +
r)|Clm2u + |C'|) Its inputs are: set C' partitioned into color classes Cy,...,C,,, map
¥: C'— A and r. Its output is a collection of r pairwise disjoint rainbow sets Fi, ..., F,. C
C satisfying (2.5). First we describe the algorithm and show that whenever it stops it
outputs a correct answer. Then we provide a pseudo-code for the algorithm, bound the
running time and provide some optimizations.

Correctness
The recursion

The algorithm runs recursively, constructing inductively sets F,., F._q, ..., Fy. If F,
.., F;11 are already constructed, the algorithm either constructs set F; and calls itself
recursively to construct F;_q,..., F}, or it decreases the dimension of A and calls itself
recursively to construct Fj, ..., F}.
We may throw away the additional points, so we may assume that |Cy| = r and
|ICil=r—1foralli=1,...,m.
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If » = 1, we are searching for one nonempty set F;. Since |Cy| = 1 by assumption, we
set 1 := Cp. If m =0, dim A = 0, hence ¥ (x) € A is the same for all points x € C. In
this case |Cy| = r. We split Cy into r disjoint sets F7,. .., F,, each containing one point.
Then clearly aff ((Fy)) Naff (¥(F)) N---Naff (Y(F,)) # 0.

So we may assume that » > 1 and m > 0. We try to iteratively build sets G; C C,
7 =0,1,...,m, satisfying the following three conditions:

(D G5l =7+1,
(II) G; is rainbow and
(III) dimaff (¢(G;)) = j.

The idea behind the sets G is the following: If aff )(G;) 2 ¢(C), G; is rainbow and
|G| < dim A + 1, we may put F, := G, as we did in the proof of Lemma 2.8. We try to
construct such set G; by starting with j = 0, requiring conditions (I)—(III) and increasing
J by one at each step, while still maintaining (I)—(III). Then if we succeed in constructing
G; with aff (G;) D ¥(C), the set F,. = G; is rainbow with at most dim A + 1 elements
and we may continue by induction as in the proof of Lemma 2.8. Unfortunately, it might
happen that we do not succeed. In that case, we show that there is a subspace A" C A
so that if we restrict our attention to A’ and C’ = C' Ny ~1(A’), we may apply induction
there.

Let us now build sets Gj.

First loop

The first step is easy. Because |Cy| = r > 1, there exists an element p € Cy. We set
Gy := {p}. This assignment clearly satisfies conditions (I),(IT) and (III).

So suppose j > 0, we already have set G; satisfying all the conditions and we want
to construct set G .

There are two possibilities what can happen:

1. ¢(C) C aff (¥(Gy)),

2. (C) € aff (¥(Gy)).

Before going into technical details we sketch the overall idea how we deal with the
particular cases, To make the reasoning easier, we use ¢ as defined in Equation (2.3).

In the first case, we have found the desired set G; satisfying aff (G;) 2 ¢(C). We
set F, := G, and apply recursion. The second case is more complicated. We would like
to find a point p with ¢(p) ¢ ¢(G;) and ¢(p) ¢ aff (¢/(G;)), so that we could form G, by
adding p to G;. Unfortunately, this may not be possible without replacing some points
in Gj.

Now we provide the details. Let us start with possibility 1.
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Case 1: ¢(C) C aff(w(Gj))

In this case we set F,. := G;. Since G is rainbow, so is F,.. We further define C' := C'\ F}.,
' =1 | C" and " = r — 1. We partition C’ into m + 1 color classes C! := C; \ F, for
i =0,...,m. Now we run the algorithm recursively on C’ and v¢’. We obtain (r — 1)
pairwise disjoint rainbow sets Fi, ..., F,_; C C’ that satisfy

r—1 r—1

0 # (aff (' (F)) = () aff (¢(£))-

i=1 =1

Since the sets Fj, i = 1,...,r—1, are rainbow subsets of C’, they are rainbow in C' as well.
It follows that Fi, ..., F, are pairwise disjoint, since fori =1,...,r—1, F; C C' = C\ F,
and F; are pairwise disjoint.

Because
r—1

(Maff(4(F)) C aff(£(C)) C aff (4(G))) = aff (¥(F,)).

we have
T

Maff (v(F)) # 0.
i=1
Since the sets Fi, ..., F, form the desired system, we output Fi,..., F, and stop the
algorithm.
Now we deal with the more complicated situation.

Case 2: Y(C) ¢ aﬂ(¢(Gj))

In this case we want to find point p with ¢(p) ¢ ¢(G;) and ¥(p) ¢ aff (¥(G;)) so that we
could set Gj11 = G; U {p}. In general, this may not be possible, it may happen that we
need to replace some points in G; before we can add p. In order to know which points to
replace and how, the algorithm uses a second loop. During the loop, the algorithm keeps
track of “replacement rules”, which makes this part somewhat technical.

Moreover, there are three possibilities in each iteration: FEither we have collected
enough information and we can construct the desired set G;;1, or we adjust the replace-
ment rules, or we obtain a proper subspace A’ C A such that we can find the desired sets
Fi,..., F, by a recursive call of our algorithm to ¢’ := C' Ny~ (A"), A’ and ¢ | C.

Second loop

In the kth step of the second loop the replacement rules consist of the following data:
sets Ky C {0,1,...,m}, Ry C G; and RY C C, where p ranges over all elements’ p € C,
for which 1(p) ¢ aff (v (Ry)).

Furthermore, we want that these sets satisfy the following conditions:
(i) c(Re) & Kk,
(i) ¢(R}) = c(Rg) U {c}, for some ¢ € Kj \ ¢(G),

®Recall that the symbol Ck, stands for UiGKk Cy, i.e., Ck, are all the points with color in Kj. We
will also use the equivalence p € Ck, < ¢(p) € K.
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(iti) [Ry| = [Rx| + 1,
(iv) p € R}, and aff (¢(RY \ {p})) = aff (¥(Ry)),
(v) G;NCkg, = Ry and K, Z ¢(Gj).

Note that condition (ii) states that R} only contains points that have the same colors
as points in Ry and one additional point that has color ¢}, which is not yet present in

The intuition behind the sets Kj, Ry and R} is the following. The set Ry represents
the subset of GG; that we want to replace. The set K, represents the colors that we might
use while replacing Ry,. The set R} \ {p} is the replacement of Ry, if we want to add point
p. More precisely, R}, is a rainbow set, the sets (R;) and ¢ (R} \ {p}) have the same
affine hull and ¢(R}) C K.

We will start with R as small as possible and a suitable set K. In each step, we will
enlarge the sets Rj, and K} until we find an element p € Ck, with ¢(p) ¢ aff (¢¥(G;)),
or until ¢(Ck,) C aff (¢(Ry)). If we fin an element p € Ck, with ¢(p) ¢ afféz/J(Gj);,
we will construct the desired set Gj41. If ¥(Ck,) C aff (¢(Ry)), then the affine space
A" = aff ((Ri)) € A and C" = C Ny~ (A) satisty [C'] > (dim A’ + 1)(r — 1), so we will
apply recursion to obtain the desired sets F,..., F,.

Let us now carry out the technical details.

The first step (k = 0) is easy. We set Ry := ) and Ky :={0,1,...,m} \ ¢(G;). If we
now take a point p € Ck,, then ¥ (p) is not contained in aff (¢(R0)) = (), so we need to
define the set R} for every such p. We simply put Rf := {p}.

Now we check the above defined sets satisfy all the prescribed conditions. Note m =
dim A, C' C A and we are in case 2, where ¢(C') € aff (¢(G;)). This, together with |G| =
j + 1 (condition (I)) and dimaff ¢(G;) = j (condition (III)) implies that |G;| < m + 1.
Consequently, the set Ko = {0,1,...,m} \ ¢(G;) is nonempty. Hence conditions (i)—(v)
are satisfied trivially (with ¢, = ¢(p) in condition (ii)).

So we may suppose that the sets K}, Ry, and R}, are already constructed for all relevant
p € Ck, and we want to continue with our construction. Since R, C G; there are three
cases that may occur, as announced:

2a) ¥(Ck,) C aff (Y(Ry)),
2b) ¥(Ck,) € aff (¢(G;)) or
2¢) ¢Y(Ck,) C aff(w(Gj)) and ¢ (Ck,) € aff(@/)(Rk)).

Before going into technical details we give a short overview how we deal with the
particular situations.

In the first case, the restriction of 1 to C, leads to an affine space A’ := aff (¥(Ry)).
We show that this space has dimension lower than m and |Ck, | > (dim A'+1)(r—1). After
that we adjust the color classes in Ck, so that we can apply the algorithm recursively for
m’ < m. We obtain r disjoint rainbow sets Fy,..., F, (with ¢¥/(F;) C A’) satisfying the
desired conditions and can stop our algorithm. In the second case, we show how to use
sets RY to construct set G;41 so that we can continue in the first loop. In the third case,
we prove that we can continue in the second loop.

We are now ready to deal with the particular cases:
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Case 2a): ¢(Ck,) C aﬁ(@b(Rk))

In this case, we show that the affine space A’ = aff (w(Rk)) is a proper subset of A and
there is a set C' C C'NyY~1(A') satisfying |C’] > (dim A’ +1)(r — 1), so that we can apply
induction to A’, C" and obtain the desired sets Fi,..., F,.

Let us verify it now. Let A’ := aff(¢/(Ry)) and m’ = dimA’. A has dimension
m and because we are in Case 2, we know that (C) € aff(¢(G;)). It follows that
dim aff (¢(G;)) < m. Since Ry C G, we also have m’ = dimaff (¢(Ry)) < m.

Condition (i) implies ¢(Ry) € K, so there is a point p € Ck, \ Cy(ry)-

Because Ry, is rainbow and dim aff (1/(Ry)) = m’ we can choose m/+1 distinct elements
ko, ki,..., kny inc(Ry). Wedefine C" := Cyy,,..1 ,yU{p} and partition C" into color classes
C) = Cy, U{p} and C! :=Cy, fori =1,...m/.

Because C' C Ck,, the assumption ¥(Ck,) C aff (¢(Ry)) (Case 2a)) implies ¢(C") C
A’. Also |C)] > r and |Cl] >r—1foralli=1,...,m'. It follows that we can apply the
algorithm recursively on C” and ¢ | C': C" — A’. We obtain r pairwise disjoint rainbow
sets Fy, ..., F, C C' that satisfy (),_, aff (¢/(F;)) # 0. From the definition of color classes
C! easily follows that any set F' C C' that is rainbow in C” is also rainbow as a subset of
C. We conclude that the sets Fi, ..., F, form the desired system.

Case 2b): ¥(Ck,) & aﬁ(¢(Gj))

In this case, we may construct the set G, as follows: We pick a point p € Ck, with
Y(p) ¢ aff (¥(G;)) and set G4 := (G \ Ry) U RY.

Before we show that such G4, satisfies conditions (I)—(III), we prove the following
auxiliary equality:

aff (1(Gjy1)) = aff (¥ (G; U {p})). (2.7)
Indeed,
aff (¥(Gj1)) = aff(¢ (G5 \ Re) U RY))
= aff (v (G5 \ Be) U (B \ {p}) U {p})).

where the last equality uses the fact that p € R} from condition (iv). Because the
operator aff satisfies aff(B U C’) = aff (B U aff C’) for every two sets B,C C A (we refer
to Observation 2.7) we may rewrite the expression further to

aff (V(Gj1)) = aff (¢ (G5 \ Ry) Uaft (0(B} \ {p})) U ({p})).
By condition (iv) aff (v/(R} \ {p})) = aff (¢(Ry)), which reduces the equality to:
aff (1(Gi11)) = aff ((G; \ Re) Uaft(6(Re) U ({p}) ).
Using Observation 2.7 again, we obtain
aff (U(Gs1)) = aff (v((G5\ Bi) U R U{p}))
Since Ry, C G, Equation (2.7) follows.
Using the fact that R, C G, we are now ready to verify that G4, satisfies condi-

tions (I)—(III).
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e Condition (I) (|Gj11]| =j+2): |Gj1| = | (G; \ Rr)UR]|. Because G; is rainbow,
condition® (ii) implies that the sets G; \ Ry and RY do not share any color. In
particular, they are disjoint and |G,+1| = |G; \ Ri| + |R}|. Since |R}| = |Rg| + 1
(condition (iii)), |Gj+1| = |G \ Ri| + |Rk| + 1. Because Ry, C G, we have |G| =
|G| + 1. Condition (I) for G; then implies |Gj41| = j + 2. We conclude that G,
satisfies condition (I).

e Condition (II) (G;i; is rainbow): We have G4 = (G;\ Ry) U R, As we
have already shown while verifying condition (I), the sets G; \ Ry and R do not
share any color. Hence it suffices to show that both G; \ Ry and R} are rainbow.
Since G is rainbow by condition (II), so are G; \ Ry and Ry, C ;. Conditions (iii)
(|RY] = |Ry| + 1) and (ii) (c(R}) = c(Ry) U {c} for some ¢ € Ky \ ¢(Gj)) then
imply that R} cannot use any color twice, so R}, is rainbow as well and the condition
follows.

e Condition (III) (dimaff(¢(G;11)) = j + 1): From the equality (2.7) we get
aff (V(Gj11)) = aff (¥ (G; U {p})). Moreover, we have chosen a point p which sat-
isfies 1 (p) ¢ aff (¢(G;)), so dimaff (¢(Gj41)) = dimaff (¢¥(G;)) + 1. By induction
hypothesis this equals j + 1 and G, satisfies condition (III).

It follows that we have constructed set G, satisfying the desired conditions, therefore,
we can continue with the first loop.

Case 2c¢): (Ckg,) C aff (¢(G;)) and ¢(Ck,) € aff (¢ (Ry))

In this case, we show how to construct sets K1, Ry and R}, for all points p € Ck, ,,
for which ¢(p) ¢ aff (¢¥(Ry1)).

We choose an inclusion minimal subset S C G satisfying @D(CKk) C aff (w(S )) and
define Ry4q := S. Because we assume that ¢(Ck,) C aff (¢(G})), such set Ryyq does
exist. We further define

KkJrl = Kk U C(Rk+1). (28)

Before we construct RY_ |, we prove the following two auxiliary claims:

k+1>

Claim 2.1. ¢ [ G; is injective, and (G;) is affinely independent.

Proof. The claim easily follows from |G;| = j + 1 (condition (I)) and dimaff (¢(G;)) = j
(condition (III)). O
Claim 2.2.

Ry, & Ry (2.9)

Proof. By condition (i) Ry € Ck,, so ¥(Rx) € ¥(Ck,). Since we have chosen Ry as
a set satisfying ¢(Ck,) C aff (¥(Rk+1)), we have aff (¢(Ry)) C aff (¥(Rk+1)). Because
Y(Ry) and ¢(Rypy1) are subsets of the affinely independent set ¢(G,) (Claim 2.1), we
have 1(Ry,) C ¢(Rg+1). Since ¢ [ G; is injective and Ry, Rx11 C G, we have Ry, C Ryy1.
Since ¥ (Ry) C ¢(Ck,) € aff (¢(Ry)) by condition (i) and the fact that we are in case 2¢),

we can use ¢(Ckg, ) C aff (w(RkH)) to deduce that that Ry, # Rj. O

bc(RY) = c(Ry) U{c}}, for some ¢} € K, \ ¢(G;) C Ky \ c(Ry)
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Now we construct sets R}, for all points p € Ck, ,, satisfying 1(p) ¢ aff (¢(Rk+1))-
Let p be such a point. By definition of Ryy1, ¥(Ck,) C aff (¢ (Ry11)), so p cannot lie
in Ck,. Equation (2.8) then implies ¢(p) € (Kj4+1 \ Ki) C ¢(Rg+1). Because Riy1 C G,
is a rainbow set’, there exists a unique element r € Ry with ¢(r) = c(p). Since we
assume p ¢ Cg,, we have ¢(r) = c¢(p) ¢ Ky O c¢(Ry), where the last inclusion follows from
condition (i). In particular, ¢(r) ¢ c¢(Ry), hence

re Rk+1 \ Ry (210)

Since Ry is an inclusion minimal subset of G for which w(CKk) C aff (w(RkH)), there
exists an element ¢ € C, such that ¢(q) & aff (¢(Ry11 \ {r})). Since ¥(q) € ¥(Ck,) C

aff (¥(Rk+1)), the exchange principle implies ¢(r) € aff (Y(Rys1 \ {r}) Uv({q})).
It easily follows that

aff ((Riir) = aff (v((Resa \ {r}) U{a})). (2.11)

Claim 2.2 together with (2.10) imply that Ry C Ry41 \ {r}. Since ¢ was chosen to

satisfy 1(q) & aff ((Rys1 \ {r})), we have ¢(q) ¢ aff (¢(Ry)) as well. Together with
q € Ck,, this implies that R} is defined. We set®

Ry = Rip \ (RyU{r}) UR]U{p}. (2.12)
It remains to show that our assignment satisfies conditions (i)—(v).

e Condition (i): By definition of Kji;, we have ¢(Ry+1) C Kyi1. Rip1 € G
and Kj Z ¢(G;) (condition (v)) then imply that Ky & ¢(Rj+q1), in particular
Kit1 # ¢(Ry41) and condition (i) follows.

e Condition (ii): Condition (ii) states that ¢(Rj) = ¢(Rg) U {c]} for some ¢} €
K; \ G;, in particular ¢(Ry) C c¢(R}). Together with the fact that elements p
and 7 have the same color (c¢(p) = ¢(r)), Equation (2.12) then yields ¢(R},;) =
¢ (Rr+1 \ Ri) Uc(R}). If we now apply condition (ii) for R and Claim 2.2, we see
that c¢(R}_ ;) = c(Ri+1) U {1}, where ¢, = ¢. Note that Kj C Kj1, hence
&1 € Kii1 \ ¢(G;). Condition (ii) follows.

e Condition (iii): By definition R}, = Ryy1 \ (Re U {r}) U R{ U {p}. Because
Ry is a subset of G, Ry is rainbow (condition (II)). Together with ¢(R}) =
c(Ry) UA{cl}, where ¢ ¢ ¢(G;) D ¢(Rg41), it implies that the sets Ryy1 \ Ry and
R are disjoint. Since r € Ryy1 \ Ry (Equation (2.10)), ¢(p) = ¢(r) € c¢(Ry41) \
c(Rg) and ¢(R}) N ¢(G;) = c(Ry) (conditions (ii) and (v)), we have p,r ¢ R} and
p,7r ¢ Ry. From ¢(p) ¢ aff(w(RkH)) follows p ¢ Ryi1. Since r € Ry, we have
|Riial = [Ria \ Bl = {r} + Ko} + [Ri] = |Riga \ Be| + |Ri| + 1, where the last
equality uses the induction hypothesis for k. From Claim 2.2 then easily follows

that |R}, | = [Re+1| + 1 as desired.

"G is rainbow by condition (II).
8We note that R2+1 does depend on our choice of ¢, i.e., if we choose another ¢ € C'k, that satisfies
¥(q) & aff (Y (Rpq1 \ {r})), we obtain a different set R}, ;.
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e Condition (iv): By definition p € R}, so we only need to verify that aff (¢ (R}, \
{p})) = aff (¢(Ri41)). Let us compute. Using the fact that ¢ € R} from condi-
tion (iv) and the equality aff (B U C) = aff (B U aff(C)) from Observation 2.7 we
may rewrite aff (¥(R},, \ {p})) as follows:

AT (R \ (p1) = aff(0(Rirn \ (Re U {r}) Uu(RY))
= alf (6 (Rt \ (B U {r})) U(RE\ {a} U {a)))
= aff (4R \ (Bi U {r}) Ul ($(RE\ {a}) Uv({a})).

Now we use condition (iv) for & (aff (¢ (R} \ {q})) = aff (¢(Ry))). We obtain

aff (WAL \ {pD) = aff (4 (Bii \ (R U {r}) Ualf ((Re) Uv({a}))

= aff (¢((Ren \ {r}) U {a}))
- aﬁ(¢(Rk+1))7
where the last equality follows from (2.11).

e Condition (v): By definition Kj 11 = Kj U ¢(Rp41). This implies Ck,,, = Ck, U
CC(Rk+1)‘ Hence Gj N OKk+1 = (Gj N CKk) (G N C c(Rp41) ) By the induction
assumption G; N Ck, = Ry. Because G; O Rjyi; is rainbow (condition (II)),
G; N Cyry) = Bry1. Claim 2.2 then implies G; N Ck,,, = Riy1 as desired.
Because Ky Z ¢(G;) and Ky C Ky, we have K11 € ¢(G,) as well.

It follows that we may continue in the second loop. This ends our description of the
algorithm.

Running time

We have already shown that if the algorithm stops, it always outputs r sets Fi,..., F,
that satisfy the desired conditions. It remains to argue that it always stops in polynomial
time.

Let us recapitulate how the algorithm works. First, if |Cy| > r it deletes the additional
points and similarly if |C;| > i. This can be clearly done in O(|C])-time. So we may
assume that |C| = (m+1)(r — 1)+ 1.

Let t(m,r) denote the running time of the algorithm under the conditions that

0] = (m+1)(r — 1) + 1. (2.13)

If m = 0, the algorithm splits Cy into r sets Fi,..., F,. and outputs them in O(r)-time,
hence t(0,7) = O(r). If r = 1, the algorithm outputs Cy in time O(|Cy|) = O(r) = O(1),
hence t(m,1) = O(1).

Since r < |C|, it follows that the total running time of our algorithm equals

t(m,r) 4+ O(|CY). (2.14)
Ifm>0,r>1and |C|=(m+1)(r—1)+1 the algorithm runs as follows:
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1: function TVERBERG_DECOMPOSITION

2 Let p be an element in Cy. Set Gy := {p}.

3 for =0,1,... do > First loop
4 if (C) C aff (¥(G;)) then > Case 1
5: Set Fr = Gj

6 Set C":=C\F,, Cl:=C;\F,,i=0,.... m, ¢ :=¢ [ C'

7 Call TVERBERG_DECOMPOSITION on m, r — 1 and C’, C!, ¢/

8 We obtain r — 1 sets Fy,..., F/_,.

9 Output Fy,..., F_,, F, and stop

10: else > Case 2
11: Set Ry :=10, Ky :={0,1,...,m} \ ¢(G,) and R} := {p} for all p € Ck,

12: for k=0,...do > Second loop
13: if (Ck,) C aff ((Ry)) then > Case 2a)
14: Choose a point p € Ck, \ Cer,). Let c(Ri) = {ko, ..., km}.

15: Set C" := Cc(Rk) U {p}

16: Partition C” into color classes Cj) := Cy, U {p}

17: and C! :=Cy, fori=1,...,m'. Set ¢’ .= [ C".

18: Call TVERBERG_DECOMPOSITION on m’, r and C’, C!.

19: We obtain r sets FY,..., F.

20: Output FJ, ..., F! and stop

21: else if ¢(Ck,) Z aff (¢(G;)) then > Case 2b)
22: Choose a point p € C, with ¥(p) ¢ aff (¥(G;))

23: Set Gj-i-l = (G] \ Rk) U Rﬁ

24: Continue in the first loop

25: else > Case 2¢)
26: Find inclusion minimal Ry11 € G; with ¢(Ck,) C aff (¢ (Rys1))

27: Set Ky = KU C(Rk—i-l)'

28: for all p € Ck,,, for which ¢(p) ¢ aff (¢(Ry41)) do

29: Let r € Riy1 \ Rk be the unique element with ¢(r) = ¢(p).
30: Choose an element ¢, € Ck, with
31 Ular) & aff (6 (i \ {1}) ).
32: Set R} := Ry11 \ (R U{r}) UR{ U{p}.
33: end for
34: end if
35: end for
36: end if

37: end for
38: end function

Before we start with the time analysis of the algorithm, we recall that u is the maximal
time needed to decide whether a point p € C' and a set S C C satisfy ¢(p) € aff ((5)).

The time that we need to decide whether ¢(C) C aff (¥(G;)) (line 4) is O(|Clu): We
simply test whether all elements of ¢(C) lie in aff (¢/(G;)).

Case 1 (lines 5 — 9) deletes points from G in all sets C;. This task can be performed
in O(|C])-time. Then the algorithm call itself recursively on C'\ G; and stops. Since
|C\Gj| =(m+1)(r—1)+1—(j+1), the recursive call has to delete m — j points from
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|C'\ G| before the set satisfies condition (2.13). Hence the total running time of Case 1
is t(m,r — 1) + O(m) + O(|C|) = t(m,r — 1) + O(|C)).

Let us now analyze Case 2 (lines 10 — 36). To avoid some technicalities during the
analysis, we set K1 = (). The decision whether we are in Case 2a), Case 2b) or Case 2¢)
can be done in O(|C|u)-time for the same reason as the decision whether we are in Case 1
or Case 2.

Line 11 can be performed in O(|C|)-time. Case 2a) (lines 13 — 20) calls the algorithm
recursively and then stops. If 0 € ¢(Ry), the set C’ contains one superfluous point and
the recursively called instance has to delete it. Otherwise |C'| = (m'+1)(r — 1) + 1 from
the beginning. Since lines 14 — 17 can be performed in O(|C/|) time and m’ < m, the total
running time of Case 2a) is at most t(m — 1,7) + O(|C|) regardless whether 0 € ¢(Ry,) or
not.

Case 2b) (lines 21 — 24) finds point p € Ck, with ¢(p) ¢ aff (¢(G;)). Such a point
can be found as follows: We go through all elements of Ck, and test whether ¢ (p) €
aff (¥(G;)). This requires O(|Ck, \ Ck, ,| - v) = O(|C|u)-time. Constructing G;4; from
p (line 23) can then be done in constant time. Hence Case 2b) finishes in O(|C|u) time.

Case 2¢) (lines 25 — 34) is the most difficult to analyze. It contains the nontrivial
task of finding inclusion minimal subset Ry C G, for which ¢(Ckg,) C aff (¢(Rk+1))
(line 26).

Claim 2.3. An inclusion minimal set Ry C G; for which ¢¥(Ck,) C aﬁ(¢(Rk+1)) can
be found in O(mu-|Ck, \ Ck,_,|) time.

We postpone the proof after the analysis of the remaining lines.

Line 27 can be performed in O(|C]) time. The cycle on lines 28 — 33 runs through
all elements p € C,,, for which ¢(p) ¢ aff (¢(Ry+1)). Line 26 implies that ¥(Cg,) C
aff (w(RkH)), hence it suffices to go through all elements p € Ck,,, \ Ck, and the cycle
is repeated at most |C,,, \ Ck,|-times. Testing whether p satisfies ¢(p) ¢ aff (¥(Ri+1))
(line 28) is performed in time wu.

Finding an element r € Ry \ Ry, that has the same color as p (line 29) can be done as
follows: We go through all elements r € Ry11\ Ry and check their colors. Equation (2.10)
implies that we find an element r with ¢(r) = ¢(p). This takes at most O(| Ry \ Rx|) time

in total. We choose an element ¢, € Ck, with ¢(q,) ¢ aff <w (Ris1 \ {r})) (lines 30-31)
as follows: Such element cannot lie in C,_,, because Ck, , C Ry, (lines 26 and 11), hence
we go through all elements ¢, € Ck, \Ck,_, and test whether ¢)(¢,) € aff <w (Rk+1\{'r’})).

Because this condition only depends on 7, we remember the points ¢. and reuse them for
all points p with ¢(p) = ¢(r).

The last line (32) can be performed in constant time. We conclude that the cycle on
lines 28 — 33 can be performed in time

O(|0Kk+1 \CKk|(u + |Rk+1 \ Rk|) + |CKk \CKk—1|u)‘
Since Ry1+1 € Gj and |G| = j+ 1 < m+ 1, this lies in
O(‘CKICH \ CKk‘(“ + m) + ’CKk \ Ckal‘u)'

Observe that Ry, C Ry (Claim 2.2), Ry C Gy, |G| = j+ 1 and Cases 2a) and 2b)
both terminate the second loop (lines 12-35). It follows that we go through Case 2¢) at
most 7 + 1 < m + 1-times.
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Now we use |J(Ck,,, \ Ck,) € C. Using amortized complexity, we see that the total
time that the first loop (lines 12 — 35) spends on lines 25 — 34 is bounded by O(|C|mu).

If we sum the running times up, we obtain that one iteration of Case 2 can be done
in time t(m — 1,7) + O(|C|mu).

From the condition dim aff (¢(G;)) = j follows that Case 2 (lines 10 — 36) can happen
at most (dim A)-times. Since dim A < m, it follows that the total running time of Case 2
is bounded by t(m — 1,7) + O(|C|m?u). (We recall that the term ¢(m — 1,r) is obtained
from Case 2a), which immediately runs the algorithm recursively and then stops the
algorithm. In particular the term t(m — 1,7) appears at most once.)

In combinations with the running time of Case 1 it gives t(m,r) < max{t(m —
1,r),t(m,r — 1)} + O(|C|m?u).

If we solve the recursion, we get t(m,r) = O(m + r)|C|m?u), hence the total running
time of our algorithm equals O((m + r)|C|m*u + |C|), see Equation 2.14.

The last thing we need to verify is Claim 2.3.

Proof of Claim 2.3. The task of finding some minimal Ry C G; such that ¢(Ck,) C
aff (¥(Ry11)) can be achieved as follows: We start with set S’ := G; and go through
all elements r € G; \ Ry (Ry € Ry, by Claim 2.2). For each such r we test whether
Y(Ck,) C aff(¥(S"\ {r})). Since ¥(Ck, ,) C aff(¢¥(Ry)), it suffices to test whether
U(Cr, \Ck,_,) C aff (¥(S"\ {r})). One such test can be done in time O(|Ck, \ Ck,_,|u).
If (Ck,) C aff (v(S'\ {r})), we delete r from S’. When we have tested all elements, we
set Ryy1 :=S". It follows that finding set Ry requires time O(|G}|-|Ck, \ Ck, | -u) =
O(mu-]C’Kk\Ckal\). ]
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3. Ramsey type result for simplicial
chain maps

In this chapter we prove Theorem 1.2. In fact, we prove a slightly stronger version
(Theorem 6.8): Let s, k,n > 1 be integers, M a manifold and f: A® 5 M a continuous
map. If

n > max{s +1, (Z)Ek(M;Zp)(s —2k)+ s+ 1} :
then there exists an almost embedding g: Agk) — A%k), such that the induced map
(fog)e: Ho (AW:7Z,) — H, (M;Z,)

is trivial and the g-image of every face is a union of faces in N

In this chapter we work with ordered simplicial and singular chains and derived ho-
mology groups, since the argumentation in the proofs is then much easier. Because not
all of these terms are commonly used nowadays and our proofs rely on precise definitions,
we recall them first.

Moreover, until now we have omitted the difference between an abstract simplicial
complex K and its geometric realization |K|. Since in some of our constructions the
distinction is necessary, we will carefully distinguish these two throughout this chapter.

3.1 Preliminaries

3.1.1 Simplicial complexes
If we write simplicial complex, we mean a finite abstract simplicial complex:

Definition 3.1 (Simplicial complexes). A finite simplicial complex is a finite family K
of finite sets such that T C o € K implies T € K. A simplicial complex L C K is called
a subcomplex of K.

If o € K and cardo = [, we call o an (I — 1)-dimensional face of K. The kth
dimensional skeleton K®) of K is the family of all < k-dimensional faces of K. The
vertez set V(K) of K is the set of all elements appearing in faces of K, i.e., V(K) = |J K.
We furthermore assume that the vertex set V(K) is linearly ordered.

The abstract d-dimensional simplex A, is the family of all subsets of {0,1,...,d}.
This simplex inherits its vertex ordering from the integers.

Since we are only working with finite simplicial complexes, we will usually omit the
word finite.

Definition 3.2 (Geometric realization). A geometric realization of a finite abstract sim-
plicial complex K is an assignment o — |o|, 0 € K, that satisfies:

1. If o is a k-dimensional face, then |o| is a k-dimensional simplex and

2. lo|N)o’| =londl.
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In such case we define |L| == ¢, |o| for every subcompler L C K.

By a slight abuse of notation, we also call | K| a geometric realization of K. Note that
| K| is a topological space.

We implicitly assume that every (finite abstract) simplicial complex K comes equipped
with a fixed geometric realization. If K does not come with a geometric realization, we
equip it with the standard one.

Definition 3.3 (Standard geometric realization). The standard geometric realization
of an abstract simplicial complex K is defined as follows: If v is the ith vertex in the
ordering of V(K), we define |v| as e;, the ith vector from the standard canonical basis
of ReardVIEN+L — For an I-dimensional face o = {vg,v1,...,u} of K, we set |o| =
conv{|vl, |v1], ..., |ul}. Finally, for a subcomplex L C K we set |L| := |J, .. |o|. In

particular, |K| =, cx lo] C Rcard(V(K))+1.

Unless stated otherwise, we endow every abstract simplicial complex with the standard
geometric realization described above.

Note that for s < n the standard inclusion of |A4| into |A,| is the restriction of the
standard inclusion R*™ — R™2 onto |A,].

In our constructions, we need the following special case of stellar subdivision:

Definition 3.4 (Stellar subdivision). Let K be a finite abstract simplicial complex with
geometric realization | K| and a ¢ V(K') be a point with |a| contained in the interior of o]
for some mazximal face o € K. The stellar subdivision sd(K,a) is the abstract simplicial
complex K' that is obtained from K by the following procedure:

e Remove o from K

o for every T C o add {a}UT to K.

For technical reasons, we equip K' := sd(K, a) with a geometric realization that slight-
ly differs from the standard geometric realization. We have assumed that |a| is given
and it stays the same in K'. For faces of K' containing a, we set |{a,vo,...,u_1}| :=
conv{|al|,|vo|,...,|vi_1|}. The remaining faces inherit their realizations from |K|. Fi-
nally, for every subcomplex L C K', we set |L| := |J,c |o]. In particular, |sd(K,a)| :=
Uaesd(K,a) lo|. Since we require the vertices of a simplicial complex to be ordered, we

shall now define the ordering on vertices of sd(K,a). The ordering of V (sd(K,a)) puts
a before all other vertices and orders the remaining vertices according to their original
ordering in K.

Observe that the geometric realization of sd(/,a) is homeomorphic to the standard
geometric realization of sd(K, a) and also to | K]|.

3.1.2 Chain complexes

Choosing appropriate homology theories in this chapter makes our argumentation much
easier.! It turns out that the ordered versions of simplicial and singular homology are

1 Since we are only working with sufficiently nice spaces, the resulting homology groups will be
naturally isomorphic, regardless of the definition we choose. The difference only appears at the level of
chain groups.
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suitable for our purposes. In both cases we consider augmented chain complexes and
hence reduced homology groups.

Since the corresponding definitions are scattered throughout the literature, we provide
all the necessary notions here. In order to introduce the homology groups efficiently, we
define some abstract machinery first. Moreover, since we are only interested in homology
with field coefficients, we state the definitions in this simpler setting?.

Definition 3.5 (Chain complexes). Let F be a field. An infinite sequence

8z+2 1 01
— Ciy1 — Cl Ciog — .

of F-vector spaces C; and their homomorphisms 0;: C; — Cy_1, where | ranges over the
integers, is called an F-chain complex, if 0,0 011 = 0 for every integer I. In that case
we define the graded F-module C, as the direct sum C, := @leZ C) and set 0 := @lez 0.
An element c € C; C C, is called an element of degree [.

If p: Cy — D, is a linear map between two graded F-modules, such that o(C)) C Dy
for some integer v, then ¢ = @ZEZ w1, where each ¢;: Cy — Dy is an F-linear map. We
call such a map ¢ a graded map of degree 1.

A chain map between two F-chain complezes

c
l+2 l+1
Cl+1 Cl —> Cl 1 >

and

op
i}Dl+1—>Dl—>Dl 1—)

is any 0-degree F-linear map ¢: C, — D, satisfying 0P o o = ¢ 0 9°.

By a slight abuse of notation, we also write C, as a shorthand for

i.e., for C, equipped with a (—1)-degree F-linear map 0 : C, — C, satisfying 0 09% = 0.
Hence we may say that C, is an F-chain complex.

If we write ¢: C, — D,, we mean that ¢ is a chain map between two F-chain com-
plexes C, and D,.

Also note that we mostly use augmented chain complexes®, i.e., chain complexes C\,
where C_; # (). Tt is a custom to denote such chain complexes with a tilde, i.e. C, instead

of C.,.

We are now ready to define homology groups. We also define boundaries and cycles,
which provide some geometric intuition about the properties captured in homology, at
least for simplicial and singular chain complexes that we define later.

2If the reader prefers more abstract setting, he/she can replace the field F with a commutative ring
R and vector spaces with (free) R-modules.

3In simplicial and singular homology, we may assign two reasonable chain complexes to a simplicial
complex (or a topological space), one of them having C_; = 0 and the other not. The latter is called
augmented.
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Definition 3.6 (Homology groups). Let F be a field and

o, o 0 o
C,= ... 30,5050, —. ..

an F-chain complex. The lth group of cycles Z; with F-coefficients is defined as Z; :=
Ker 0, and the lth group of boundaries B; with F-coefficients is defined as B; := Im 0, .
The Ith homology group H; with F-coefficients is then defined as the quotient Z;/B;. The
dimension of H; as an F-vector space is called the [th Betti number f;.

If we consider the trivial morphisms between the homology groups 0: H; — H;_q,
l € 7Z, we obtain the following chain complex

0 0 0 0
H= ..—H,w—H—H_1—...

It is a custom to call the homology groups of augmented complexes reduced and
denote them with a tilde, i.e. H; instead of H; and H, instead of H,, similarly we have
reduced Betti numbers f;.

Definition 3.7 (Induced map). Let F be a field and ¢: C, — D, be a chain map between
two F-chain complexes. Let BE be the boundaries in C., HE be the homology groups for
C., BP the boundaries for D, and HP the homology groups for D,.

The induced map in homology ¢,: HE — HP is defined as follows:

¢.(z2+ BY) := p(2) + BP if z is a cycle in C.

It can be easily checked that ¢, is a well-defined chain map.

3.1.3 Simplicial homology

When one works with simplicial complexes in algebraic topology, one usually assumes that
some ordering of their vertices is implicitly given. One also assumes that subcomplexes
inherit this ordering.

Our calculations turned out to be easier, if we change the ordering of vertices in certain
situations. It means that we have to state the vertex ordering explicitly. Let us now look
how this affects the definition of simplicial homology. We note that the constructions are
relatively standard?, see e.g. | , Chapter 1, §13] or [Bro, ].

Definition 3.8 (Ordered simplices). Let K be a (finite abstract) simplicial complex and
Il > —1 an integer. A sequence (vg,vi,...,v) with {vo,v1,...,v} € K is called an
ordered [-simplex in K. The elements vy, ...,v; are its vertices. An ordered l-simplex

4The ordered homology is not new. As noted in | ] the discussion whether to use ordered
or oriented chain groups for singular homology dates back to Lefschetz | ], Eilenberg | | and
Steenrod [ ]. In short: in oriented homology one regards two I-dimensional singular simplices o
and o’ as equal, if there exists an order preserving linear transformation 7 of |A;| such that o = ¢’ o7
and one regards ¢ as equal to —o’ if there is an order reversing linear transformation 7' such that
o = ¢’ o7. One further throws away “degenerated” simplices satisfying 0 = —o. In ordered homology
one considers degenerated simplices, but factors out the subgroup they generate, see | ]. Regardless
whether we choose the chain group of all singular simplices, ordered singular simplices or oriented singular
simplices | ], the resulting homology functors are naturally isomorphic.

The situation for ordered and oriented simplicial homology is analogous.
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o = (vg,v1,...,v) is degenerated, if two of its vertices coincide, i.e., if there exist
1,7, 0 < i < j <1 for which v; = v;. Ifm € S({O,l,...,l}) 1s a permutation of
the set {0,1,...,1} and 0 = (vo,...,v;) an ordered l-simplex in K, we define® w(c) :=
(Vr=1(0)s Vr-1(1)5 - - -, Vr1(1y)- If 0 = (o, ..., ) is an l-simplex in K and a € V(K) is a
vertex of K, then a A o denotes the ordered (I + 1)-simplex (a,vg,v1,...,v;). Note that
we cannot assume that a Ao is an (I +1)-face of K, so we regard a Ao as an (4 1)-face
of the simplicial complex 2V ).

We are now ready to define the simplicial chain groups.

Definition 3.9 (Simplicial chain groups). Let K be a (finite abstract) simplicial complex,
F a field and I > —1 an integer. We define the Ith augmented ordered simplicial chain
group O)(K;T) to be the F-vector space with basis consisting of all ordered l-simplices in
K. In other words, 6l(K;IF) is the set of all finite sums > a;0;, where a; € F and o; are
ordered l-simplices in K. The addition of two such sums and multiplication of such sum
by an element of F is defined in the natural way. B

We further define the Ith augmented simplifying® simplicial chain group T;(K; F) to be
the vector subspace of 61(K; F) generated by degenerated singular l-simplices and elements
of the form (0 — Sgn(ﬂ)ﬂ(a)), where o ranges over all ordered l-simplices in K and w
ranges over all permutations m € S({O, 1,... ,l}).

The [th augmented simplicial chain group él(K ;) is the quotient-space
Ci(I;F) := Oy(K;F)/Ty(K; F).
Ifl < —1, we put C/(K;F) = O)(K;F) = T)(K;F) = 0.

We note that 5,1(K ;) is generated by the empty sequence w and hence isomorphic
to F. Furthermore, there are no ordered degenerated (—1)-simplices. Since there is only
one permutation of the empty set, and its sign is by definition 1, 7" ;(K;TF) is generated
by w —w = 0, hence C_ (K;F) = O_ (K;F)=F.

Now we define the boundary operators in order to turn simplicial chain groups into
chain complexes:

Definition 3.10 (Simplicial boundary operators). Let K be a (finite abstract) simplicial
complex and F be a field. If I > 0 is an mteger the lth ordered simplicial boundary
operator 8°: Oy(K;F) = O,_y(K;F) is given” on the basis of Oj(K;F) by

l

alo(</007vla s 7Ul)) = Z<_1>i(1}07v17 s 7/1/}\1'7 cee 7/Ul)

1=0

®Observe that 7(o) is again an ordered [-simplex in K. Also note that it is common to define 7 (o)
using 7! to permute vertices, since in this way v; maps onto Ur(;)- Moreover, without the inverse the
equality ’(7(0)) = (7’ o m)(0) would not hold.

6The letter T stands for trivial, but the term trivial chain group would collide with the term trivial
group, hence we decided to call T;(K;F) simplifying group, because we use it to simplify our calculations.

"The boundary operator depends on F and K, but to keep the notation simple, these are usually
omitted.

8 We use the symbol (vg,v1,...,0;,...,v;) as a shorthand for (vg,vy,...,v;) with v; removed. That

iS, (UQ,U],...,Ui,...,U[) = (’UO’/U]_7...’/Ui717vi+1,vi+27...,’ul).
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and extended linearly to the whole space Oy(K;TF).

It is easy to check that O (Tl(K; F)) C Ti-1(K;F), so we may define the lth simplicial
boundary operator ;: 5I(K;JF) — a_l(K;F) by O (0 + TZ(K,IF)) = (8100) + T}_l(K; IF)
for every o € O(K;TF).

Forl <0 we put 0 =0, 0, =0.

It can be easily verified that df o 97, = 0 and 9, 0 941 = 0 for every integer .

Definition 3.11 (Simplicial chain complexes). Let K be a (finite abstract) simplicial
complex and F be a field. The augmented ordered simplicial chain complex O, (K;F) is
the following infinite sequence of F-vector spaces and maps between them

Mg ~ 1 N O
O, (K;F) := oo = O (KGF) — O(KGF) — O (K F) — ...
According to Definition 3.0, the augmented ordered simplicial chain complex gives rise to
ordered simplicial boundary groups Bf(K;F), ordered simplicial cycle groups Z7(K;TF)
and reduced ordered simplicial homology groups [/fl‘) (K TF).
The augmented simplicial chain complex 5*([( ;TF) is the infinite sequence

CoKF) = . 22 G (KGF) 2% Gk F) 2 O (G F) 225
It gives rise to simplicial boundary groups B;(K;F), simplicial cycle groups Z,(K;F) and
reduced simplicial homology groups H;(K;F).

If the field F is clear from the context, we omit it from the notation and only write

H(K), BY(K), Z°(K), C(K), ete. If we explicitly state the source and target space of
the boundary operator, (or when it does not matter), we also omit the indexes [ and o

for 8, i.e., we write Oy(K) 2 O1_1(K), instead of O,(K;F) x, O1_1(K;F), etc.

3.1.4 Singular homology

In order to allow easy transition from simplicial to singular homology groups, we present
a definition of singular homology that matches the ordered approach.
Let us define several maps first.

Definition 3.12 (Standard simplices). Let [ > —1. The standard [-dimensional simplex
|| is defined as” |A| == conv({ey,...,e;1}) = {(to,t1,..., ;) | 0 < t; < 1L, =
1} g RlJrl'

For 0 < i <1 we define the ith face map 6;: |A;_1] — |A] by

5Z(to,t1, Ce ,tl_l) = (to, tl, .. ~tz’—1> O,ti,t“_l, Ce ,tl_l).
If0<i<land0<j <l are two distinct integers (i # j), we define the degeneracy
map 0,7 Ay = |A] by

) {(to,...,ti1,0,ti+1,...,tj1,tj Vol b)), ifi<],

o) (to, th, ... 1) == e
: (to, .-y tjon,ty +titipn, .o tioy, 0, tign, .. ) if i > 5.

9See Definitions 3.1 and 3.3.
10With some fantasy the case i > j can be viewed as the proper interpretation of the first formula for
7 <.
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Ifme S({0,1,...,1}) is an permutation, we define the permutation map pf: |A| —
\Ay| by pf (to, t1, ... 1) = (te1(0)s ta—r(1)s - - - > ta1q)). Furthermore, if 7 is the identity
on 0, we let p™, be the identity on () as well.

In other words, ¢! is the orientation preserving inclusion of |A;_;| on the facet of |A]
that does not contain the ith vertex, the map ali’j maps the 7th vertex to the jth vertex
and leaves other vertices unchanged'' and p] permutes the vertices of |A;| according to
the permutation .

In the proof of Lemma 3.32 we will need the following observation concerning maps

o7, 6 and pj:
Observation 3.13. Let k,l,m be integers satisfying 0 < k <I[,0<m <[l —1. Then
oF oo™ ifk<m,

o o o = st if k€ {m,m + 1}, (3.1)
oF oot ifk>m+1

and
Oit 00 = 0y 00y
Moreover, if w is the transposition (01) viewed as an element of S({0,1,...,1}) and 7’ is

the transposition (01) viewed as an element of S({0,1,...,1 —1}), then

5} if k=0
prod) =146 ifk=1 (3.2)
Sfopl, ifk>1

2,1 S 2,0
and o, op] =pfoo;.

Proof. The maps (53 and af "™ are linear for all non-negative integers 7, j, n. Hence it suffices
to verify that for every ¢ = 1,...,l+1 the left and right hand-side of Equation (3.1) map
e; onto the same point and similarly for the remaining equations. This can be easily
checked using the equalities

5{(81') _ e for0§‘2<?,
e forl>i>j,

ot

) {@ for 0<i<li#j+1,
€e; =

e, fori=j+1,
pi(e) = exp

We can now define singular simplices.

HUsually the degeneracy map is defined as a map from |A;| to |A;_1]. Our calculations are simpler
if we have a map from |A;| to |A;|. Hence we have decided to compose the usual jth degeneracy map
with the ith face map to obtain our map o;”.
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Definition 3.14 (Ordered singular simplices). Let | > —1 be an integer and X a topo-
logical space. An ordered singular [-simplex in X is any continuous map v |Al| — X.
An ordered singular l-simplex y: |A;] — X is degenerated if v = +' o g’ for some
i,7 €{0,...,1}, 1 # j and some ordered singular l-simplex v': A — X.

In other words, « is degenerated if it factors linearly through some face of |A].
Next we describe the singular chain groups.

Definition 3.15 (Singular chain groups). Let X be a topological space, F a field and
Il > —1 an integer. We define the Ith augmented ordered singular chain group O (X;TF)
to be the F-vector space with basis consisting of all ordered singular I-simplices in X . In
other words, O)(X;F) is the set of all finite sums >, a;y;, where a; € F and v; are ordered
singular l-simplices in X. The addition of two such sums and multiplication of such sum
by an element of F is defined in the natural way. B

We further define the Ith augmented simplifying'? singular chain group T;(X;F) to be
the vector subspace of 51(X; F) generated by degenerated singular l-simplices and elements
of the form (0 —sgn(m)(o opf)), where o ranges over all singular l-simplices in X and
m ranges over all permutations ™ € S({O, 1,... ,l}).

The Ith augmented singular chain group C;(X;F) is the quotient-space
Ci(X;F) := O)(X;F)/T)(X;F).
Ifl < —1, we put C/(X;F) = O)(X;F) = T)(X;F) = 0.

A (—1)-dimensional smgular snnplex in X is the unique, empty map from 0 to X.
Furthermore we have O_1(X;F) = F, T_(X;F) = 0 and C_;(X;F) = F by the same
argument as for the simplicial chain groups.

In order to turn singular chain groups into chain complexes, we define the boundary
operators.

Definition 3.16 (Singular boundary operators). Let X be a topological space and F a
ﬁeld If 1 > 0 is an integer, the Ith ordered singular boundary operator 9° : OZ(X F) —
O11(X;F) is given on the basis of O)(X;F) by's

l

(7)) = (=D)i(yod)

1=0

and extended linearly to the whole space Oy(X;TF).

It can be checked that 9P (Tl(X F)) C Ti- 1(X F), so we may further define the lth
singular boundary operator 4 : Ci(X:F) = C_1(X;F) by I (o + Ty(X; F)) := (8P0) +
Ti-1(X;F) for every o € Oy(X;F).

For 1 <0 we put 9° =0, 9, = 0.

12 As in the simplicial case, the letter T stands for trivial, but the term trivial chain group would collide
with the term trivial group, hence we decided to call T;(X;F) simplifying group, because it is used to
simplify our calculations.

13See Definition 3.12, which introduces the maps &;.
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It can be easily verified that 9° o 8&1 =0 and 0, 0 0;41 = 0 for every integer [.
Definition 3.17 is an analogue of Definition 3.11 for singular chains.

Definition 3.17 (Singular chain complexes). Let X be a topological space and F a field.
The augmented ordered singular chain complex O, (X;F) is the following infinite sequence
of F-vector spaces and maps between them

O.(X;F):= .. REX 2 01 (X F) REN O x:F) 25 6,1 (x:F) 22

According to Definition 5.6, the augmented ordered singular chain complezx gives rise to
ordered singular boundary groups BP (X F) ordered singular cycle groups Z2(X;F) and
reduced ordered singular homology groups H, FO (X;TF).

The augmented singular chain complex 5*(X ;F) is the infinite sequence

C.XF) = ... 225 0L (X F) 245 Gux:F) 2 Oy (X F) 224

It gives rise to singular boundary groups B)(X;F), singular cycle groups Z; (X;F) and
reduced singular homology groups H;(X;F) and reduced Betti numbers 3,(X;F).

As for the simplicial homology, if the field F is clear from the context, we omit it
from the notation and only write H,(X), Z2(X), C)(X), etc. If we explicitly state
the source and target space of the boundary operator, (or when it does not matter),

we also omit the indexes [ and O for 0, i.e., we write 5Z(X) 9, 51,1()(), instead of
Oi(X;F) i O1-1(X; ), etc.

Note that if K is a simplicial complex, f[l(K ) stands for the {th simplicial homology
group, whereas for a topological space X, the symbol ﬁl(X ) means the Ith singular
homology group. In particular, ﬁll(|K |) is the Ith singular homology group corresponding
to simplicial complex K.

Any continuous map f: X — Y between two topological spaces X,Y induces chain
maps between the corresponding chain complexes and hence also between the correspond-

ing homology groups. The following definition shows which symbols we use for various
induced maps.

Definition 3.18. Let f: X — Y be a continuous map between two topological spaces X,
Y and F be a field. The induced chain map fﬁ 0L XGF) — O, (Y F) is prescribed on

the generators of O, (X;TF) by

fﬁo(v) = foy for every ordered singular simplex -y

and extended linearly onto the whole 0.(X: F).
The induced chain map f;: C.(X;F) — C, (Y F) is prescribed on the generators of

1y (7 + T}(X; IF)) = (foy)+ ’.ﬁ(Y; F) if v is an ordered singular l-simplez.
We further set f© = (f2)e, fo = (fo)s.
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Note that fﬁo (ﬁ(X,IF)) C T)(Y;F), hence f3 is well-defined.
As before, we may omit the superscript O, if it is clear from the context.

Definition 3.19 (Inclusion of simplicial chains into singular chains). Let K be a (finite
abstract) simplicial complex with geometric realization |K|. Let F be a field. There exists
a natural inclusion % of O,(K;F) into O,(|K|;F). It is defined as follows: Let o =
(vo,v1, .. .,v;) be an l-dimensional ordered simplex in K. Let the geometric realization of
its vertices be |vyl,. .., |v|. The value of 1% (o) is the singular I-simplez'* ~: |A)| — | K]
given by (to,t1, . . tl) — 1 ]vo| +...4+1 \'Ul]

The natural mclusmn s C, (K F) — C,(|K|;F) is defined as follows:

x(0+ T(K;F)) = 1% (o) + TI(|K|;F) if o is an ordered l-simplex in K.
We conclude this subsection with a comparison of the defined homology groups.

Theorem 3.20 (Equivalence of defined homologles) Let X be a topological space and F
a field. Then the factorization 79: O, (X;F) — O.(X;F)/T.(X:F) = C.(X;F) induces
an isomorphism 759 of HO(X:;F) and H,(X;F).

Let K be a (ﬁmte abstract) szmplzcml complex and F a field. Then the factomzatwn

. O0.(K;F) = O.(K;F)/T.(K;F) = C.(K;F) induces an isomorphism 7> of H°(K;TF)
andH (K;TF).

Also the induced maps (:%), : H(K:F) — HC (|K|;F) and (1x), : H(K;F) —
H, (|K|;F) are isomorphisms.

Proof. The isomorphisms H°(K:F) = H,(K;F) = H° (|K|;F) follow from | , Thm.
2.1, Thm. 4.7]. The isomorphism HO (|K|;F) = H, (|K|;F) is provided in | ] or
can be obtained by an inspection of the proof of equivalence of simplicial and singular
homology in Hatcher’s textbook | , Thm. 2.27]. O

We note that for simplicial homology the definition of reduced homology in Hatcher’s
textbook [ | agrees with H,, whereas for singular homology his definition agrees with
7o
Remark 3.21. For a simplicial complex K, we have defined the /th simplicial chain group
Cy(K) as the factor O;(K)/T,(K). Every ordered I-face (ug,u1, ..., w) of K is modulo T}
equivalent to 0 or (—1)*(vg, v1, . ..,v;), where vg < v; < ...,v;in the > ordering of V(K) and
t is either 0 or 1. Since chains of thls form generate a subgroup of Ol( ), the short exact
sequence 0 — Tl(K) — O)(K) = Cy(K) — 0 splits and Oy(K) = C/(K) ® T,(K). So we
can either view C; as a free group generated by the simplices of the form (vg, vy, ..., v;),
where vy < v < ... < v, or as the factor O;(K)/T;(K). The second approach only differs
from the first one by introducing new names for some chains in C;(K), e.g. (vg, va, v1) =
—(vo, v1,v2), (vg,v1,v1) = 0, etc. The new names are very useful during our calculations.

To simplify our terminology, we say that o is a k-face of K, if 0 = (vg,v1,..., 1),
where vy < v < ... < v, and {vg,vy,...,v} € K.

HRecall that |v;| is a point in the simplex |of, hence to [vo| + ... + & [v] € |o] € [K]| and (o) is
indeed a singular simplex in O, (|K|;F).
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3.1.5 Almost embeddings
Definition 3.22. Let K be an abstract simplicial complex and F a field. A support of

an ordered l-simplex 0 = (vg,v1,...,v;) in K is defined as follows
(0) 0 if o is degenerated,
supp(o) :=
PP {vo,v1,...,v} otherwise.

Let v € C, (K;F) be a simplicial chain. Then vy can be expressed as y =), ; a;0; +
T, (K;F), where 0; € K are non-degenerated ordered simplices in K, all a; are nonzero
and o; and o; have distinct supports for i # j. We then define the support supp(y) of v

as
supp(y) := o

el
We note that the expression of v as ), ; a;0; + Tl (K;F) is not unique. For example,

(v, v1) + T1(K;F) = —(v1,v0) + Ty(K; F). However, the result supp(y) is independent of
the way we express 7.

Before we proceed further, let us recall that we assume that any (abstract) simplicial
complex K comes equipped with a fixed geometrical realization |K|. That is, if we write
| K|, then we always mean the same geometric realization of K.

Definition 3.23. Let K be an abstract simplicial complex with geometric realization | K|,
J > 1 an integer and X a topological space. We say that f is a j-almost embedding of K
into X, if f: |K| — X is a continuous map such that for every (j + 1) pairwise disjoint
faces 0g,01,...,0; € K

fllool) 0 floa) N0 f(logl) = 0.

The term almost embedding is used as a shorthand for 1-almost embedding.
If K and L are two abstract simplicial complexes and ¥ a field, then a chain map
v: Cy (K;F) — O, (L;F) is called an almost embedding if for every two disjoint faces
o,00 € K
supp (¢(0)) Nsupp(p(o”)) = 0.

The definition of a j-almost embedding f ensures that for every (j+1)-tuple of disjoint
faces oy, ..., 0,41 the intersection of their f images is empty, i.e., f(Jool) N f(Jor])N---N
f(lo;]) = 0, however, there may exist up to j disjoint faces, whose f images intersect.

Note that every (continuous) embedding f: |K| — X is an almost embedding as well.

If K, L are two simplicial complexes and X a topological space, f an almost embedding
of K into |L| and g an almost embedding of L into X, it may happen that g o f is not
an almost embedding, see Fig. 3.1.

But this cannot happen, if f behaves nicely:

Observation 3.24. If K, L are two simplicial complezes, X a topological space, j, k > 0
integers, f a j-almost embedding of K into |L|, g a k-almost embedding of L into X and
if for every o € K the image f(|o|) has the form

f(lo|) = U \pt|,  where pl are simplices in L,
iel
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X
a b g
b .
L o f@ O 9(0) D

The composition of almost embeddings is not always an almost embedding. Here an
example for K = {0, {a},{b}}, L ={0,{0},{1},{0,1}} and almost embeddings f of K
into |L| and g of L into X = R2.

Figure 3.1: Bad composition of almost embeddings

then go f is a (jk)-almost embedding of K into X.

The proof is straightforward.

3.2 Statement of the main result

Let us recall the main idea behind Theorems 1.1, 1.5 and 1.8: Suppose that L is a finite

simplicial complex and f: ’Agﬂ) — X is a continuous map of ’A%k)’ into a sufficiently
nice topological space X. If p is a prime number and n is big enough (depending on X,

L and k), we can, using Ramsey theory and the additive structure of the chain group
C. (A,(f);Z,,), find an almost embedding ¢: C. (L;Z,) — C, <A$Lk);IF) such that the
composition f; o ¢ is homologically trivial.

One of our main results in this direction'® is Theorem 3.25, which provides a reason-

ably good bound on n and serves as our main technical tool in proving Theorems 1.1 and
1.5 in Chapter 4.

Theorem 3.25. Let b > 0 and n,s,k > 0 be integers and p a prime number. Let M

be a manifold® with k-th reduced Z,-Betti number at most b. Let f: ‘A%k) — M be a
continuous map.
If
nZ(Z)b(s—Zk)—i—s—l—l and n>s+1, (3.3)

then there exists an almost embedding g: ‘Agk)‘ — ‘A%k) such that the induced homo-

morphism in homology (f o g)*: H, <’Agk) ;Zp> — H.(M:Z,) is trivial. Moreover, the

15For the other results in this direction see Chapter 6.
16The theorem remains valid if we replace manifold M with an arbitrary topological space X and
consider its singular homology when computing Betti numbers.
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image g(|o|) of every face o € AP has the form Uics, 103l where p; are some simplices
from AP,

Actually, we prove the following stronger form of Theorem 3.25:

Theorem 3.26. Let b > 0 and n, s,k > 0 be integers and p a prime number. Let M

be a manifold with k-th reduced Z,-Betti number at most b. Let 0: C, (‘A,(lk) ;Zp) —
C, (M;Z,) be a chain map.
If
nZ(Z)b(s—Zk)+s+1 and n>s+1, (3.4)

then there exists an almost embedding g: ‘Agk) — ‘A%k) such that the induced homo-

;Zp> — H.(M;Z,) is trivial. Moreover, the

morphism in homology 0, o g,: H., (’Agk)

image g(|o|) of every face o € AP has the form Uics, 103l where p; are some simplices
from AP,

Theorem 3.25 then follows from Theorem 3.26 by setting 0 := f;.

Remark 3.27. The reader who does not want to use colorful algebraic Tverberg theorem
(Theorem 2.14), may still go through the proofs in this chapter and use Lemma 2.10
instead, but he/she obtains a bound n > ({)b(s — 2k) + 2s — 2k instead of n > (;)b(s —
2k) + s+ 1 in Theorems 3.25 and 3.26.

3.3 Proof of the main result

We split the proof of Theorem 3.26 into several lemmas representing separate ideas.
Throughout the chapter we assume that F is a field and k,n,s > 1 are fixed inte-

gers, m = (ZE) is the number of all k-faces of Agk), o1,...,0, are all of them and

0: C, <‘A,(~Lk)‘ ;F) — C, (M;F) is a fixed chain map. Moreover, because we want the

proof to be as understandable as possible, we will avoid an unnecessary symbol for the
inclusion map AP 5 AP and consider AP as the subcomplex on the first s+ 1 vertices
of AS{“), in accordance Section 3.1.1. The general plan looks as follows:

Let ¢, be the natural inclusion of C., (Ag%lb’) into C, ( ’A%k)
For brevity we set ¢ := 6 o (1,). First we show how to construct a certain chain map
Y C., (Agk);lﬁ‘> - C, <A,(1k);IF> such that the composed map ¢, o 1, : H*(Agk);IF) —
H,.(M;T) is trivial, that is, ¢, o ¢, = 0. Then for F = Z,, we use ¢ to construct an
almost embedding g: ’Agk)’ — ’A,(f) satisfying (,)«0%s = g« 0(ts)s. Then 0 = p 01, =
0.0 (tn)s 0ty = 0,09, 0(Ls)s and because (is), is an isomorphism | , Theorem 2.21],
it implies triviality of 6, o g,. Commutative diagram 3.2 illustrates the situation.

The proof of Theorem 3.26 is split into separate lemmas as follows: Observation 3.28
describes the following idea behind the construction of ¢: If modify the inclusion

;IF), similarly for ¢.

C. (AW F) — C, (AP, F)
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ff* (Agk); Zp> L f]* (Aﬁl’“); Zp>

J{(Ls)* l(bn)* 2

. ((A@ ;Zp> 9L <’A,(f)

Zp) = H(M; Z,)

Figure 3.2: Triviality of 6, o (vy,), o %, implies triviality of 6, o g.. Note that (i), is an
isomorphism.

vy Vv Vi Vi Vi
Xi X; T
g; + Zy, - g; T
! .2 . — T2
. T
I3 T3
Vo Vo v Vo v

Figure 3.3: Edge 0 = (v1,v2) “rerouted” through point z; and through multipoint
T3 — Tog + T1.

by subtracting any linear map that maps all maximal dimensional faces o; of AP to cycles
2y, and all other faces to zero, the resulting linear map #: C, (Agk); IF) — C, <A,(f); )
determined by

(o) {a if o € AP is a face of dimension strictly less than k,
o) =

0; — 25, 1 o=o;

is a chain map again.

Then we restrict our attention to cycles z,, of a special form'” d(x; A 7;), where
eV (AS”). If £k =1 and o; = (vg,v1) is a k-face, then o; “travels” from vy to v;
directly, whereas ¢(0) = 0 — 25, = (vo, ;) + (25, v1) makes a detour through point z;, see
Fig. 3.3. To obtain better bounds later on we allow z; to be multipoints'®, see Figure 3.3
again.

Lemma 3.29 shows a condition on the multipoints x; which forces the induced ho-
momorphism ¢, o 1, to be trivial. Lemma 3.30 provides sufficient condition for ¥ to
be an almost embedding. Lemma 3.31 states that the condition of Lemma 3.30 can be
satisfied with a relatively small number of multipoints. Lemma 3.32 is used to construct

f: ‘Agk)‘ — ‘A;’“)‘ satisfying (t5,)« © s = fi 0 (ts)«. At the end we use Theorem 2.14 to
find the multipoints satisfying all the prescribed conditions.

We note that Theorem 3.25 does hold even for k = 0, stating that if we have s(b+1)+2
points in a topological space having (b + 1) path-connected components, we can always

17Gee Definition 3.8 for the introduction of z; A ;.
18See Definition 2.2 for the introduction of multipoints.
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find s + 1 of them lying in a common path-connected component. Lemma 3.34 shows
that our approach can be viewed as a natural generalization of the case k£ = 0 to higher
values of k.

For the next observation, recall that o; are all k-dimensional faces of N

Observation 3.28. Let F be a field and z4,, 25y, - - - , 25, arbitrary cycles in C. (A%k); IF) )

If we have a linear map : C. (Agk);]F) - C, <A$Lk);IF> which satisfies

0 — 25, if 0 =0

k3

{0 if o € AP s q face of dimension strictly less than k,

Then 1 is a chain map.

Proof. Since the map 1 is linear, we only need to verify that »o0 = do1. The boundary
map 0 is also linear and the set of all faces of AP freely generates C, (Agk);IF), see

Remark 3.21. So it suffices to check that ¢ o d(¢c) = 0 o ¥ (o) for every face o € AP,

Let o be a face of AY. Tts boundary Odo is a chain that contains only faces of
dimension less than k. Since v is identical on such faces, its linearity gives ¢(do) = do.

If o is a face of dimension less than k, 1o = ¢ by definition, hence dvo = do in that
case.

For a k-dimensional face o; we have ¢(0;) = 0,—2,,. By linearity 0(¢(0;)) = 00;—02,,.
Because z,, is a cycle, we have 0z,, = 0, hence 9(¢(0;)) = 0o; as well. This finishes the
proof. O]

To simplify the expressions in the following text we introduce some notational con-
ventions now. If K is a simplicial complex and z a cycle in Ci(K;F), we let [z] denote
its homology class, i.e., [2] = z + B(K;F). Furthermore, we write ¢.[z] as a shorthand

for . ([2]).

Informal sketch of Lemma 3.29. If we picked up a vertex = € A and set 2g; =
Jd(z A o;) for all k-dimensional faces o;, the map ¢ from Observation 3.28 would satisfy
U, = 0, see Fig. 3.4 for an illustration in the case £ = 1. Most likely, ¥ would not be
an almost embedding. But there is a way around this: If we had m different points'’
Ty, ..., Ty satisfying ¢, [0(x1 A ;)] = ¢.[0(z; A ;)] for all i and j, we could set z,, =
O(x; A 0;). The map ¢, o1, would be trivial, since the different points x; all behave as
x1 with respect to ¢,. Note that it is also possible to replace the points zy, ..., x, with
multipoints® i1, ..., .

Now we formalize the idea for multipoints and arbitrary k: Let X =V (A%k)> be the

vertex set of A, p=> " cx ez € M(X;F) be a multipoint and o be a k-face in NG
We set
O no) = a0 Ao) (3.5)

zeX

19That means one point for every k-face.
20See Definition 2.2.
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V9 V2

V3 V3

vy Vi
The cycle vivy + vovg + v3v1 turns into vix + xve + vex + xv3 + V32 + xv1, which can be

contracted to z. Other triangles behave the same way. Similarly in higher dimensions.

Figure 3.4: Setting z,, = 0(x A 0;) for all o; implies triviality of .

Clearly O(u A o) € C. (Agﬂ ]F) is a cycle.
Recall that oy,...,0,, are all k-dimensional faces of K and we have a chain map
P: 6’* <A£Lk);IF) — 5* (M;TF). We define

v(p) = (90* (DA a)], e [d(nAoa)],. .. [0 A Um)]> (3.6)
for every p € M(X;F).

Lemma 3.29. Let F be a field, X =V <A£{‘“)> be the vertex set of A&k), Loy s oy - -« s oy,
be (not necessarily distinct) multipoints from M (X;F) with v(uys,) = V(le,) = ... =
V(ito,, ). Let 1: C, (Agk);l[?> - C, (Agﬂlﬁ’) be the linear map determined by its value

on generators of C. (Agk);F) :

(o) {0 if o € AP s q face of dimension strictly less than k,
o) =

o; — O, Noy) if 0 =0y
(3.7)
Then ) satisfies @, o 1, = 0.

Proof. Because 0(,, A 0;) is a cycle, 1 is a well-defined chain map by Observation 3.28.
The only condition that needs to be checked is ¢, o 1), = 0. The homology group
H, (Agk);F> is generated”’ by the elements of the form [07], where 7 is a (k + 1)-

dimensional face of AYY . Therefore, we only need to verify that ¢, (¥.[07]) = 0 for all

faces 7 € A, of dimension k + 1.

21This is a well known fact, which can be verified for example as follows: We know the number of
[-dimensional faces of Agk) for every [, so we may compute its Euler characteristic. The non-reduced
homology of Agk) is concentrated in degrees 0 and k, so we may use the FEuler characteristic to compute

Br (Agk);Zg) = (Zii) Then we verify that [07], where 7 is a (k + 1)-dimensional face of A

containing its first vertex, are linearly independent and hence form a basis of H, (Agk); Zg).

20




Nevertheless, in order to verify it, we need to work with (k + 2)-dimensional faces. It
makes the calculations somewhat tricky, since we can only apply ¢, to cycles of dimension
at most k.

So let 7 = (v, v1, ..., Uks1) be a (k+1)-dimensional face of A;. To keep the equations
short we set 7; = (vo, v1,...,0;,...,0k1). By definition
k+1
or =Y (17 (3.8)
i=0

Using (3.7) and observing that all 7; are k-faces, we obtain

k+1

Y(Or) = (=1 (1 = O, A ),

1=0

henceforth

(pr0)(07) = pu | (=) (1 = dur, Aﬁ))]

= P« Z(_Uiﬂ;] _Z<_1)i90* [a<:un ATZ’)}

The multipoints p, satisfy v(u.,) = v(ir, ), hence by Equation (3.6), ¢, [0(ur, Ao)] =
©.[0(pr, A 0)] for every k-dimensional face o and we may continue our calculations:

(pe o)) = . Z(—l)in] > (Ve 00 A7)

= Z(—l)i(ﬂ - 8(;171 /\Ti))] .

[ i=0

Because pr, is a multipoint in X =V <A7(1k)>, we can express it as an affine com-
bination pi;, = > .y a, -z, where ) _ya, = 1. Definition (3.5) of (s A 7;) then
yields

(pe o)) = [Z(—ly‘ (n—zax@(x/\n)”-

=0 reX

Because )y a, = 1, we may rewrite the sum further to

(pe 0 )(OT) = . [Z(—l)z <Z oy (7'7; —J(z A TJ))] )

=0 zeX

Both sums are finite, we can rearrange them, use the definition of 97 (3.8) and linearity
of 0:
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(pao)(0T) = @ | a (37 =Y (=D A n))]

= 0 |D e (a (T—Z(—ni(mn)))].

Now we observe that by definition <7' - Ef:ol (=) (z A 7'1)) = J(x A 7) and finally
arrive at

(P 0 1) (OT) = [Z a; (00(z A T))] = O, [Z a, - O] =0,

rzeX reX
which finishes the proof. m

Our task now is to find conditions on the multipoints p,,, iy, - - - , fto,, that will guar-
antee that 1 is an almost embedding.

Lemma 3.30. Let F be a field. Let U be the set of vertices of AP that do not lie in
1% (Agk)). Let Uy, , Uy, ..., U, C U be (not necessarily distinct) sets. Let X =V (A%k)>

be the set of vertices of AP Let Loy slhosse - -5 Ho, € M(X;F) be multipoints. If

supp o, C (0, UU,,)  foreveryi=1,...,m and (3.9)
oNT=0=U,NU, =0  for every two k-faces o, 7 € Agk), (3.10)

then the linear map ¥ : C, (Agk);F) — C, (AS{”;F) defined (as before) by

(o) o if o € AP s q face of dimension strictly less than k,

o) =
o; — O, Noy)  if o =0y

(3.11)

15 an almost embedding.

Proof. According to Definition 3.23 we need to verify that supp (o) Nsuppy(r) = 0

whenever ¢ and 7 are disjoint faces in N
For every k-face o; we have

supp 0; U supp (9(o; A 7))

C
C 0, U (0; Usupp po,)
Q O_iUUaiy

supp ¢ (0;) = supp(0; — 0o, A 07))

where the last inclusion follows from (3.9).

Our calculations will be simplified if we moreover set U, := () for every face o € AP
of dimension less than k. Because 1)(c) = o in that case, we then have

supp (o) CoUU, (3.12)
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for every face o of AP,
We will now show that v is an almost embedding as follows: Assume that o N7 = ().
By (3.12) we have

supp ¢(o) Nsupp (1) C (e UU,) N (TU ;).
Using distributivity of U and N and noting that cNU, C V (A@) NU =0 and 7TNU, C
V (Agk)) N U = () the right hand-side reduces to

(cnT)U (U, NU,).

We assume that c N7 = (). If o or 7 has dimension less than k, U, or U, respectively, is
empty, which implies U, N U, = ). If both o,7 have dimension k, the second intersection
is empty by (3.10). Hence supp ¢ (o) Nsupp(7) = 0 in all cases. O

Now we show that conditions of Lemma 3.30 can be satisfied with relatively small
number of distinct multipoints. As mentioned above, we only need that ¢ is an almost-
embedding, so we can use the same multipoint for several k-faces provided they pairwise
intersect. Optimizing the number of multipoints used reformulates as the following hy-
pergraph coloring problem:

Assign to each k-face o; of Ay some color ¢(i) € N such that card{c(i) : 1 <
i < m} is minimal and disjoint faces use distinct colors.

This question is classically known as Kneser’s hypergraph coloring problem and for s —
2k+1 > 1 an optimal solution uses s — 2k + 1 colors | , |. Let us spell out one
such coloring (proving its optimality is considerably more difficult, but we do not need to
know that it is optimal). Let us assume that the vertex set of AP equals {vg, vq,...,0s}.
For every k-face o; we let mino; denote the smallest index of a vertex in o;. When
mino; < s — 2k — 1 we set ¢(i) = min oy, otherwise we set ¢(i) = s — 2k. Observe that
any k-face with color ¢ < s — 2k — 1 contains vertex v.. Moreover, the k-faces with color
s — 2k consist of k + 1 vertices each, all from a set of 2k + 1 vertices. It follows that any
two k-faces with the same color have some vertex in common.

For s — 2k + 1 < 0, every two k-faces intersect, hence we may use the same color for
all of them.

We conclude

Lemma 3.31. If s — 2k + 1 > 0, there exists an assignment ¢ of s — 2k + 1 colors to
k-dimensional faces of AP such that disjoint faces use distinct colors. If s —2k+1 <0
such assignment ¢ uses only one color.

Lemma 3.32. Let k > 0 be an integer and p a prime number. Let F = Z,. Let

X =V <A£Lk)> be the set of vertices of AP Let Uoys -5 foy, be (not necessarily dis-
tinct) multipoints from M (X;TF). If, as before, we define 1 : C, (Agk);IF) — C, (M;Z,)
by (3.11), i.e.,
() {a if o € AP s q face of dimension strictly less than k,
o) =

oi — O, Noy) if o =0y,
(3.13)
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then there exists a continuous map f: ‘Agk) such that

(tn)s 0 s = fu 0 (Ls)u (3.14)

If ¢ is an almost embedding, then f is also an almost embedding. Moreover, for every
face o € Agk), the image f(\o]) has the form .., |m|, where 1; are some simplices in
AP

— ‘AS{“)

i€l

We first present the main idea of the proof, without going into technical details.

Proof idea. Suppose that o € AP is a k-face and fo = Y .ex @z is a multipoint. By
definitions and the linearity of ¢,,, we have

b (V(0)) = tn (Z a.(oc—d(x A a))) = Z apln (0 —O(x N 0)).

zeX zeX

Let B := B, (’Aﬁf)

F) C G (|al
every r € X and a k-face o € AP we will construct a singular simplex v, ,: |Ax| —

)Aq(mk)) such that* 7v,, = t,(c — (z A o)) (mod B). The construction generalizes the
concatenation of two paths into higher dimensions.

;IF) be the subgroup of boundaries. First, for

Then we will construct a singular simplex v, : |Ag| — ‘A%k)‘ with ~, = er x Az Yox

(mod B). This construction inductively®® uses higher dimensional analogue of the fol-
lowing idea: If we have three paths 71, 72, 73 between points a and b, we may take a long
walk and go from a to b along v, returning to a via 7, and finally arrive to b by 3.
Moreover, we construct the maps v,, and 7, so that they agree on boundaries with
tn(0), i.e., such that for every i = 0,1,...,k the following holds**: ¢, (c) 00} = Y5, 00% =
Vo © O
It follows that we may define a map f: ’Agk) AP

— by the following procedure®:

For a point x € ‘Agk)

we fix a k-face |o,| containing = and define

f@) = (9 0 (1)) ") (@).

We can read the expression in the following way: t4(0,) is the order-preserving linear
map from |Ay| onto |o,|, we look at the preimage of z in |A| and map this preimage via
our map Yo, -

It can be checked that f is continuous.

Then if 0 € A® is a k-face, we have

fou(o) = o (u(o)™)oulo) =1,
= Z Yoo = Z agtn (0 — 0z A o)) =1,(¢(0)) (mod B),

zeX rzeX

22The notation =y (mod B) means v + B =y + B, thatis, {z +b|be€ B} ={y+b| b e B}.
Z3This is the only place where we need that F = Z, for some prime number p.
24See Definition 3.12 for the introduction of §%.

25Recall that ¢4 is the natural inclusion of C, (Agk);]F> into C, (‘Agk)

bijection of |Ag| onto |o].

;IF). In particular, ¢5(c) is a
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hence f ois(0) = 1,(¥(0)) (mod B).

From the definition of homology groups then immediately follows that f. o (15). =
(tn)s © Vs, as desired.

The other claims of the lemma can also be easily checked. O

The full proof is relatively long and complicated and contains no essential ideas. For
this reasons we have decided to postpone it to the end of the current chapter.

Now we address the question how to satisfy assumptions of Lemma 3.29 in our setting.
Recall that

v(p) = (90* [O(u A o)), p.[0(nAa2)], 0. [0 A o)) ) ,

where ¢: C, (Agf); ]F) — O, (M;T) is some fixed chain map, M has kth F-Betti number

b and o4,...,0,, are all k-faces of AP

According to Lemma 3.30 we need some multipoints p with the same value of v(u).
We would like to use colored algebraic Tverberg theorem (Theorem 2.14) or Lemma 2.10
to obtain these multipoints. To that end we need to know the dimension of Im v.

Lemma 3.33. If¢: C, <A£lk); IF) — O, (M;T) is given, the image Im v lies in an F-affine

space that has dimension at most (Z)b

Proof. Let X =V (A,(f)) be the set of vertices of AW, Let oj, j € J, be all k-faces of

Agk) that contain the first vertex vy.
We will show that for every k-face 7 € AP there exist a constant ¢, € H k(M;TF) and
coefficients ¢, ; € F such that for every p € M(X,F)

o0 AT)] = er ) enjo0nnay)]. (3.15)

jed

Because all the values ¢, [0(u A 0;)] belong to Hy(M;F) = F® and there are () faces
o; containing vy, that will finish the proof.

We start with the case when 1 = z is an ordinary point.

Let 7 = (wq, ws,...,wy) be a k-face and 7; = (wg, w1, ..., W, ..., wy) for every i =
0,...,k.

We have 00((z, v, wo, w1, ..., wg)) = 0, hence ¢, [88(x,v0,w0,w1, . ,wk)] =0. Ex-
panding the innermost d by definition, we have

k
D [8 (vg/\T—x/\T+Z(—1)ix/\v0/\7’i>] = 0.

i=0
By linearity of 0 and ¢, we get

0|0 (v AT)] — [0 (x AT)] + Z(—l)icp* [0(z Avo AT3)] =0,

1=0
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hence
k

e [0 AT)] =@ 0o AT)] + D (—1) [0 (x Avg A )], (3.16)
i=0
which is the desired equality (3.15).
If p = > cya,v is a multipoint, we sum up the equalities ¢, [8(3: A 7')] = ¢ +
> i CriPs [0(z A 0;)] and obtain

Z (3P [(9(x A 7')} = Z a,Cr + Z Crj <Z (3P [8(x A Uj)} ),

rzeX reX JjeJ rzeX
which, together with (3.5) and the fact that ) _\ a, = 1, gives (3.15). O
We are now finally ready to prove Theorem 3.26.

Proof of Theorem 5.26. Let us first deal with the case s — 2k > 0. In that case n >
(;)b(s —2k)+s+1>s+1. Set d:=s—2k. Let Y = {vo,v1,...,v4-1} be the set of the
first d vertices of A% and X be the set of vertices of A% that do not lie in AF. We
partition C' = X UY into disjoint color classes Cy := Y, Cy,Cy, ..., C|x|, where each Cj,
i=1,...,]X]| contains exactly one point from X.

Let us recall that ¢ = 6 o, and let v be the affine map from (3.6). We have
|C| = (n+1)—(s+1)+d. By the assumptions of the theorem n > (;)bd + s+ 1. Hence
ICl > ($)bd+s+1—s+d=((])b+1)d+ 1. The dimension of Imv is at most (})b
by Lemma 3.33. Hence by Theorem 2.14 there exist (d + 1) pairwise disjoint rainbow
multipoints ng, 11, . . ., N4—1, Ng satisfying

v(n;) =v(m) foralli=0,...,d. (3.17)

If we rearrange the multipoints, we may assume that*®

suppn; C {v;} UX  foreveryi=0,...,d—1, (3.18)
suppnq C X. (3.19)
Let ¢ be Kneser’s coloring from Lemma 3.31. If we set p,, := 7(s,), We can define

(F C, (Aﬁ’“;F) - C, (AS{”;F) by

(o) o if dimension of o is less than k£ and
o) =
0; — O(iy, N o;) if o is the ith k-dimensional face o;

on the generators and extend it linearly to the whole space.

Then v(p,,) = v(n1). Since v(u,,) does not depend on 4, Observations 3.28 and 3.29
imply that v is a well-defined chain map satisfying ¢, o ¥, = 0.

To show that ¢ is an almost embedding, we verify the assumptions of Lemma 3.30.
Let o be a k-face. If*” mino < d, then supp jt, = supp Ne(o) © {UC(U)}UX C cUX, where

26We note that if we used Lemma 2.10 instead of Theorem 2.14 and wanted the multipoints satisfy
the next equation, we could only allow Y to contain one point. Hence we would be forced to increase
the size of X by d — 1, which would worsen the bound in Theorem 3.26 by d — 1 = s — 2k — 1.

27See the discussion before Lemma 3.31, where they symbol min ¢ is introduced.
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the last inclusion follows from the fact that c¢(¢) is defined as the minimal number ¢/, for
which ve € 0. If mino > d+ 1, supp pto = suppnqs+1 € X C o U X. In all cases (3.9)
holds true.

We need to check that (3.10) is satisfied as well. If o N7 = (), then ¢(o) # ¢(7) by
Lemma 3.31. Hence supp jis M SUpp iy = SUpPp 7o) M SUPP Ne(7)- Since the multipoints
assigned to distinct colors are disjoint, the intersection is empty and (3.10) is satisfied.

Hence v is an almost embedding by Lemma 3.30. As the last step, we use Lemma 3.32

such that (i)« 0 e = g« © (Ls)s-
Lemma 3.32 also ensures that if ¢ is an almost embedding, so is g and that the image

construct an almost-embedding ¢: ‘Agk)‘ — ’A,(f)

g(|o|) is a union of faces in ‘Agf)‘.

The proof for s — 2k > 0 is finished.

If s — 2k < 0, we may use the similar argumentation. The Kneser’s coloring has
only one color in such case, so we may use the same multipoint u,, := n; for all faces
o; (such assignment satisfies v(u;) = v(py) trivially). Since in Theorem 3.26 we assume

that n > s+ 1, there exists x € V' (Agﬂ)) \V <Agk)>. We set 77 := x and see that the

conditions of Lemma 3.30 are satisfied (with U,, := {«} for all 0;). The rest of the proof
goes through as before. m

Now we show that our approach can be regarded as a natural generalization of the case
k = 0, which is rather trivial: If we have a topological space with b+ 1 path-connected
components and s(b+ 1) + 1 points in it, there are at least s+ 1 points lying in the same
path-connected component.

This can be proven easily using pigeonhole principle, but it also fits into our frame-
work:?®

Lemma 3.34. Let n,s,b > 0 be integers, p a prime number. Let M be a manifold with
0-th reduced Z,-Betti number at most b. Let f: ‘Aﬁf)

If

— M be a continuous map.

n> (;)b(s—0)+s:(b+1)s and n > s,

such that the induced homo-

— ‘A%O)

then there exists an almost embedding g: ‘Ag‘”
morphism (g. o fi): H, < Ag‘”

of every face o € AL has the form Ui, |7il, where 7; are some simplices in ALY,

;Zp) — H.(M;Z,) is trivial. Moreover, the image g(|o|)

The proof of the lemma is an easy exercise. Here we present a line of argumentation
that agrees with our reasoning in the proof of Theorem 3.26.

280bserve that the bound in Theorem 3.25 differs by +1. This is caused by the fact the we need
to use a multipoint with support outside of V' (Agk)) for the faces of the last color. But according to

Lemma 3.30 this is only needed if the intersection of all k-faces with that color is empty. Consequently,
we can get rid of this 41 if we use a coloring, where we color each face by the minimal index of its vertex.
This would yield a bound n > max{s, (;)b(s—k)+ s} for Theorems 3.25 and 3.26. Unless k = 0 or b = 0,
the bounds are worse than the provided ones, however, for b = 0 they agree with Volovikov’s theorem.
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Proof. If the Oth reduced Z,-Betti number is at most b, the manifold M has at most

b+ 1 path-connected components. It follows that for every 0-dimensional face o € AV
its image fy(15(0)) is uniquely determined by the one element set f(¢5(0)(|Ao])).

Because there are at most (b + 1) path-connected components of M and A has
n+1> (b+1)s points, there exist s+ 1 points that are mapped into the same component
P.

For every vertex z from AY) with f(|z]) € P we set p, := .

We take the remalmn%; points, one after the other. For every such point z, we take
an unused vertex y of AY Wlth f ly|) € P and set pu, :=y.

If we define g: ‘AS

into P. Hence (fog). = 0 and it is not hard to see that g satisfies all the other conditions
as well.

Now we show how this fits into our framework: We have defined pu, for every 0-face
z of A, hence we may use (3.7) to define 9.

For every O-face x with f(|z|) € P, we have O(u, A m) =0(x ANx) =0 and ¢(x) =

n ’ by g(|z|) = |pz|, then f o g maps all vertices of ‘Aé“)

r—0(u Nz) =2x—0(x—1) = 2. Iff(|a:]) ¢ P, then ¥(z) =x—0(u Nz) = x—0(yAx) =
rT—T+y=y.
It is then not hard to see that (t)s © ¥y = gi © (Lg)«- O

Now we finish the proof of Lemma 3.32, hence filling the missing part in the proof of
Theorem 3.26.

Proof of Lemma 3.32

We carry out the plan which we have outlined earlier. First we start with two technical
lemmas about “addition” of singular simplices, then we finally prove Lemma 3.32.

Lemma 3.35. Let X be a topological space, | > 0 an integer and F o field. If 1o, 71,...,7
are ordered [-dimensional singular simplices in X satisfying”

708 =706 for all integers 0 < i < j <, (3.20)

then there is an ordered l-dimensional singular simplex T such that

I
Z 7 (mod BP(X;TF)),
i=0

708l =7,00) foralli=0,...,1l and ImT = Uﬁ:oImTi-
The map 7 generalizes concatenation of two paths into higher dimensions, see Fig. 3.5.

Proof. Fig. 3.5 describes the idea behind the proof. It is useful to keep it in mind while
carrying out the technical details. Let A; be an [-dimensional simplex with the standard
geometric realization |A;| and vertex set {vg < v; < ... < v;}. We recall that |v;| = e;11,
where e;, is the (i + 1)th vector in the standard basis of R, Let a = v_; ¢ V(4))

29See Definition 3.12 which introduces the maps d;.
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7'2058

7'0(0) = 7'1(0)

To 002 =15 003

Too0ds =7 0683
(1) =n(1) (1) = 7(1) >

U1 T U2

7'0053

On the left: the situation of Lemma 3.35 for [ = 1. Note that we identify |A;| with the
unit interval [0, 1]. The resulting map 7 “corresponds” to 79 — 73 = —71 + 7.

On the right: the situation for [ = 2, with the singular 2-simplices 7; mapping |As| onto
the corresponding triangles linearly and vertex order preserving (v_; < vy < v1 < vg).
The resulting map 7 “corresponds” to 79 — 71 + 72. The situation in higher dimensions is
completely analogous, only worse to draw.

Figure 3.5: Illustration of Lemma 3.35

be a point, we define its geometric realization |a| to be the barycenter of |A;|. Let
L :=sd (A}, a) be the stellar subdivision of A; with respect to a and let F;, i =0, ...,1,
be the unique [-face of L, that does not contain vertex v;. Let v;: |F;| — |4 be the
vertex order preserving linear isomorphism of |F;| onto |4A|.

The resulting map 7: |A;| = X can now be defined by:

T(z) =1 0vy(z) ifz € F,. (3.21)

If x belongs to two different I-faces F; and Fj, 0 < ¢ < 5 <, the condition Tiodlj =T oél”l
implies 7; 0 v;(x) = 7j 0 yj(x), hence 7 is well defined and continuous.

The formal proof that 7 = Zi‘:o(_l)iﬂ' (mod BP(X;F)) requires a step into dimen-
sion by one higher.

Let L' be an (I 4 1)-dimensional simplex with vertex set {vyg < v1 < ... < v < vp41}
and standard geometric realization. Let b ¢ V(L') be a point. We define |b| to be the
barycenter of the face F' := [{vy,vq,..., 0141}

Let v be the vertex order preserving linear isomorphism of F' and |A;|, in particular
v(|b|) = |a|. Let m be the projection of |L'| onto F in the direction |b|— |vg|, in particular
7([vol) = [b].

We now define f: |A; | = X as f:=Tovyom.

We can check that fod; ; = 7,1 for all integers 1 <i <1+ 1 and fodp,, = 7. This
implies

I
7=Y (-1)'n  (mod BY(X;F)),

i=0

as desired. The condition 70 d; = 7, 06 for i =0,...,[ is also easy to verify. O
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Vo

Vo

(1 U2

The situation for | = 1 (on the left) and [ = 2 (on the right). In both situations we
set v_1 := vy and v_5 := vy (but preserve the ordering v_5 < v_; < vy < v1). Because
v_1 < vy, but v; > vy, we have to switch v_; and vy for all maps that correspond to
those vertices. The map p; does exactly that: it is a linear map that switches the first
two vertices of A, and leaves other vertices fixed. Because v_; = v; and v_s = vy, some
triangles on the right are degenerated, the degeneracy maps 02’1, describe the situation
(i.e. they fully describe what vertex is mapped where and how does it affect the order of
the vertices in the corresponding triangle).

The proof is then finished by two applications of Lemma 3.35. First we apply it to the
simplex v_1, v, Vg, V3, ..., Vs, Wwhere we “sum up” the maps appearing in this simplex to
a single map 7', then to the simplex vy, vy, v9, V3, ..., V.

Figure 3.6: Proof of Lemma 3.36

The next lemma is another variation on “addition” of singular simplices. The basic
idea can be described as follows: Let us assume that we have three paths f, g, h with
common starting and ending points. Then we can form the concatenation of these paths
in a way which preserves boundaries: first we traverse f then ¢ in the opposite direction
and finally . The lemma generalizes this concept into higher dimensions.

In the following lemma if f is an (ordered) singular simplex in O,(X;F), we denote
its unordered image in 6*(X; F) by f*, ie., f*“:=f+ f(X;]F).

Lemma 3.36. Let X be a topological space, F a field and | > 0 an integer. Let f1, fo, f3
be ordered l-dimensional singular simplices in X satisfying

fiodl = fr068l = f300; (3.22)

forallt=0,1,...,l. Then there exists an ordered [-dimensional singular simplex T for

which 7% = fi — fi + f# (mod Bi(X:F)),
Tod = fi0d, = fa08 = fz06] (3.23)
forallt=20,...,1 and Im7 =1Im f; UIm f, UIm f5.

Proof. The lemma can be proven by two applications of Lemma 3.35, see Fig. 3.6.
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Let us now carry out the first step.
Let 7 :—fl andforevery@'—123 Alet™ 1= fyoo) ool P00 0p
Note that 71 = f, and 7] are degenerated for 1> 1.
Now we verify that such assignment satisfies the hypotheses of Lemma 3.35. We only
need to check that
Tod =105t forall0<i<j<lL (3.24)
We divide the verification of Equation (3.24) into two cases:
1. If i =0,1 < j < then the left hand 81de of (3.24) equals f; o8], whereas the right
hand-side is equal to fy 0 o7’ oo al o 8. If we inductively use the relation
k“ F odF = (5’““ kE=1,2,...,7 —1 from Observation 3.13, we see that the right

hand 81de equals f2 0. From (3.22) we get the equality f, 06/ = f1 067, hence
both sides of Equation (3.28) are equal.

2. If 1 <i < j <1 we use the relations crlm+1moc5k = 5koalmJ{lm forl >k >m-+1and

alkﬂ’koélk = ot 0f+1’k05f+1 = 6F for allk =0,... ,l, all from Observation 3.13.
Then the left hand side of (3.24) equals foo0;" "' - 007" 08] = fro8] 0oy’ -+ 007,
whereas the right hand side is equal to faoo]? " 902 todit = frooii o0

ll+2 z+1 ll+1 K 5z+1 o 0-1”1 1 0--.0 0'[2_11 _ f2 o 6; o Ulzﬁ; 0..-0 01_1-
Hence we see that 7/ o 5{ = TJ/- o 5;“ for all 0 < ¢ < j < [ and the assumptions of
Lemma 3.35 are satisfied.

We conclude that there is a map 7" such that

Tod =108 foralli=0,1,...,1 (3.25)

and 7' = Y\_ (=1)'7] (mod BP(X;T)).

)

Because 7/ € T)(X;F) for all i = 2,3, ..., this implies
™= f'—fy (mod B/(X;F)). (3.26)

Moreover, since Im 7] C Im fy for every i@ > 1 and Im7] = Im fo, Im7) = Im fy,
Lemma 3.35 implies that
Im7 =1Im f; UIm fo. (3.27)

Now we apply Lemma 3.35 for the second time. Let 7 be the permutation (01) viewed
as an element of S({0,1,...,1}) and 7’ be the permutation (01) viewed as an element
of S({0,1,...,1 =1}). Let 7o := 7’ and® 7, := fso0}" o0, " o007 o pf for
¢t =1,2,...,1. Note that ; = f3 op] and 7; are degenerated for 7 > 1. Once again we
verify that the assignment satisfies the assumptions:

0f =m0t forall0<i<j<lL. (3.28)

As before, we divide the verification into two cases:

30The maps O’lj 7~ are introduced in Definition 3.12. Also recall that an [-dimensional singular simplex

v is called degenerated, if y =+’ o ali’j for some ¢ # j and an [-dimensional singular simplex ~'.
31See Definition 3.12 for the introduction of maps p.
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1. Ifi = () 1 < j < then the left hand-side of (3.28) equals 7"05j = 7"050 fgoal. =1
‘o ‘71 Yo 47, where the equalities follow from (3.25) and the deﬁmtlon of 7;. Using

the relation o] 7% 0 69 = 60 0 oA for k= 1,2,...,5 — 1 from Observatlon 3.13,

the left hand-side can be further rewrltten as f2 08V ool 7000, The right

hand-side of (3.28) is equal to fsoa{’ 'o---007 opFod}. By the relation pfod} = 67
and o7 ™ 0 60 = 80 0 o F for k=1,2,...,5 -1 from Observation (3 13), we see
that the right hand-side of (3.28) is equal to f3 0odloa) 000, If we now
use the assumption (3.22) that fo00) = f3007, we see that both sides of (3.28) are
equal.

2. If 1 <4 < j <1 then the left hand side of (3.28) equals fso0]" " - -0 opf 0l =

fsod oo’ 111 o---oa opf,, where the equalities follow from Observation 3.13,

namely from the relations pf o §F = §F Opz p for k> 1 and UkH Fo " = 0" o UlkJrll k

for m > k + 1. The right hand-side can be rewritten as follows f3 o o; 7o o

2,1 i+1 —1 i+2,141 i+1,0 i+1 i,0—1 2,1
o, opfod; Tt = fso0)?’ o---00, oo, "0l o0, 000, 0p 17where
the equalities follows by the same relations as for the left hand-side. If we now use

o/ Mo gt = 5t and alkﬂ’k odf =8 fork=i+1,i+2,...,5— 1, we see that

the right hand side of (3.28) equals fs 048/ o 07’ " o--- 007" opf | as well.

Hence we see that 7; o 5{ = T 0 51”1 for all 0 < i < 5 < [ and the assumptions of
Lemma 3.35 are satisfied.

We conclude that there is a map 7 such that 7 = Eizo(—l)in (mod BP(X;F)) and
7ol =71;00) foralli=0,...,1I

Because 7; = f3 0 af’ifl 0---0 ‘752’1 opf for ¢ = 2,3,...,1 and ‘752’1 opf =pJo al2’0
(Observation 3.13), we see that 7; € T)(X;F) for all i = 2,3,...,1. Because also f3 o
pF —sgn(n)fs € Ty(X;F) and sgn(r) = —1, we see that 7% = 7% + f2 (mod By(X;F)).
Together with (3.26) this yields that

= f = f3+ fi (mod B)(X;TF)),

as desired.

Now we compute how do 7 o &} look like. If i = 0, we have T06) = 1904 =7/ 067 =
7o 6? = f1 04, where the equalities follow from Lemma 3.35 and the definitions of 7,
and 7.

Ifi>1,wehave 706l = 7,000 = fsoo] oo V"o 00" opfod. If we now
use the relations pf 0 6? = 6} and o """ o §F = 6%+ from Observation 3.13, we see that
708} = f300;.

Since Im7; CIm f3 for alli =1,2,...,3 and Im 7 = Im f5, Im 79 = Im f; UIm f5 (see

Equation (3.27)), Lemma 3.35 1rnphes that Im7=1Imf; Ulm fo UIm fs. O
We may now finally prove Lemma 3.32.

Proof of Lemma 5.32. Recall that X =V (A%k)) For brevity, we further set Y := ’A,(l

Let o = 0; be a k-dimensional face of A¥. Then U(oy) = 0y — e, A 07).
Because (i, is a multipoint in M (X;Z,), it can be expressed as Zje J, @ijxi; for

some sets J;, points z;; € V (A,(Ik)> and coefficients a; ; € Z,, where ZjeJi a;; = 1 for
all .
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By definition then
W(o;) = 07 — e, N ;) Zam x” A a@)) .
JjE€J;

Since we work in Z,, we may replace the term a, ; with

l+1+...+1 or (-)+(-D+...+(-1).

Vv
(p—aj,;)-times

a;, j-times

Hence after rearranging®?, we obtain that

2m;

o) =D (1) (0 = 0y A o))

=0
. . k
where m; > 0 is an integer and y; ; € V' (Af(l )).
Let 0; = (vig, Vi1, ..., vik). Forevery [ =0,...,k we set
l L —~
05 1= (Vi0s Vids vy Vidy - Vik)-

Then

2my; k
vloy =S (-1 (z yA>)
!

j=0

This yields

2mg; k
ln W(Ui)) = Z(—l)j <Z<_1)an(yi,ja Vi,0, Vi1, - - - 7@7 e 7'Uz',k)>

=0 1=0
2my; k
= Z(_l)] < (=1)'en(yij A oi) o 5;@1%) .
=0 1=0
Because the maps 7, = t,,(v; ; /\O'Z) oéf;fl, [ =0,1,...,k obviously satisfy the assumptions
of Lemma 3.35, we can replace Zz:o( D)len(yi g /\al)odl+ 1 with a single map v, ;: |Agx| —
)Agf) such that
2my;
i ((0:) = (~1Y %, (mod BY(Y:I)), (3.29)
=0

where ¢ is the natural inclusion of O, <Ag€); Zp> into O, ()A; p>.

Moreover, by Observation 3.13 the maps v,, ; satisfy 7,, j 08 = ;080 = 1, (y;j A oi) o
5,@;11 0 0p = 1, (yij N 0y) 0 0pq 00k = 1,(0;) 00 for all 1 =0,1,...,k and

Im'y%j = U ‘(yivj’ Ui,07 Ui,ly RN 7Ui,la ce ,’U@k)‘ .

32For example over Zs, the multipoint 3z 4+ 3y can be rewritten as ¢ — y + = — y + .
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We can now apply Lemma 3.36 t0 Yo, 2m,—2 — Vo:,2mi—1 + Vo;,2m, and replace them with
a single map v, ,,, ,. Continuing inductively, in each step decreasing m; in (3.29) by

two, we obtain a map 7,,: |Ax| — ’A%k) satisfying

n((00)) =5, (mod By(Y;F)) (3.30)

and v,, 0 6 = 1,(0;) o 0L for all | = 0,1,...,k. Moreover, if N,. is the set of all non-
degenerated simplices p appearing in v¢(o;) with a non-zero coefficient, then

my,, = |J Il (3.31)
pENai
Now we define g: ’Agk) — ‘A,(f)‘ by
—1 .
g@y:%(@gm» @U it z € o], (3.32)

If x lies in two different o; and o; it has to lie on the boundary of both of them. Because
Yo; © Ok = 1,(0;) 0 8¢, it follows that

ﬂ@:%@m@m@wmmm*@ﬁzxfmmuewmw@y (3.33)

Hence g(x) is well-defined.

Moreover, because o; are all k-dimensional faces of Agk), the value g(z) is defined for
every x € Agk).

From Eq. (3.32) follows that g o (¢50;) = 7,,, which together with (3.30), (3.33) and
(3.7) yields gs(¢s(c)) = tn(¥(c)) (mod By(Y;Z,)) for every chain ¢ € C, (Agk); Zp>.

Since this equation is true for every chain ¢, it is also true for every cycle z and
because the homology groups are formed by factoring the group of cycles by the group
of boundaries B;(X;TF), we see that g, o (t5)x = (tn)« © Vs, as desired.

By the definition and Eq. (3.31) g(|oy|) = Im~,, = UpeNoi lp|. If ¢ is an almost
embedding, the sets N,, and N, are disjoint for disjoint k-faces o;, o;. If follows that g
is an almost embedding in that case. O]
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4. Van Kampen-Flores type
non-embeddability results for
manifolds

In this chapter we apply Theorem 3.25 to provide an upper bound for the following
conjecture by Kiihnel | ]

Conjecture 4.1. Let n, k > 1 be integers. If AP embeds in a compact, (k—1)-connected
2k-manifold with kth Zs-Betti number by(M) then

n—k—1 2k+1
< bi(M). 4.1
<k+1)—<k+1)’“( ) (41)
The conjecture generalizes the classical Heawood inequality | , ] and the
Van Kampen-Flores Theorem | , ].

The main result of this chapter is the following mild generalization' of Theorem 1.1
and its generalization to g-almost embeddings (Theorem 4.4).

Theorem 4.2. Let k, n be non-negative integers. Let M be a 2k-dimensional manifold
with kth Zs-Betti number by. If n > 2by, (2’“;2) + 2k + 3, then A%’“) does not almost embed
into M.

Remark 4.3. The reader who skipped the colorful algebraic Tverberg theorem may use
the weaker version of Theorem 3.25, see Remark 3.27, and obtains that A,(f) does not
almost embed into M for any n > 2by (%;2) + 2k + 4.

Since an almost embedding is defined as 1-almost embedding, see Definition 3.23, one
may wonder: If we have a d-dimensional manifold, what are the necessary conditions on

k and n that ensure that there is no (¢ — 1)-almost embedding f: ‘A,(Cn) — M?

An obvious condition seems to be k > (1 — %) d. Otherwise one could consider n
points ay, ..., a, € R? in general position, e.g. on the moment curve, map the ith vertex
of ‘Agﬂ)‘ to a; and extend the map linearly. The general position assumption then ensures
that this is indeed a (¢ — 1)-almost embedding. Since every d-dimensional manifold is
locally homeomorphic to R?, it follows that the condition k& > (1 — %) d is necessary for

every d-dimensional manifold.

If k> (1 — %) d we are able to prove the following bound?:

Theorem 4.4. Let M be a d-dimensional manifold. Let ¢ = p™ be a prime power. Let
b be the kth Betti number of M in the homology with Z, coefficients. If k > d <1 — %),

!Theorem 1.1 only asserts non-existence of embeddings, but in fact we prove non-existence of almost
embeddings.

2If we used the weaker version of Theorem 3.25 (Remark 3.27), we would obtain a bound N >
()b (No — 2k) + 2Np — 2k instead of N > (\°)b(No — 2k) + No + 1.
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No=qlk+1)+q—2 and N > (]Zo)b (No — 2k) + Ny + 1, then there is no (¢ — 1)-almost
embedding of Ag\],c) into M.

Theorem 4.4 not only generalizes Theorem 4.2, it also provides a topological variant
of the Tverberg theorem for manifolds.
The original Tverberg theorem can namely be stated as follows:

d)

Theorem 4.5. There is no affine (¢ — 1)-almost embedding of quq)(dﬂ) into R?.

Theorem 4.4 generalizes Theorem 4.5 in three ways. Firstly, we need not restrict our
attention to affine maps only, all continuous maps are allowed. Secondly, the theorem
holds for maps into arbitrary manifolds. Thirdly, instead of the d-dimensional skeleton,

we can use k-dimensional skeleton for any k& > d (1 — é)

We will strongly use a result by Volovikov | | which shows that a continuous map
f: (Aﬁf’( — M cannot be a g-almost embedding of A&’“), provided that f satisfies certain

homological triviality condition and n is big enough. (Since the homological triviality

condition is satisfied by any continuous map f: AP R?, one can regard the result of
Volovikov as a generalization of both Van Kampen-Flores and Tverberg theorems).

Theorem 4.6 (Volovikov | ). Let M be a compact d-dimensional manifold with
or without boundary and g = p™ a prime power. Consider a map f: Ag?,l+1)+q_2 - M
such that k > d (1 — %) and the homomorphism f,: Hy, <Aé’8€+1>+q_2; Z,,) — Hy(M;Z,)

(%)

is trivial. Then f is not an (q — 1)-almost embedding of Aq(kH)

tgre mto M.

We note that we only state a special case of Volovikov’s result that we need in our
proof. It is obtained by setting 7 = 2 in item 3 of Volovikov’s main result. Moreover, the
original result is stated in terms of cohomology, i.e., it assumes that f*: H.(M;Zs) —

H* (Ag&z; Z2> is trivial, however, by the Universal Coefficient Theorem | , D3.5],

Hy.(;Zsy) and H*(-;Zs) are dual vector spaces, and f* is the adjoint of f,, hence triviality
of f, implies that of® f*.

Proof of Theorem /.4. Assume N > (]Zo)b(No —2k) + Ny + 1. Let f: ‘Ag\’;)‘ — M be a
continuous map.

By Theorem 3.25 there exists an almost embedding ¢: ‘AE@]‘ — ‘Agl\;)
)

, such that

(fog). =0 and the g image of every face is a union of faces in Agl\; . In particular, if f
is a (¢ — 1)-almost embedding of AS@ into M, f o g is an almost embedding of A%g into
M, we refer to Observation 3.24.
Because (fog). =0, (fog)(|0o]) is a boundary of some chain ~, for every o € Ag\’fjl).
Let
M :=ImfU U SUpp Yo -

UEAS\];;U

3Moreover, if the homology group Hy(X;Zs) of a space X is finitely generated, then it is (non-
canonically) isomorphic to its dual vector space H*(X;Zy). Therefore, f, is trivial if and only if f*
is.

66



Then M’ is compact and without loss of generality, we may assume that M’ is path-
connected. Furthermore M’ is contained in some compact submanifold M” (possible with
boundary) of M and the map (f o g) viewed as a map into M" still satisfies (f o g). = 0.

But since (fog). = 0, Volovikov’s theorem implies that fog cannot be a (¢—1)-almost
embedding. Therefore f could not be a (¢ — 1)-almost embedding either. O
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5. Homological Almost-Embeddings

One may wonder whether Theorem 3.26 can be used iteratively to show that certain con-
tinuous maps f cannot exist. More precisely, given a field IF, a manifold M and an almost

embedding 6: C, (AE\’;);F) — C. (M;F), where! § = f; 01y and N is big enough, the
proof of Theorem 3.26 ensures an existence of an almost embedding ¢ : C, <A£Zk); IF) —
C. <Agl\;); IF) such that 0,01, = 0. That means that for every o € Aﬁf*”, 6’(@/} (6(0))> isa

boundary of some chain «y,. We can then extend fo1) to a chain map 6': C, (A%kﬂ); IF) —
C, (M;T) by setting

¥(0) = G(w(o)) if o is a < k-dimensional face,
7 Yo if 0 is a (k + 1)-dimensional face.
Moreover, it is possible to continue this process by induction.

If we reach a contradiction with some non-embeddability result after several steps,
we conclude that the initial map f could not exist. However, there are two issues to
be addressed: Firstly, non-embeddability result only speak about maps, but we are con-
structing chain maps. Secondly, we need some mechanism guaranteeing the constructed
chain maps are almost embeddings (otherwise we cannot obtain a contradiction with
non-embeddability result).

We deal with the first issue in this chapter. We provide several generalizations of non-
embeddability results for chain maps, which we will need later in Chapter 6. The second
issue is addressed in Chapter 6 and requires a non-trivial adjustment? of Theorem 3.26.

We note that we do not need the distinction between ordered and oriented homology
from Chapters 3 anymore. Hence the usual singular chain group, that was called O, (X)
there, will be denoted C,(X), as usual, from now on.

We define homological almost-embedding, an analogue of topological embeddings on
the level of chain maps, and show that certain simplicial complexes do not admit homo-
logical almost-embeddings in R?, in analogy to classical non-embeddability results due
to Van Kampen and Flores. In fact, when this comes at no additional cost we phrase
the auxiliary results in a slightly more general setting, replacing R? by a general topo-
logical space R. Readers that focus on the proof of Theorem 1.8 can safely replace every
occurrence of R with RY.

We assume that the reader is familiar with basic topological notions and facts concern-
ing simplicial complexes and singular and simplicial homology, as described in textbooks
like [ , |. Throughout the following two chapters we will work with homology
with Zs-coefficients unless explicitly stated otherwise. Moreover, while we will consider

!The symbol ¢y is used for the standard inclusion of C, (AS\];); IB‘) into C\x (‘Ag\]}c)’ ;]F).

2Since the adjustment needs hypergraph Ramsey theorem | ], the obtained bounds are enor-
mous, regardless whether we use Theorem 3.26 or some cruder tool. Since the proof in Chapter 6 is itself
relatively complicated, we have decided to replace Theorem 3.26 with a version which is conceptually
easier, but provides worse bounds and only works over Zs.
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singular homology groups for topological spaces in general, for simplicial complexes we
will work with simplicial homology groups. In particular, if X is a topological space then
C.(X) will denote the singular chain complex of X, while if K is a simplicial complex,
then C,(K') will denote the simplicial chain complex of K (both with Zs-coefficients).

We use the following notation. Let K be a (finite, abstract) simplicial complex. The
underlying topological space of K is denoted by |K|. Moreover, we denote by K the
i-dimensional skeleton of K, i.e., the set of simplices of K of dimension at most 4; in
particular K ©) is the set of vertices of K. For an integer n > 0, let A,, denote the
n-dimensional simplex.

Given a set X we let 2% and ()k() denote, respectively, the set of all subsets of X
(including the empty set) and the set of all k-element subsets of X. If f: X — Y is an
arbitrary map between sets then we abuse the notation by writing f(S) for {f(s) | s € S}
for any S C X; that is, we implicitly extend f to a map from 2% to 2¥ whenever
convenient.

We will consider singular homology groups for topological spaces in general, however,
for simplicial complexes we will work with simplicial homology groups. In particular, if
X is a topological space then C,(X) will denote the singular chain complex of X, while
if K is a simplicial complex, then C,(K) will denote the simplicial chain complex of K
(both with Zs-coefficients).

5.1 Non-Embeddable Complexes

We recall that an embedding of a finite simplicial complex K into R is simply an injective
continuous map |K| — R As noted before, the fact that the complete graph on five
vertices cannot be embedded in the plane has the following generalization.
(k)
Adiya

Proposition 5.1 (Van Kampen | |, Flores | ]). For k >0, cannot be

embedded in R2F.

A basic tool for proving the non-embeddability of a simplicial complex is the so-
called Van Kampen obstruction. To be more precise, we emphasize that in keeping with
our general convention regarding coefficients, we work with the Zs-coefficient version® of
the Van Kampen obstruction, which will be reviewed in some detail in Section 5.3 below.
Here, for the benefit of readers who are willing to accept certain topological facts as given,
we simply collect those statements necessary to motivate the definition of homological
almost-embeddings and to follow the logic of the proof of Theorem 1.8.

Given a simplicial complex K, one can define, for each d > 0, a certain cohomology
class 0%(K) that resides in the cohomology group H%(K) of a certain auxiliary complex K
(the quotient of the combinatorial deleted product by the natural Zs-action, see below);
this cohomology class 0?(K) is called the Van Kampen obstruction to embeddability into
R? because of the following fact:

3There is also a version of the Van Kampen obstruction with integer coefficients, which in general
yields more precise information regarding embeddability than the Zs-version, but we will not need this
here. We refer to | ] for further background.
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Proposition 5.2. Suppose that K is a finite simplicial complex with 0¢(K) # 0. Then
K is not embeddable into Re. In fact, a slightly stronger conclusion holds: there is no
almost-embedding f: |K| — RY, i.e., no continuous map such that the images of disjoint
simplices of K are disjoint.

Another basic fact is the following result (for a short proof see, for instance, | ,
Example 3.5]).

Proposition 5.3 (] ; ). For every k>0, 0* <Agl?+2> # 0.

As a consequence, one obtains Proposition 5.1, and in fact the slightly stronger state-
ment that Agﬁrz does not admit an almost-embedding into R?*.

5.2 Van Kampen—Flores Type Result for Homologi-
cal Almost-Embeddings

For the proof of Theorem 1.8, we wish to replace homotopy-theoretic notions (like k-
connectedness) by homological assumptions (bounded Betti numbers). The simple but
useful observation that allows us to do this is that in the standard proof of Proposition 5.2,
which is based on (co)homological arguments, maps can be replaced by suitable chain
maps at every step.* The appropriate analogue of an almost-embedding is the following.

Definition 5.4. Let R be a (nonempty) topological space, K be a simplicial complex, and
consider a chain map® v: C,(K) — C.(R) from the simplicial chains in K to singular
chains in R.

(i) The chain map v is called nontrivial® if the image of every vertex of K is a finite
set of points in R (a 0-chain) of odd cardinality.

(ii) The chain map =y is called a homological almost-embedding of a simplicial complex
K in R if it is nontrivial and if, additionally, the following holds: whenever o and T
are disjoint simplices of K, their image chains (o) and (1) have disjoint supports,
where the support of a chain is the union of (the images of) the singular simplices
with nonzero coefficient in that chain.

Remark 5.5. Suppose that f: |K| — R? is a continuous map.

(i) The induced chain map’ fy: C.(K) — C.(R?) is nontrivial.

4This observation was already used in [ ] to study the (non-)embeddability of certain simplicial
complexes. What we call a homological almost-embedding corresponds to the notion of a homological
minor used in | ]

5We recall that a chain map ~v: C, — D, between chain complexes is simply a sequence of homomor-
phisms v, : C,, — D,, that commute with the respective boundary operators, v,_1 0 dc = 0p © Vp.

If we consider augmented chain complexes with chain groups also in dimension —1, then being
nontrivial is equivalent to requiring that the generator of C_1(K) = Zy (this generator corresponds to
the empty simplex in K) is mapped to the generator of C_;(R) & Z,.

"See Definition 3.18 for the introduction of the induced chain map f4, which goes as follows: We
assume that we have fixed a total ordering of the vertices of K. For a p-simplex o of K, the ordering of
the vertices induces a homeomorphism h,: |Ap| — |o| C |K|. The image f;(o) is defined as the singular
p-simplex f o h,.
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(ii) If f is an almost-embedding then the induced chain map is a homological almost-
embedding.

Moreover, note that without the requirement of being nontrivial, we could simply take
the constant zero chain map, for which the second requirement is trivially satisfied.

We have the following analogue of Proposition 5.2 for homological almost-embeddings.

Proposition 5.6. Suppose that K is a finite simplicial complex with 0¢(K) # 0. Then
K does not admit a homological almost-embedding in R?.

As a corollary, we get the following result, which underlies our proof of Theorem 1.8.

Corollary 5.7. For any k > 0, the k-skeleton Ag,?JrQ of the (2k 4 2)-dimensional simplex
has no homological almost-embedding in R?*.

We conclude this subsection by two facts that are not needed for the proof of the
main result but are useful for the presentation of our method in Section 6.2.

If the ambient dimension d = 2k + 1 is odd, we can immediately see that Ag};i) has
no homological almost-embedding in R?**! since it has no homological almost-embedding
in R?*+2; this result can be slightly improved:

Corollary 5.8. For any d > 0, the [d/2]-skeleton A&E%ﬂ) of the (d + 2)-dimensional
simplex has no homological almost-embedding in RY.

Proof. The statement for even d is already covered by the case k = d/2 of Corollary 5.7,
so assume that d is odd and write d = 2k + 1. If K is a finite simplicial complex
with 0¢(K) # 0 and if CK is the cone over K then 0¢*'(CK) # 0 (for a proof, see,

for instance, | , Lemma 8]). Since we know that o (Ag,zrz) # 0 it follows that
02’“+1(C’Agz)+2) # 0. Consequently, 02k+1(Ag,z:§)) # 0 since C’Ag;;)ﬁ is a subcomplex of
Ag,ii? Proposition 5.6 then implies that Ag;:r? admits no homological almost-embedding
in R#*+1L, O

The next fact is the following analogue of Radon’s lemma, proved in the next subsec-
tion along the proof of Proposition 5.6.

Lemma 5.9 (Homological Radon’s lemma). For any d > 0, 0%(0A411) # 0. Conse-
quently, the boundary of (d + 1)-simplex 0Aq4y1 admits no homological almost-embedding
in RY,

5.3 Deleted Products and Obstructions

Here, we review the standard proof of Proposition 5.2 and explain how to adapt it to
prove Proposition 5.6, which will follow from Lemma 5.13 and Lemma 5.14 (b) below.
The reader unfamiliar with cohomology and willing to accept Proposition 5.6 can safely
proceed to Chapter 6.
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Zs-spaces and equivariant maps. We begin by recalling some basic notions of equiv-
ariant topology: An action of the group Zs on a space X is given by an automorphism
v: X — X such that vorv = 1x; the action is free if v does not have any fixed points. If X
is a simplicial complex (or a cell complex), then the action is called simplicial (or cellular)
if it is given by a simplicial (or cellular) map. A space with a given (free) Zs-action is
also called a (free) Zs-space.

A map f: X — Y between Zy-spaces (X,v) and (Y, u) is called equivariant if it
commutes with the respective Zs-actions, i.e., fov = po f. Two equivariant maps
fo, f1: X = Y are equivariantly homotopic if there exists a homotopy F': X x [0,1] = Y
such that all intermediate maps f; := F(-,t), 0 <t < 1, are equivariant.

A Zs-action v on a space X also yields a Zs-action on the chain complex C,(X), given
by the induced chain map vy: Cy(X) = C,(X) (if v is simplicial or cellular, respectively,
then this remains true if we consider the simplicial or cellular chain complex of X instead
of the singular chain complex), and if f: X — Y is an equivariant map between Zy-spaces
then the induced chain map is also equivariant (i.e., it commutes with the Zs-actions on
the chain complexes).

Spheres. Important examples of free Zs-spaces are the standard spheres S, d > 0,
with the action given by antipodality, z — —z. There are natural inclusion maps S —
S¢, which are equivariant. Antipodality also gives a free Zs-action on the union S® =
U0 S?, the infinite-dimensional sphere. Moreover, one can show that S is contractible,
and from this it is not hard to deduce that S*® is a universal Zs-space, in the following
sense (see, for instance, | , Prop. 8.16 and Thm. 8.17]).

Proposition 5.10. If X is any cell complex with a free cellular Zy-action, then there
exists an equivariant map f: X — S*. Moreover, any two equivariant maps fo, f1: X —
S are equivariantly homotopic.

Any equivariant map f: X — S* induces a nontrivial equivariant chain map
fi: Cu(X) = CL(S%).

A simple fact that will be crucial in what follows is that Proposition 5.10 has an analogue
on the level of chain maps.

We first recall the relevant notion of homotopy between chain maps: Let C.(X) and
C.(Y) be (singular or simplicial, say) chain complexes, and let ¢, : Ci(X) — C.(Y)
be chain maps. A chain homotopy n between ¢ and v is a family of homomorphisms
n;: CJ<X) — Cj+1<Y) such that

¢j—¢j=aﬂloﬁj+m—1oajx

for all 7.° If X and Y are Zs-spaces then a chain homotopy is called equivariant if it
commutes with the (chain maps induced by) the Zy-actions.”

8Here, we use subscripts and superscripts on the boundary operators to emphasize which dimension
and which chain complex they belong to; often, these indices are dropped and one simply writes ¢ —1 =
on + no.

9We also recall that if f,g X — Y are (equivariantly) homotopic then the induced chain maps are
(equivariantly) chain homotopic. Moreover, chain homotopic maps induce identical maps in homology
and cohomology.
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Lemma 5.11. If X is a cell complex with a free cellular Zs-action then any two nontrivial
equivariant chain maps o, : Cy(X) — C.(S*®) are equivariantly chain homotopic."

Proof of Lemma 5.11. Let the Zy-action on X be given by the automorphism v: X — X.
For each dimension ¢ > 0, the action partitions the i-dimensional cells of X (the basis
elements of C;(X)) into pairs o,v (o). For each such pair, we arbitrarily pick one of the
cells and call it the representative of the pair.

We define the desired equivariant chain homotopy 7 between ¢ and ¥ by induction
on the dimension, using the fact that all reduced homology groups of S® are zero.!!

We start the induction in dimension at j = —1 (and for convenience, we also use
the convention that all chain groups, chain maps, and 7; are understood to be zero in
dimensions ¢ < —1). Since we assume that both ¢ and v are nontrivial, we have that
w_1,_1: C_1(X) = C_1(S*) are identical, and we set n_;: C_1(X) — Cp(S*>) to be
Zero.

Next, assume inductively that equivariant homomorphisms 7;: C;(X) — C;(S*°) have
already been defined for i < j and satisfy

wi =, =mni—100+ 0o (5.1)

for all i < j (note that initially, this holds true for j = 0).

Suppose that o is a j-dimensional cell of X representing a pair o,v(c). Then do €
Cj-1(X), and so n;_1(do) € C;(S*) is already defined. We are looking for a suitable
chain ¢ € C}41(S*°) which we can take to be n;(c) in order to satisfy the chain homotopy
relation (5.1) also for i = j, such a chain ¢ has to satisfy dc = b, where

b:=@j(0) =vi(0) = n;—1(0(0)).

To see that we can find such a ¢, we compute

O = 0p,(0) — (o) — Ony1(0(0))
= 95-1(00) = 151(00) = (241(00) = ;- 1(90) — 1 2(000)) =0

Thus, b is a cycle, and since H;(S*) = 0, b is also a boundary. Pick an arbitrary chain
¢ € Cj41(S*) with dc = b and set n;(0) := ¢ and n;(v(0)) := v4(c). We do this for all
representative j-cells o and then extend 7); by linearity. By definition, 7; is equivariant
and (5.1) is now satisfied also for ¢ = j. This completes the induction step and hence the
proof. O

Deleted products and Gauss maps. Let K be a simplicial complex. Then the
Cartesian product K x K is a cell complex whose cells are the Cartesian products of
pairs of simplices of K. The (combinatorial) deleted product K of K is defined as the
polyhedral subcomplex of K x K whose cells are the products of vertex-disjoint pairs of
simplices of K, i.e., K :={ox7:0,7 € K,0 N7 = 0}. The deleted product is equipped
with a natural free Zy-action that simply exchanges coordinates, (x,y) — (y,z). Note
that this action is cellular since each cell o x 7 is mapped to 7 X o.

10We stress that we work with the cellular chain complex for X.
' This just mimics the argument for the existence of an equivariant homotopy, which uses the con-
tractibility of S*°.
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Lemma 5.12. If f: |K| — R? is an embedding or an almost embedding, then'? there
exists an equivariant map f: K — S

Proof. Define f (x,y) == % This map, called the Gauss map, is clearly equivari-

ant. O
For the proof of Proposition 5.6, we use the following analogue of Lemma 5.12.

Lemma 5.13. Let K be a finite simplicial complez. If v: C.(K) — C.(R%) is a homolog-
ical almost-embedding then there is a nontrivial equivariant chain map (called the Gauss
chain map) 7: C,(K) — C,(S1).

The proof of this lemma is not difficult but a bit technical, so we postpone it until
the end of this section.

Obstructions. Here, we recall a standard method for proving the non-existence of
equivariant maps between Zs-spaces. The arguments are formulated in the language of
cohomology, and, as we will see, what they actually establish is the non-existence of
nontrivial equivariant chain maps. _

Let K be a finite simplicial complex and let K be its (combinatorial) deleted product.
By Proposition 5.10, there exists an equivariant map Gk : K — S*°, which is unique
up to equivariant homotopy. By factoring out the action of Z,, this induces a map
Gg: K — RP* between the quotient spaces K = K /Zy and RP™ = S /Z, (the infinite-
dimensional real projective space), and the homotopy class of the map Gk depends only'?
on K. Passing to cohomology, there is a uniquely defined induced homomorphism

Gy H*(RP®) —» H*(K).

It is known that HY(RP*>) = Z, for every d > 0. Letting £? denote the unique generator
of H4(RIP™), there is a uniquely defined cohomology class

0! (K) = G (%),

called the van Kampen obstruction (with Z,-coefficients) to embedding K into R¢. For
more details and background regarding the van Kampen obstruction, we refer the reader
to | ].

The basic fact about the van Kampen obstruction (and the reason for its name) is
that K does not embed (not even almost-embed) into R? if 0¢(K) # 0 (Proposition 5.2).
This follows from Lemma 5.12 and Part (a) of the following lemma:

Lemma 5.14. Let K be a simplicial complex and suppose that 0%(K) # 0.

12We remark that a classical result due to Haefliger and Weber | , ] asserts that if dim K <
(2d — 3)/3 (the so-called metastable range) then the existence of an equivariant map from K to S%1 is
also sufficient for the existence of an embedding K < R? (outside the metastable range, this fails); see
[ ] for further background.

13We stress that this does not mean that there is only one homotopy class of continuous maps K —
RP*°; indeed, there exist such maps that do not come from equivariant maps K — S, for instance the
constant map that maps all of K to a single point.
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(a) Then there is no equivariant map K — S
(b) In fact, there is no nontrivial equivariant chain map Cy(K) — C,(S41).

Together with Lemma 5.13, Part (b) of the lemma also implies Proposition 5.6, as
desired. The simple observation underlying the proof of Lemma 5.14 is the following

Observation 5.15. Suppose ¢: C,(K) — C.(S*) is a nontrivial equivariant chain map
(not necessarily induced by a continuous map). By factoring out the action of Zs, ¢
induces a chain map @: Cu(K) — C.(RP*). The induced homomorphism in cohomology

7" H*(RP*) — H*(K)
1s equal to the homomorphism @; used in the definition of the Van Kampen obstruction,
hence in particular

o!(K) =g*(¢%).

Proof. By Lemma 5.11, ¢ is equivariantly chain homotopic to the nontrivial equivariant
chain map (Gk); induced by the map Gg. Thus, after factoring out the Z,-action, the
chain maps @ and (Gg); from C,(K) to C,(RP™) are chain homotopic, and so induce
identical homomorphisms in cohomology. O

Proof of Lemma 5.1/. If there exists an equivariant map f: K — S9! then the induced
chain map f;: C.(K) — C.(S%!) is equivariant and nontrivial, so (b) implies (a), and it
suffices to prove the former. B

Next, suppose for a contradiction that ¢: C,(K) — C.(S!) is a nontrivial equiv-
ariant chain map. Let 7 : S®! — S* denote the inclusion map, and let iy: C,(S* ') —
C,(S*) denote the induced equivariant, nontrivial chain map. Then the composition
o= (igor)): C,(K) — C,(S™) is also nontrivial and equivariant, and so, by the preced-
ing observation, for the induced homomorphism in cohomology, we get

o(K) = (iy0 ) (€1 =9" (7'(¢9)).

However, i (£4) € HY(RP* ) = 0 (for reasons of dimension), hence 0?(K) = 0, contra-
dicting our assumption. O

Remark 5.16. The same kind of reasoning also yields the well-known Borsuk—Ulam The-
orem, which asserts that there is no equivariant map S — S?!, using the fact that
the inclusion i: RP? — RP> (induced by the equivariant inclusion i: S* — S*°) has the
property that 7 (£%), the pullback of the generator £€¢ € HY(RP™), is nonzero."* In fact,
once again one gets a homological version of the Borsuk—Ulam theorem for free: there is
no nontrivial equivariant chain map C,(S¢) — C,(S*1).

Proof of Lemma 5.9. Tt is not hard to see that the deleted product 0A4,1 = Zd\:l of the
boundary of (d + 1)-simplex is combinatorially isomorphic to the boundary of a certain
convex polytope and hence homeomorphic to S(respecting the antipodality action), see
[ , Exercise 5.4.3]. Thus, the assertion 0(9A4;1) # 0 follows immediately from the

Iy fact, it is known that H*(RP*) is isomorphic to the polynomial ring Zs[¢], that H*(RP?) =
Z5[€]/(€711), and that 7 is just the quotient map.
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preceding remark (the homological proof of the Borsuk—Ulam theorem). Together with
Proposition 5.6, this implies that there is no homological almost-embedding of 0A4,; in
R, O

The proof of Proposition 5.6 is complete, except for the following:

Proof of Lemma 5.13. Once again, we essentially mimic the definition of the Gauss map
on the level of chains. There is one minor technical difficulty due to the fact that the
cells of K are products of simplices, whereas the singular homology of spaces is based on
maps whose domains are simplices, not products of simplices (this is the same issue that
arises in the proof of Kiinneth type formulas in homology).

Assume that v: C,(K) — C,(R?) is a homological almost-embedding. The desired
nontrivial equivariant chain map 3: C,(K) — C,(S*!) will be defined as the composition
of three intermediate nontrivial equivariant chain maps

> B

C.(K)—“—D, C,(RY) —2 0 (ST 1),

y=pyoBoa

These maps and intermediate chain complexes will be defined presently.

We define D, as a chain subcomplex of the tensor product C,(RY) @ C,(RY). The
tensor product chain complex has a basis consisting of all elements of the form s ® ¢,
where s and ¢ range over the singular simplices of R¢, and we take D, as the subcomplex
spanned by all s ® t for which s and ¢ have disjoint supports (note that D, is indeed a
chain subcomplex, i.e., closed under the boundary operator, since if s and ¢ have disjoint
supports, then so do any pair of simplices that appear in the boundary of s and of ¢,
respectively). The chain complex C,(K) has a canonical basis consisting of cells o x 7,
and the chain map « is defined on these basis elements by “tensoring” v with itself, i.e.,

a(o x 7) i= (o) @ ¥(7).

Since v is nontrivial, so is «, the disjointness properties of v ensure that the image of «
does indeed lie in D,, and « is clearly Zsy-equivariant.

Next, consider the Cartesian product R? x R? with the natural Z,-action given by
flipping coordinates. This action is not free since it has a nonempty set of fixed points,
namely the “diagonal” A = {(z,7) : z € R?}. However, the action on R? x R? restricts

to a free action on the subspace R? := (R? x R%) \ A obtained by removing the diagonal
(this subspace is sometimes called the topological deleted product of RY). Moreover,
there exists an equivariant map p: R? — S?! defined as follows: we identify S¢~! with
the unit sphere in the orthogonal complement A+ = {(w,—w) € R : w € R¢} and
take p: R4 — S%! to be the orthogonal projection onto At (which sends (x,y) to
+(z —y,y — x)), followed by renormalizing,

(r—y,y—x)

e St At
(z—y,y—2)|

1

p(z,y) = 5

15

The map p is equivariant and so the induced chain map p; is equivariant and nontrivial.
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Figure 5.1: A simplex in a triangulation of A, x A, and its twin in A, x A,,.

It remains to define 5: D, — C, (I/R:i) For this, we use a standard chain map
EML: C,(R%) ® C,(R%) — C,(R? x RY),

sometimes called the Eilenberg—Mac Lane chain map, and then take 3 to be the restriction
to D,.

Given a basis element s @ t of C\,(R?) ® C.(R?), where s: A, — R? and ¢: A, — R?
are singular simplices, we can view s ® t as the map s ® t: A, x A, — R? x R? with
(z,y) — (s(z),t(y)). This is almost like a singular simplex in R? x R? except that
the domain is not a simplex but a prism (product of simplices). The Eilenberg-Mac
Lane chain map is defined by prescribing a systematic and coherent way of triangulating
products of simplices A, x A, that is consistent with taking boundaries; then EML(s®t) €
Cpig(R? x RY) is defined as the singular chain whose summands are the restrictions of
the map o ® 7: A, x A, to the (p + ¢)-simplices that appear in the triangulation of
A, x A,. We refer to | | for explicit formulas for the chain map EML. What
is important for us is that the chain map EML is equivariant and nontrivial. Both
properties follow more or less directly from the construction of the triangulation of the
prisms A, x A,, which can be explained as follows: Implicitly, we assume that the vertex
sets {0,1,...,p} and {0,1,..., g} are totally ordered in the standard way. The vertex set
of A, x A, is the grid {0, 1,...,p} x{0,1,..., ¢}, on which we consider the coordinatewise
partial order defined by (z,y) < (2/,¢') if # < 2’ and y < 3. Then the simplices
of the triangulation are all totally ordered subsets of this partial order. Thus, if o =
{(x0,90), (x1,%1), .., (xr,y,)} is a simplex that appears in the triangulation of A, x A,
then the simplex o = {(yo, z0), (y1,21), - - -, (Yr, x,) } obtained by flipping all coordinates
appears in the triangulation of A, x A,; see Figure 5.1. This implies equivariance of EML
(and it is nontrivial since it maps a single vertex to a single vertex). O
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6. A general Helly type theorem

In this chapter we finally prove the general Helly type theorem 1.8. Let us recall its
statement: There exists a function h(b, d) such that the following holds. If F is a finite
family of sets in R? such that ; () G;Zy) < bfor any G C F and every 0 < i < [d/2] —1,
then F has Helly number at most h(b,d). If we are only interested whether the Helly
numbers are bounded or not, this theorem subsumes a broad class of Helly type theorems
for sets in R

Before we prove the theorem, we show that it is qualitatively sharp (Example 6.1)
and provide a lower bound for the function h(b,d) (Example 6.2).

Ezample 6.1. Fix some k with 0 < k < [d/2] — 1. For n arbitrarily large, consider
a geometric realization in R? of the k-skeleton of the (n — 1)-dimensional simplex (see
[ , Section 1.6]); more specifically, let V' = {v1,...,v,} be a set of points in general
position in R (for instance, n points on the moment curve) and consider all geometric
simplices 04 := conv(A) spanned by subsets A C V of cardinality |A| < k+1. By general
position, 04 Nog = 0anp, so this yields indeed a geometric realization.

For 1 < j <n, let U; be the union of all the simplices not containing the vertex v;.
We set F = {Uy,...,U,}. Then, (F = 0, and for any proper sub-family G C F, the
intersection (G is either R? (if G = () or (homeomorphic to) the k-dimensional skeleton
of a (n —1—|G|)-dimensional simplex. Thus, the Helly number of F equals n. Moreover,
the k-skeleton Affj)_l of an (m — 1)-dimensional simplex has reduced Betti numbers 3; = 0
for i # k and f3, = (’]::11) Thus, we can indeed obtain arbitrarily large Helly number as
soon as at least one f, is unbounded.

Example 6.2. First, we observe that for every d > 2 there is a geometric simplicial complex
K4 with d + 2 vertices, embedded in R¢, such that every nonempty induced subcomplex
L of K, is connected and f3;(L) = B;(L) <1 for any i > 1.

Indeed, it is sufficient to consider K, as the stellar subdivision of the d-simplex (a. k. a.
the cone over the boundary of the d-simplex): Among the vertices of Ky, d + 1 of them,
say vy, ...,V411, form a simplex, and the last one, say w, is situated in the barycenter of
that simplex. The maximal simplices of K; contain w and d of the v-vertices. Given an
induced subcomplex L, either L misses one of the v-vertices, and then L is a subcomplex
of a simplex; or L contains all the v-vertices, and then L = K or L is the boundary of
the simplex formed by the v-vertices.

Now, with the knowledge of K, we can construct a set-system F with b(d 4 2) sets
such that (| F = 0, the intersection of any proper subsystem of F is nonempty, and the
reduced Betti numbers of the intersection of any proper subsystem are bounded by b: We
consider a complex Kj 4 which consists of b disjoint copies of K, embedded in RY. For
any vertex v of K4 we let F, be the induced subcomplex of K34 on all vertices but v.
We set F to be the collection of F,s for all possible v. It follows that (| F = 0 and also
that () G is a nonempty induced subcomplex of K} 4 for any nonempty G C F. Therefore,
(G is nonempty and its reduced Betti numbers are bounded by b from the construction
of K.
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p1 ‘ 52,5

51,4

Two edges (arcs) with no common vertices intersect (in this case sy 4 and so5). The point
in the intersection then belongs to all sets in F.

Figure 6.1: Illustration of the planar case

6.1 Proof outline

Using the machinery of Chapter 5, we prove Theorem 1.8 in two steps. First we present,
in Section 6.2, variations of the technique that derives Helly type theorems from non-
embeddability. We finally introduce our refinement of this technique and the proof of
Theorem 1.8 in Section 6.5.

We derive Theorem 1.8 from obstructions to embeddability using a technique we
learned from the work of Matousek | |. First, we illustrate this technique, which
in fact already appears in the classical proof of Helly’s convex theorem from Radon’s
lemma, on a few examples, then formalize its ingredients.

6.2 Helly type theorems from homotopic assump-
tions

Let F = {Uy,Us,...,U,} denote a family of subsets of R?. We assume that F has empty
intersection and that any proper subfamily of F has nonempty intersection. Our goal is
to show how various conditions on the topology of the intersections of the subfamilies of
F imply bounds on the cardinality of F. For any (possibly empty) proper subset I of
[n] = {1,2,...,n} we write Uz for (,c(,p\; Ui- We also put Uy = R%.

i€[n]

Path-connected intersections in the plane. Consider the case where d = 2 and the
intersections (| G are path-connected for all subfamilies G C F. Since every intersection
of n — 1 members of F is nonempty, we can pick, for every i € [n], a point p; in Ugy-
Moreover, as every intersection of n — 2 members of F is connected, we can connect any
pair of points p; and p; by an arc s;; inside Um. We thus obtain a drawing of the
complete graph on [n] in the plane in a way that the edge between i and j is contained
in UW (see Figure 6.1). If n > 5 then the stronger form of non-planarity of K5 implies
that there exist two edges {i,j} and {k, ¢} with no vertex in common and whose images
intersect (see Proposition 5.2 and Lemma 5.3). Since Uy N Uy = (| F = 0, this
cannot happen and F has cardinality at most 4.
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[d/2]-connected intersections in RY. The previous argument generalizes to higher
dimension as follows. Assume that the intersections (G are [d/2]-connected! for all
subfamilies G C F. Then we can build by induction a function f from the [d/2]-skeleton
of A,_1 to R? in a way that for any simplex o, the image f(o) is contained in Uy. The
previous case shows how to build such a function from the 1-skeleton of A,,_;. Assume
that a function f from the (-skeleton of A,_; is built. For every (¢ + 1)-simplex o of
A,,_1, for every facet 7 of o, we have f(7) C Ur C Us. Thus, the set

U rm

r facet of »

is the image of an /-dimensional sphere contained in Uz, which has vanishing homotopy
of dimension ¢. We can extend f from this sphere to an (¢ + 1)-dimensional ball so that
the image is still contained in Uz. This way we extend f to the (£ + 1)-skeleton of A,,_;.

The Van Kampen-Flores theorem asserts that for any continuous function from Ag,?JFQ
to R?* there exist two disjoint faces of Ag&z whose images intersect (see Proposition 5.2

and Lemma 5.3). So, if n > 2[d/2] + 3, then there exist two disjoint simplices o and
T of Ag&//?&ﬂ such that f(o) N f(7) is nonempty. Since f(o) N f(7) is contained in
Us N Uz = F =0, this is a contradiction and F has cardinality at most 2[d/2] + 2.
By a more careful inspection of odd dimensions, the bound 2[d/2]+2 can be improved
to d + 2. We skip this in the homotopic setting, but we will do so in the homological

setting (which is stronger anyway); see Corollary 6.3 below.

Contractible intersections. Of course, the previous argument works with other non-
embeddability results. For instance, if the intersections (|G are contractible for all sub-
families then the induction yields a map f from the d-skeleton of A,_; to R? with the
property that for any simplex o, the image f(o) is contained in Uz. The topological
Radon theorem | | (see also [ , Theorem 5.1.2]) states that for any continuous
function from Ay, to R? there exist two disjoint faces of Agy; whose images intersect.
So, if n > d + 2 we again obtain a contradiction (the existence of two disjoint simplices
o and 7 such that f(o) N f(7) # 0 whereas U N Uz = (| F = 0), and the cardinality of
F must be at most d + 1.

6.3 From homotopy to homology

The previous reasoning can be transposed to homology as follows. Assume that for
i =0,1,...,k — 1 and all subfamilies G C F we have 3;((1G) = 0. We construct a
nontrivial® chain map f from the simplicial chains of Aflk_)l to the singular chains of R?
by increasing dimension:

e For every {i} C [n] we let p; € Ugy. This is possible since every intersection of n—1
members of F is nonempty. We then put f({i}) = p; and extend it by linearity

into a chain map from Aﬁ?)l to R%. Notice that f is nontrivial and that for any
0-simplex o C [n], the support of f(¢) is contained in Us.

'Recall that a set is k-connected if it is connected and has vanishing homotopy in dimension 1 to k.
2See Definition 5.4.
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e Now, assume, as an induction hy othesm that there exists a nontrivial chain map
f from the simplicial chains of A | to the singular chains of R? with the property
that for any (< ¢)-simplex o C [ ] E < k, the support of f(c) is contained in Usy.
Let o be a (£+1)-simplex in A . For every ¢-dimensional face 7 of o, the support
of f(7) is contained in Uz C U . It follows that the support of f(do) is contained
in Uz, which has trivial homology in dimension ¢ + 1. As a consequence, f(0Jo) is
a boundary in Uz. We can therefore extend f to every simplex of dimension ¢ + 1
and then, by linearity, to a chain map from the simplicial chains of A EH to the
singular chains of R%. This chain map remains nontrivial and, by Constructlon, for
any (< £+ 1)-simplex o C [n], the support of f(o) is contained in Us.

If o and 7 are disjoint simplices of Aff_)l then the intersection of the supports of f(o) and
f(7) is contained in Uz N U= = [ F = () and these supports are disjoint. It follows that f
is not only a nontrivial chain map, but also a homological almost-embedding in R?. We
can then use obstructions to the existence of homological almost-embeddings to bound
the cardinality of F. Specifically, since we assumed that F has empty intersection and
any proper subfamily of F has nonempty intersection, Corollary 5.8 implies:

Corollary 6.3. Let F be a family of subsets of RY such that 5;(G) = 0 for every G C F
and i =0,1,...,[d/2] — 1. Then the Helly number of F is at most d + 2.

The homological Radon’s lemma (Lemma 5.9) yields (noting 0A44; = Agﬁl):

Corollary 6.4. Let F be a family of subsets of RY such that 5;(G) = 0 for every G C F
andi=20,1,...,d—1. Then the Helly number of F is at most d + 1.

Remark 6.5. The following modification of Example 6.1 shows that the two previous
statements are sharp in various ways. First assume that for some values k, n there exists
some embedding f of Ank_)l into R?. Let K; be the simplicial complex obtained by deleting

the ith vertex of An 1 (as well as all simplices using that vertex) and put U; := f(K;).
The family F = {Uy, ..., U,} has Helly number exactly n, since it has empty intersection
and all its proper subfamilies have nonempty intersection. Moreover, for every G C F,
(G is the image through f of the k-skeleton of a simplex on |F\ G| vertices, and therefore
Bz(ﬂ G)=0forevery G C Fand i=0,...,k— 1. Now, such an embedding exists for:

k=dand n =d+ 1, asthe d-dimensional simplex easily embeds into R¢. Consequently,
the bound of d 4 1 is best possible under the assumptions of Corollary 6.4.

k=d—1and n=d+ 2, as we can first embed the (d — 1)-skeleton of the d-simplex
linearly, then add an extra vertex at the barycenter of the vertices of that simplex
and embed the remaining faces linearly. This implies that if we relax the condition
of Corollary 6.4 by only controlling the first d — 2 Betti numbers then the bound of
d + 1 becomes false. It also implies that the bound of d + 2 is best possible under
(a strengthening of) the assumptions of Corollary 6.3.

(Recall that, as explained in Example 6.1, the [d/2]—1 in the assumptions of Corollary 6.3
cannot be reduced without allowing unbounded Helly numbers.)
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An example of a constrained map v: K — R?. A label at a face o of K denotes ®(o).
Note, for example, that the support of y({a,b, c}) needn’t be a triangle since we work
with chain maps. Constrains by ® mean that a set U; must contain cover images of all
faces without label 7. It is demonstrated by Us and Ug for example.

Figure 6.2: An example of a constrained map

Constrained chain map. Let us formalize the technique illustrated by the previous
example. We focus on the homological setting, as this is what we use to prove Theo-
rem 1.8, but this can be easily transposed to homotopy.

Considering a slightly more general situation, we let F = {U;,Us,...,U,} denote a
family of subsets of some topological space R. As before for any (possibly empty) proper
subset I of [n] = {1,2,...,n} we write Uy for (,c,),; Ui and we put Upy = R.

Let K be a simplicial complex and let v : C,(K) — Ci(R) be a chain map from the
simplicial chains of K to the singular chains of R. We say that v is constrained by (F, ®)
if:

(i) ® is a map from K to 2" such that ®(c N7) = ®(0) N &(7) for all 0,7 € K and
d(0) = 0.

(ii) For any simplex o € K, the support of (o) is contained in Usoy-

See Figure 6.2. We also say that a chain map v from K is constrained by F if there exists
a map P such that « is constrained by (F, ®). In the above constructions, we simply set
® to be the identity. As we already saw, constrained chain maps relate Helly numbers to
homological almost-embeddings (see Definition 5.4) via the following observation:

Lemma 6.6. Let v : C.(K) — Ci(R) be a nontrivial chain map constrained by F. If
N F = 0 then v is a homological almost-embedding of K.

Proof. Let ® : K — 2"l be such that +y is constrained by (F,®). Since v is nontrivial, it
remains to check that disjoint simplices are mapped to chains with disjoint support. Let
o and T be two disjoint simplices of K. The supports of v(¢) and (1) are contained,
respectively, in U@ and U@, and

Uso) N Usiy = Usgrmae = Usormy = Vs = Us = [ | F-
Therefore, if () F = 0 then ~ is a homological almost-embedding of K. O
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6.4 Relaxing the connectivity assumption

In all the examples listed so far, the intersections (|G must be connected. A relaxation of
this condition was given by Matousek | ] who allowed “having a bounded number of
connected components”, the assumptions then being on the topology of the components,
by using Ramsey’s theorem. The gist of our proof is to extend his idea to allow a bounded
number of homology classes not only in the first dimension but in any dimension. Let us
illustrate how Matousek’s idea works in two dimension:

Theorem 6.7 (| , Theorem 2 with d = 2]|). For every positive integer b there is
an integer h(b) with the following property. If F is a finite family of subsets of R? such
that the intersection of any subfamily has at most b path-connected components, then the
Helly number of F is at most h(b).

Let us fix b from above and assume that for any subfamily G C F the intersection (G
consists of at most b path-connected components and that (| F = (). We start, as before,
by picking for every i € [n], a point p; in U@’ This is possible as every intersection of
n — 1 members of F is nonempty. Now, if we consider some pair of indices i, j € [n], the
points p; and p; are still in UW but may lie in different connected components. It may
thus not be possible to connect p; to p; inside UW' If we, however, consider b+ 1 indices
i1,%2, ..., %41 then all the points py, piy, ..., ps,,, are in Um which has at most
b connected components, so at least one pair among of these points can be connected by
a path inside Um Thus, while we may not get a drawing of the complete graph
on n vertices we can still draw many edges.

To find many vertices among which every pair can be connected we will use the

hypergraph version of the classical theorem of Ramsey:

Theorem 6.8 (Ramsey | ). For any z, y and z there is an integer R,(y,z) such
that any x-uniform hypergraph on at least R, (y, z) vertices colored with at most y colors
contains a subset of z wvertices inducing a monochromatic sub-hypergraph.

From the discussion above, for any b + 1 indices i; < 15 < ... < 1531 there exists a pair
{k, 0} € ([b;”) such that p;, and p;, can be connected inside Um Let us consider
the (b + 1)-uniform hypergraph on [n] and color every set of indices i1 < 1o < ... < ip4q
by one of the pairs in ([b;”) that can be connected inside Ug 7~ (if more than one
pair can be connected, we pick one arbitrarily). Let ¢ be some integer to be fixed later.
By Ramsey’s theorem, if n > Ry ((bgl),t) then there exist a pair {k,(} € ([b;”) and
a subset T' C [n] of size ¢t with the following property: for any (b + 1)-element subset
S C T, the points whose indices are the kth and /th indices of S can be connected inside
Ug.
Now, let us set t =5 + (g) (b—1) = 10b — 5. We claim that we can find five indices
in T, denoted 41,1y, ...,i5, and, for each pair {i,,i,} among these five indices, some

(b+ 1)-element subset @),, C T" with the following properties:
(i) 4, and i, are precisely in the kth and ¢th position in @, ,, and
(ii) for any 1 < u,v,u',v" <5, Quﬂ, N Qu/ﬂ/ = {iu,iv} N {’iu/, iv/}.
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We first conclude the argument, assuming that we can obtain such indices and sets.
Observe that from the construction of 7', the 4,’s and the @, ,’s we have the following
property: for any u,v € [5], we can connect p;, and p;, inside UQM. This gives a drawing
of K5 in the plane. Since K3 is not planar, there exist two edges with no vertex in
common, say {u,v} and {u/,v'}, that cross. This intersection point must lie in

UQu,v m UQU’,U’ = UQu,vﬂQulyul = U{iu,iv}ﬁ{iu/,iv/} = U@ = ﬂf = ®7

a contradiction. Hence the assumption that n > Ry, ((b'gl),t) is false and F has cardi-

nality at most Ry ((bgl), 10b — 5) — 1, which is our h(b).

The selection trick. It remains to derive the existence of the 7,’s and the @,,’s. It is
perhaps better to demonstrate the method by a simple example to develop some intuition
before we formalize it.

Ezample. Let us fix b = 4 and {k,(} = {2,3} € ([4;”). We first make a ‘blueprint’
for the construction inside the rational numbers. For any two indices u,v € [5] we form
a totally ordered set @, € Q of size b+ 1 = 5 by adding three rational numbers
(different from 1,...,5) to the set {u,v} in such a way that u appears at the second and
v at the third position of @, ,. For example, we can set @}, to be {0.5;1;4;4.7;5.13}.
Apart from this we require that we add a different set of rational numbers for each
{u,v}. Thus Q;,, N Q. = {u,v} N {v',v'}. Our blueprint now appears inside the set
T" := U <yepes @up; note that both this set 7" and the set T in which we search for the
sets (Q,, have 35 elements. To obtain the required indices ¢, and sets (),, it remains
to consider the unique strictly increasing bijection my: 7" — T and set i, := mo(u) and
Qup = o( ;,v)'

The general case. Let us now formalize the generalization of this trick that we will use
to prove Theorem 1.8. Let @ be a subset of [w]. If e; < ey < ... < ¢, are the elements
of a totally ordered set W then we call {e; : ¢ € Q} the subset selected by Q in W.

Lemma 6.9. Let 1 < q < w be integers and let QQ be a subset of [w] of size q. Let
Y and Z be two finite totally ordered sets and let Ay, As, ..., A, be q-element subsets of
Y. If |Z| > |Y| + r(w — q), then there exist an injection ® :' Y — Z and r subsets
Wi, Wy, ..., W, € (i) such that for every i € [r], Q selects w(A;) in W;. We can further
require that Wy N W; = w(A; N A;) for any two i,5 € [r], i # j.

Proof. Let m denote the monotone bijection between Y and [|Y]]. For i € [r] we let D,
denote a set of w—q rationals, disjoint from [|Y'|], such that @ selects mo(A;) in D;Umo(A;).
We further require that the D; are pairwise disjoint, and put Z' = [|[Y]] U (Uiem D;).
Since |Z| > |Y| + r(w — q) = |Z'| there exists a strictly increasing map v : 2/ — Z. We
set m:= vom and W; := v(D; Umg(4;)) € (7). The desired condition is satisfied by this
choice. See Figure 6.3. [

6.5 Constrained chain maps and Helly number

We now generalize the technique presented in Section 6.2 to obtain Helly type theorems
from non-embeddability results. We will construct constrained chain maps for arbitrary
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The situation for w =4 and @ = {1, 3,4}.

Figure 6.3: Illustration for the proof of Lemma 6.9

complexes. As above, F = {Uy,Us,...,U,} denotes a family of subsets of some topo-
logical space R and for I C [n] we keep the notation U as used in the previous section.
Note that although so far we only used the reduced Betti numbers f3, in this section it
will be convenient to work with standard (non-reduced) Betti numbers (3, starting with
the following proposition.

Proposition 6.10. For any finite simplicial complex K and non-negative integer b there
exists a constant hy (b) such that the following holds. For any finite family F of at least
hi (b) subsets of a topological space R. such that (G # 0 and 5; (NG) < b for any G C F
and any 0 < i < dim K, there exists a nontrivial chain map v : Cy(K) — C.(R) that is
constrained by F.

The case K = Ag’,?w, with k& = [d/2] and R = R? of Proposition 6.10 implies Theo-
rem 1.8.

Proof of Theorem 1.8. Let b and d be fixed integers, let k = [d/2] and let K = Ag&Q.
Let hx(b+1) denote the constant from Proposition 6.10 (we plug in b+ 1 because we need
to switch between reduced and non-reduced Betti numbers). Let F be a finite family of
subsets of R such that ; (N G) < b for any G C F and every 0 < i < dim K = [d/2] -1,
in particular 5; ((1G) < b+ 1 for such G. Let F* denote an inclusion-minimal sub-family
of F with empty intersection: (| F* = 0 and ((F*\{U}) # 0 for any U € F*. If F* has
size at least hx (b4 1), it satisfies the assumptions of Proposition 6.10 and there exists a
nontrivial chain map from K that is constrained by F*. Since F* has empty intersection,
this chain map is a homological almost-embedding by Lemma 6.6. However, no such
homological almost-embedding exists by Corollary 5.7, so F* must have size at most
hx(b+ 1) — 1. As a consequence, the Helly number of F is bounded and the statement
of Theorem 1.8 holds with h(b,d) = hg(b+ 1) — 1. O
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The rest of this section is devoted to proving Proposition 6.10. We proceed by induction
on the dimension of K, Section 6.5.1 settling the case of 0-dimensional complexes and
Section 6.5.3 showing that if Proposition 6.10 holds for all simplicial complexes of dimen-
sion 7 then it also holds for all simplicial complexes of dimension i+ 1. As the proof of the
induction step is quite technical, as a warm-up, we provide the reader with a simplified
argument for the induction step from ¢ = 0 to @ = 1 in Section 6.5.2. We let V(K) and
v(K') denote, respectively, the set of vertices and the number of vertices of K.

6.5.1 Initialization (dim K = 0)

If K is a 0-dimensional simplicial complex then Proposition 6.10 holds with A (b) = v(K).
Indeed, consider a family F of at least v(K') subsets of R such that all proper subfamilies
have nonempty intersection. We enumerate the vertices of K as {v1,vs,...,vyk)} and
define ®({v;}) = {i}; in plain English, ® is a bijection between the set of vertices of K
and {1,2,...,v(K)}. We first define v on K by mapping every vertex v € K to a point
p(v) € Ug(y, then extend it linearly info a chain map v : Co(K) — Co(R). It is clear that
7 is nontrivial and constrained by (F, ®), so Proposition 6.10 holds when dim K = 0.

6.5.2 Principle of the induction mechanism (dim K = 1)

As a warm-up, we now prove Proposition 6.10 for 1-dimensional simplicial complexes.
While this merely amounts to reformulating Matousek’s proof for embeddings | ]
in the language of chain maps, it still introduces several key ingredients of the induction
while avoiding some of its complications. To avoid further technicalities, we use the
non-reduced version of Betti numbers here.

Let K be a l-dimensional simplicial complex with vertices {vq,vs,...,v,x)} and
assume that F is a finite family of subsets of a topological space R such that for any
GCF, NG #0and By (NG) < b. Let s € N denote some parameter, to be fixed later.
We assume that the cardinality of F is large enough (as a function of s) so that, as
argued in Subsection 6.5.1, there exist a bijection ¥ : A — [s + 1] and a nontrivial
chain map v : C*(Ago)) — C.(R) constrained by (F,¥). We extend ¥ to A, by putting
V(o) = Uyeo VU(v) for any o € A; and ¥(0) = (). Remark that for any 0,7 € Ay we have
U(eNTt)=Y(c)NY(r).

We now look for an injection f of V(K) into V(A;) such that the chain map 7' o
fi: C.(K©) — C,(R) can be extended into a chain map v : C,(K) — C,(R) constrained
by F. Let e = {u,v} be an edge in K. If we could arrange that ~'(f(u) + f(v)) is a
boundary in Um then we could simply define y(e) to be a chain in Um
bounded by v/(f(u) + f(v)) (see Figure 6.4). Unfortunately this is too much to ask for
but we can still follow the Ramsey-based approach of Subsection 6.4: we add “dummy”
vertices to {U({f(u), f(v)})} to obtain a set W, such that +'(f(u) + f(v)) is a boundary
in Uy, If we use different dummy vertices for distinct edges then setting v(e) to be a
chain in Uy bounded by +/(f(u) + f(v)) still yields a chain map constrained by F. We
spell out the details in four steps.
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Injecting V(K) into V(A) by f in a way that the constrained chain map 7’ from
V(As) (top) can give rise to a constrained chain map from V(K) (bottom); for the sake
of illustration we use maps instead of chain maps. The situation considered here is
simple, for instance 7/(a + b) is a boundary in Us(tany SO 7' o f; can be extended to the
edge {f'(a), f71(b)} of K. Note that if we wanted to use the edge ad, since v'(a + d) is

not a boundary in Uy, 757 we would need to add “dummy” elements to ¥({a, d}).

Figure 6.4: Injecting V(K) into V(A;)

Step 1. Any set S of 2° 4 1 vertices of A, contains two vertices ug,vg € S such that
v (us + vg) is a boundary in UW.:S Indeed, notice first that for any u € S, the
support of 7/(u) is contained in Usey- The assumption on F about bounded Betti

numbers of intersections of subfamilies of F then ensures that there are at most 2°
distinct elements” in HO(UW). Thus, there are two vertices ug,vg € S such that
7'(us) and 7'(vs) are in the same homology class in Ho(Ugggy). Since we consider
homology with coefficients over Zs, the sum of two chains that are in the same
homology class is always a boundary. In particular, v'(ug + vg) = 7' (us) + 7' (vs)
is a boundary in UW'

Step 2. We use Ramsey’s theorem (Theorem 6.8) to ensure a uniform “2-in-(2° + 1)”
selection. Let t be some parameter to be fixed in Step 3 and let H denote the
(2° + 1)-uniform hypergraph with vertex set V(A,). For every hyperedge S € H
there exists (by Step 1) a pair Qg € (pb; 1]) that selects a pair whose sum is mapped
by 4 to a boundary in UW' We color H by assigning to every hyperedge S the

“color” (Qg. Ramsey’s theorem thus ensures that if s > Rob ((Qb; 1) , t) then there

3We could require that 7’ sends every vertex to a point in UW’ i.e. is a chain map induced by a
map, and simply argue that since UW has at most b connected components, any b+ 1 vertices of A,
contains some pair that can be connected inside UW‘ This argument does not, however, work in higher
dimension and its higher dimensional analogue, Theorem 3.26 would cause unnecessary technicalities
later on. Since Section 6.5.2 is meant as an illustration of the general case, we choose to follow the
general simple argument.

4H0(UW) ~ 71" for some m < b.
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[21); 1]) so that Q* selects in any

S e (2,,TH) a pair {ug,vs} such that 7'(us + vs) is a boundary in Uggy.

exist a set T of t vertices of A, and a pair Q* € (

Step 3. Now, let r be the number of edges of K and let o1, 09,...,0, denote the edges
of K. We define
20 +1 .
hi(b) = Rav 1y 9 ,r(27=1) +o(K) ) +1

and assume that s > hg(b) — 1. We set the parameter ¢ introduced in Step 2 to
t=7r(2"—1)+v(K). We can now apply Lemma 6.9 with Y = V(K), Z =T, ¢ =2,
w=2"+1,and 4; = o; for i € [r]. As a consequence, there exist an injection
f:V(K) — T and Wy, Wy, ..., W, in (23;1) such that (i) for each i, Q* selects
f(o;) in W;, and (ii) W, N W; = f(o; Noy) for 4,5 € [r],i # j.

Step 4. We define ¢ by

o0) =0
O({v;}) = V(f(v)) fori=1,2,... v(K)
O(oy)) = W(W;) fori=1,2,...,r

We define «y on the vertices of K by putting v(v) = +/(f(v)) for any v € V(K). Now
remark that for any edge o; = {u, v} of K, 7'(f(u) + f(v)) is a boundary in Uggz;
this follows from the definition of 7" and the fact that Q* selects {f(u), f(v)} in
Wi. We can therefore define y({u, v}) to be some (arbitrary) chain in Ugqp-y with

boundary ~/(f(u) + f(v)). We then extend this map linearly into a chain map
v: Cu(K) = Cy(R).

To conclude the proof of Proposition 6.10 for 1-dimensional complexes it remains
to check that the chain map + and the function ® defined in Step 4 have the desired
properties.

Observation 6.11. v is a nontrivial chain map constrained by (F, P).

Proof. First, it is clear from the definition that v is a chain map. Moreover, the definition
of " ensures that for every vertex v € K the support of (v) is a finite set of points with
odd cardinality. So 7 is indeed a nontrivial chain map.

The map ® is from K to 207U and ®(()) is by definition the empty set. The next
property to check is that the identity ®(c N 7) = ®(o) N (1) holds for all o, 7 € K.
When o and 7 are vertices this follows from the injectivity of ¥ and f. When o and 7
are edges this follows from the same identity for ¥ and the fact that Step 4 guaranteed
that W, N W; = f(o; No;) for i,5 € [r],i # j. The remaining case is when ¢ = o; is an
edge and 7 a vertex. Then, by construction, 7 € o; if and only if f(7) € W;, and

(o) NO(7) = W) NY(f(r)) =VW;N f(7))
vo) if f(r) ¢ W; }
= . = ®(0; N ).
Va0 ;= o)
It remains to check that for any simplex o € K, the support of v(o) is contained in
Uszy- When o = {v} is a vertex then (o) = ~/(f(v)). Since 7" is constrained by (F, ¥),
the support of 7/(f(v)) is contained in Usioy = Us@y, so the property holds. When

o = o; is an edge, vy(0;) is, by construction, a chain in UW = UW and the property
also holds. O
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Figure 6.5: No trivial triangles

6.5.3 The induction

Let k£ > 2, let K be a simplicial complex of dimension k£ and assume that Proposition 6.10
holds for all simplicial complexes of dimension k£ — 1 or less. Let F be a finite family of
subsets of a topological space R such that for any G C Fand any 0 <i <k—1,(G #0
and (5; (NG) < b. Assuming that F contains sufficiently many sets, we want to construct
a nontrivial chain map v : C,(K) — C.(R) constrained by F.

Preliminary example. When going from k£ = 0 to k = 1, the first step (as described
in Section 6.5.2) is to start with a constrained chain map v : C,(K®) — C.(R) and
observe that for some 1-simplices {u,v} € K the chain 7/(0{u,v}) must already be a
boundary. To see that this is not the case in general, consider the drawing of Afll) in an
annulus depicted in Fig. 6.5. Observe that for every triangle {i, j, k} € Af) the image, in
this drawing, of 0{i, j, k} is a cycle going around the hole of the annulus and is therefore
not a boundary. So, if we start with a chain map 4" corresponding to that drawing, we
will not be able to extend it by “filling” any triangle directly. This is not a peculiar
example, and a similar construction can easily be done with arbitrarily many vertices.
Observe, though, that the cycle going from 1 to 2, then 4, then 3 and then back to 1 is
a boundary; in other words, if we replace, in the triangle 9{1,2, 3}, the edge from 2 to 3
by the concatenation of the edges from 2 to 4 and from 4 to 3, we build, using a chain
map of AS) where no 2-face can be filled, a chain map of Aéz) where the 2-face can be
filled. We systematize this observation using the barycentric subdivision of K.

Barycentric subdivision. The idea behind the notion of barycentric subdivision is
that the geometric realization of a simplicial complex K’ can be subdivided by inserting
a vertex at the barycenter of every face, resulting in a new, finer, simplicial complex,
denoted sd K’, that is still homeomorphic to K’. Formally, the vertices of sd K’ consist
of the faces of K’, except for the empty face, and the faces of sd K’ are the collections
{o1,...,00} of faces of K’ such that

D#£0c1 Ty S C oy

In other words, the set of vertices of sd K" is K"\ {(}} and the faces of sd K’ are the chains
of K"\ {0}. For o € K’ we abuse the notation and let sd o denote the subdivision of &
regarded as a subcomplex of sd K’, that is,

sda:{{al,...,ag}gf(':@;éalg@g...gwga}_
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We will mostly manipulate barycentric subdivisions through the sd o. For further reading
on barycentric subdivisions we refer the reader, for example, to | , Section 1.7].

Overview of the construction of v. Let s € N be some parameter depending on K
and to be determined later. To construct v we will define three auxiliary chain maps

C, (K)o O, ((sd K)*D) A c. (At ) 15 C.(R)

As before, 7/ is a chain map from C’*(Agkfl)) constrained by F and is obtained by applying
the induction hypothesis. Unlike in Section 6.5.2, we do not inject the vertices of K into
those of Ay directly but proceed through sd K, the barycentric subdivision of K. We
“inject” K*=1 into sd K *~1) by means of a chain map . We then construct an injection
B of the vertices of sd K into the vertices of A, which we extend linearly into a chain
map 4. The key idea is the following:

The boundary of any k-simplex ¢ of K is mapped, under «, to a sum of
k! boundaries of k-simplices of sd K, all of which are mapped through j; to
chains with the same homology in some appropriate Uy

Since k! is even and we consider homology with coeflicients in Z,, it follows that 7' o 8,0

a(0) is a boundary in Uy—. We therefore construct v as an extension of 7' o 3 o .

Definition of ~'. Since A% has dimension k — 1, the induction hypothesis ensures

that if the cardinality of F is large enough then there exists a nontrivial chain map +' :
C*(Aé"“‘” ) — C«(R) constrained by F. We denote by ¥ a map such that 4 is constrained

by (F,¥). Remark that U must be monotone over AP as for any o0 C T € AP e
have ¥(o) =V¥(oNT) =V (o) NY(r) C ¥(7). It follows that for any o € APV we have

vo)=  |J v
reAﬁ.’“’l),Tgo
We use this identity to extend ¥ to Ay, that is we define:
VACV(A,), vA)= ] 9.
TeAék’l),rgA
Remark that the extended map still commutes with the intersection:
Lemma 6.12. For any A, B C V(A;) we have V(A)NV(B) = V(AN B).
Proof. For any A, B C V(Ay) we have

U(A)NTU(B) = U v |n U wm

UEAgk71>7J§A TEAgk71>,T§B

Distributing the union over the intersections we get

U(A)NT(B) = U (o) N W(7)

U,TEAgk_l),JgA,TgB
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> or
a(@g) T€sdo
dim 7r=dim o

The map « applied to a simplex o (left) and to do (right). Significant parts of the
boundaries 07 cancel out.

Figure 6.6: Map «

and as ¥(o N7) =¥ (o) NY(7) if o, 7 are simplices of APV this rewrites as

V(A)NW¥(B) = U U(oNT).

a,reAgk_l),agA,rgB
Finally, observing that
{ont:orc Al YV oCATCBY={9:9ecA* VD 9yC ANB}

we get
U(A)NY(B) = U U(9) = (AN B)
9eAF D ycanB

which proves the desired identity. ]

Definition of a. Now we define a chain map o : C, (K(k’l)) —C, (sd K(’“’l)) by first
putting
a:oe K*F D Z T,

TEsd o
dim 7=dim o

and then extending that map linearly to C\ (K(kfl)). See Figure 6.6. Remark that «
behaves nicely with respect to the differential:

a(do) = Z or.

T€sdo
dim 7=dim o
Note that the formula above makes sense and is valid even if ¢ is a k-simplex although
we define o only up to dimension k — 1.

Definition of . We now construct the injection 8 : V(sd K) — V(A;) and, for con-
straining purposes, an auxiliary function s associating with every k-dimensional simplex
of K some simplex of A,;. We want these functions to satisfy:

(P1) For any simplex 0 € K, k(o) NIm 3 = B(V(sdo)).

(P2) For any k-simplices 0,7 € K, k(o) Nk(1) = B(V(sdo)) N B(V(sdT)).

92




(P3) For any k-simplex o € K, when 7 ranges over all k-simplices of sd o, all chains 7' o
B4(97) have support in U 55 and are in the same homology class in Hy—1 (Uggoy7)-

The intuition behind these properties is that x(o) should augment 8(V(sd o)) by “dum-
my” vertices (P1) in a way that distinct simplices use disjoint sets of “dummy” vertices
(P2). Property (P3), will allow building v over k-simplices as explained in the preceding
overview.

We start the construction of 8 and s with a combinatorial lemma. Let ¢ = 2F+1 — 1

stand for the number of vertices of the barycentric subdivision of a k-dimensional simplex,
and set m = Ry, (2%, ().

Claim 6.1. For any integer t, if s > R, ((”Z),t) then there exist a setT" of t vertices

of Ay and a set Q* € ([’Z]) such that Q* selects in any M € (;C) a subset Ly; with the
following property: when o ranges over all k-simplices of Ay with o C Ly, all chains

v (0c) are in the same homology class in Hy_q <UW )

Proof. Let M be a subset of m vertices of A,. Since 7' is constrained by (F, V), for every
k-simplex o C M the support of 7/(0do) is contained in pr(aa) - Uq/(a) C Uq,(M). We can

therefore color the (k 4 1)-uniform hypergraph on M by assigning to every hyperedge o
the homology class of 7'(00) in Uy Since fj—1 (UW> < b, there are at most 2°

colors in this coloring. As m = Ry,1(2% ¢), Ramsey’s Theorem implies that there exists
a subset L C M of ¢ vertices inducing a monochromatic hypergraph. We let 0, denote
an element of ([?]) that selects such a subset L.

It remains to find a subset T" of vertices of A, so that all m-element subsets M C T
give rise to the same ());. This is done by another application of Ramsey’s theorem to
the m-uniform hypergraph on the vertices of A, where each hyperedge M is colored by
the f-element subset ()5;. The subset T' can have size t as soon as s > R,, ((TZ’) , t), which

proves the statement. O]

Now, back to the construction of 5 and k. We first want a subset of V(Ay) with
a “uniform /¢-in-m selection” property of Claim 6.1 large enough so that we can inject
V(sd K) using Lemma 6.9. We set:

t=v(sdK)+r(m—¢) and s* =R, ((”Z)t) ,

and assume that s > s*; since s* only depends on b and K, this merely requires that
F is large enough, again as a function of b and K, so that 7 still exists. We let T'
and Q* denote the subset of V(Ay) and the element of ([’?]) whose existence follows from
applying Claim 6.1. Let 01,09, ..., 0, denote the k-dimensional simplices of K. We apply
Lemma 6.9 with

Y=V(sdK), Z=T, A;=V(sdo;), q=4¢ andw=m,

and obtain an injection 7 : Y — Z and Wy, Ws, ..., W, € (TZR) such that (i) for every
i <1, Q* selects m(A;) in W;, and (ii) for any ¢ # 7 < r, W; N W, = n(A; N A;). This
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injection 7 is our map [ and we put x(o;) = W;. It is clear that Property (P1) holds,
and since

K(o)NK(o;) = WinW; = m(A;NA;) = B(V(sd o))V (sd oy)) = B(V(sd o)) NB(V (sd a)),

Property (P2) also holds. The set Q* selects 7(4;) in W; (Lemma 6.9) so Claim 6.1
ensures that when 7 ranges over all k-simplices of A with 7 C w(4;), all chains +/(97)

have support in Um and are in the same homology class in H,_; ( Uggis W . Substituting
m(A;) = B(V(sdo;)) and W; = k(0;), we see that (P3) holds.

Construction of 7. Recall that we have the chain maps®:

/
O (KFD) 9 o (K¢ P a2 o).
We define v = ' o f; o o as a chain map from C, (K(k_l)) to CL(R). Let o be a
k-dimensional simplex of K. From the definition of o we have

v (0o) = Z v o By(OT).

T€sd o
dim r=dim o

By property (P3), all summands in the above chain have support in U and belong

to the same homology class in Hy_; (UW> There is an even number of summands,

namely k! and we are using homology over Zs, so v' o 5 o a(0c) has support in Ustaioy
and is a boundary in Utaoy- We can therefore extend v into a chain map from C,(K)

to Cx(R) in a way that for any k-simplex o of K, the support of v(¢) is contained in

Ustaon-

Properties of 7. First we verify that v is nontrivial. If v is a vertex of K then sdwv
consists of a single simplex, also a vertex. The chain «(v) is thus a single vertex of sd K,
and f o a(v) is still a single vertex S(sdv). Since 7' is nontrivial, the support of y(v) is
an odd number of points and therefore 7 is also nontrivial. It remains to argue that  is
constrained by (F, ®) where:

K — 27
D U(B(V(sdo))) if dimo <k-—1
7= { U (k(0)) if dimo =k

It is clear that ®(0) = W(0) = 0 by definition of . Also, the construction of v immedi-
ately ensures that for any o € K the support of 7(o) is contained in Um. To conclude

the proof that 7 is constrained by (F,®) and therefore the induction it only remains to
check that ® commutes with the intersection:

Claim 6.2. For any o,7 € K, ®(c N71) = P(0) N (7).

®f; is the chain map induced by 3 restricted to chains of dimension at most (k — 1).
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Proof. The claim is obvious for ¢ = 7, so from now on assume that this is not the case.
First assume that ¢ and 7 have dimension at most k£ — 1. Then,

() N@(7) = U(B(V(sd o)) NV (H(V(sdT))) = W(B(V(sda)) N AV (sd7))),

the last equality following from Lemma 6.12. Since the map [ on subsets of V(Ay) is
induced by a map [ on vertices of A; we have S(V(sdo)) N B(V(sd7)) = (V(sdo) N
V(sd7)). Moreover, by the definition of the barycentric subdivision we have V(sd o) N
V(sd7) =V(sd(c N7)). Thus,

Y(B(V(sda)) N p(V(sd7))) = ¥(B(V(sd(o N 7)) = (o N7),

and the statement holds for simplices of dimension at most k — 1.

Now assume that o and 7 are both k-dimensional so that
(o) N (1) = ¥(k(0)) NY(k(T)) = V(k(o) NK(T)) = V(B(V(sdo)) N B(V(sdT))),

the last identity following from Property (P2) of the map k. Again, from the definition
of B and the barycentric subdivision we have

pV(sdo)) N B(V(sdr)) = B(V(sd(o NT))).

We thus obtain
D(o)NP(1)=TVopoV(sdlonT)) =P(cNT),

the last identity following from the definition of ® on simplices of dimension at most
k — 1. The statement also holds for simplices of dimension k.

Finally assume that ¢ and 7 are of dimension k£ and at most k — 1 respectively. Then,
applying Lemma 6.12 we have:

(o) N (1) = W(k(0)) NT(B(V(sd7))) = W(r(o) NV (sd 7))).

Note that S(V(sd 7)) C Im § and that, by property (P1), k(o) NIm g = 5(V(sdo)). We

thus have
k(o) N BV (sdT)) = B(V(sdo)) NB(V(sd7)) = B(V(sd(e N7))),

the last equality following, again, from the definition of barycentric subdivision. As o N7
has dimension at most £ — 1 we have

O(o)NP(r) =V (B(V(sdlonT)))) =P(0cnNT)

and the statement holds for the last case. O
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List of Symbols

Common symbols

NG the intersection of G, i.e., the set of all elements that
belong to every single set from the family G

A\ B the set difference, i.e.,
the set of all elements contained in A but not in B

A= B symbol used to denote isomorphism of objects A and B

PV, P f: the direct sum of vector spaces or maps between them

a,b points in an affine space

A B affine spaces

aff the affine closure

cl the closure operator of a matroid, see Definition 2.5

conv the convex hull of a set

|C| cardinality of set C

d an integer, usually used to denote dimension

Di the d-dimensional disk

e; 1th standard basis vector of F™

dim A, dim V dimension of an affine space A or vector space V', respectively

f a continuous map

fog a composition of maps

F a field

FX the Cartesian product of FF, i.e., all functions from X to F
with addition and multiplication defined coordinate-wise

F,G families of sets

1,7, k,l,m,n,r,s integers

K, L simplicial complexes

K, complete graph on n vertices

M a topological manifold or a matroid

N the set of all non-negative integers

O(f(n)) the O-notation, a function g: N — N satisfies g = O(f(n))

if there exists C,Cy € N such that
g(n) < Cif(n) for all n > Cy

P a prime number

Q the field of rationals

R an arbitrary commutative ring

R the field of reals

SZ

the i-dimensional sphere

uv vector spaces
wel weak closure operator
(satisfying only (CL2) and (CL3) of Definition 2.5)
XY topological spaces or arbitrary sets
/s the unique p-element field
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Z the ring of integers
Chapter 2
Qg an element of the field F
c the coloring from Definition 2.11
C a set split into color classes Cy, ..., C),
Co,...,C,, color classes
Cr a shorthand for | J,.; C;
Fi,... F. the pairwise disjoint rainbow sets with intersecting affine hulls
these are the sets we want to find
G, a rainbow set with |G| = j + 1 and dimaff (G;) = j
K the set of “allowed” colors
L a multipoint (see Definition 2.2)
M(X;F)  the set of all multipoints in X (see Definition 2.2)
Y a map from a set C' to affine space A
supp p support of a multipoint (see Definition 2.2)
r(M) the rank of matroid M
Ry subset of G
RY a subset of C' containing p and satisfying certain additional conditions
Y, X; points

Chapter 3

X =Y a symbol for the inclusion of X into Y
v =71 (mod B) a shorthand for {y+b|be B} ={r+b| b€ B}
2V(K) the abstract simplicial complex of all subsets of V(K);
note that K C 2V()
alo for an ordered I-face o = (vo, ..., v;),
the ordered (I + 1)-face (a,vy,...,v)
(see also Definition 3.8)
b an upper bound for the kth reduced F-Betti number
of the manifold M
By the [th group of boundaries of the chain complex C,
(see Definition 3.6)
By (K;TF) the [th ordered simplicial boundary group
(see Definition 3.11)
BP(X;TF) the [th ordered singular boundary group
(see Definition 3.17)
B/(K;F) the [th unordered simplicial boundary group
(see Definition 3.11)
B/(X;TF) the (th unordered singular boundary group
(see Definition 3.17)
c the Kneser’s coloring (see Lemma 3.31)
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a chain complexes (see Definition 3.5)

the set of all elements of C, of degree [ (see Definition 3.5)
Oi(K;F)/T,(K;F) (see Definition 3.9)

Oi(X;F)/Ty(X;F) (see Definition 3.15)
O.(K;F)/T,(K;F) (see Definition 3.11)
O.(X;F)/T.(X;F) (see Definition 3.17)

boundary operators for chain complexes C' or D, respectively
the Ith boundary operator for O;(K;F) (see Definition 3.10)
the Ith boundary operator for O;(X;F) (see Definition 3.16)
the boundary operator for O, (K;F) (see Definition 3.11)
the boundary operator for O,(X;F) (see Definition 3.17)
the Ith boundary operator for C)(K;F) or Cy(X;F)

(see Definitions 3.10 and 3.16)

the boundary operator for C,(K;F) or C,(X;F)

(see Definitions 3.10 and 3.16)

the standard [-dimensional simplex in R+

the abstract d-dimensional simplex, i.e.,

set of all subsets of {0,1,...,d}

the standard ith face map,

mapping |A; 1| onto the facet of |A]

that does not contain the ith vertex

(see Definition 3.12)

the set of all elements of D, of degree [ (see Definition 3.5)
cardinality of a set .S

the chain map between 5’*(X; F) and C. (Y TF)

induced by the continuous map f: X — Y

(see Definition 3.18)

the chain map between O, (X;F) and O, (Y;F)

induced by the continuous map f: X — Y

(see Definition 3.18)

the chain map between H,(X;F) and H,(Y;F)

induced by the continuous map f: X — Y

(see Definition 3.18)

the chain map between HO(X;F) and HO(Y;F)

induced by the continuous map f: X — Y

(see Definition 3.18)

(ordered) singular simplices (see Definition 3.14)

the [th homology group of the chain complex C,

(see Definition 3.6)

the chain complex of homology groups

(see Definition 3.6)

the [th reduced ordered simplicial homology group

(see Definition 3.11)

the [th reduced ordered singular homology group

101



HI(XS F)

LK

ls

ln

K]

min o

p: C, = D,

S({0,1,...,1})

(see Definition 3.17)

the [th reduced unordered simplicial homology group
(see Definition 3.11)

the [th reduced unordered singular homology group
(see Definition 3.17)

the natural inclusion of 5*(K; ) into 5*(|K| . TF)
(see Definition 3.19)

the natural inclusion of C,(K;F) into C,(|K|;F)
(see Definition 3.19)

the natural inclusion of 5*(Agk); F) into C.,( AP ;)
(see Definition 3.19)
the natural inclusion of 5*(A§Lk); F) into C.,( AP )

(see Definition 3.19)

geometric realization of an abstract simplicial complex
(see Definition 3.2)

the number of all k-faces of A

if o is a face of A with vertex set

1% (Agk)> = {vo,v1,...,0s},

the minimal index of a vertex in o

the chain map 6 o (¢,,)

a chain map (see Definition 3.5)

for a chain map ¢, the induced homomorphism in homology
(see Definition 3.7)

a shorthand for ¢, ([z])

the linear automorphism of |A,|

induced by a permutation 7 of vertices

(see Definition 3.12)

the ordered face o permuted according to permutation 7
(see Definition 3.8)

the k-skeleton of a simplicial complex K, i.e.,

all faces up to dimension k&

the [th augmented chain group of ordered simplices

(see Definition 3.9)

the [th augmented chain group of ordered singular simplices
(see Definition 3.15)

the augmented simplicial chain complex

of a simplicial simplices in K

(see Definition 3.11)

the augmented singular chain complex

of singular simplices in X

(see Definition 3.17)

a path-connected component of a topological space

the group of permutations on {0,1,...,s}, i.e.,
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set of all bijections 7: {0,1,...,s} = {0,1,...
endowed with the composition of maps

75}7

sd(K, a) the stellar subdivison of K with respect to a
(see Definition 3.4)
Oly- O all the k-faces of Agk), linearly ordered
o,T (ordered) faces of an abstract simplicial complex
o)’ the degeneracy map for |A;| that maps
1th vertex onto jth and leaves others unchanged
(see Definition 3.12)
lo| geometric realization of a face o (see Definition 3.2)
supp y support of the (ordered or unordered) singular chain ~
(see Definition 3.22)
T)(K;F) the [th augmented chain group
of degenerated chains of simplices
(see Definition 3.9)
TZ(X ;) the [th augmented chain group
of degenerated chains of singular simplices
(see Definition 3.15)
0 a chain map from 5* <‘A,(f) ;Zp> to 6* (M;Z,)
Vg, ..., U vertices of an abstract simplicial complex
(voy -+, 1) an ordered [-simplex in K (see Definition 3.8)
(voy .-, U3y ...,v) ashorthand for (vg,...,v;_1,vi41,...,0;)
V() V(i) i= ([0 A o), [0 A 2], [0(n A )] )
(See Equation (3.6))
V(K) vertex set of an abstract simplicial complex K
Z the [th group of cycles of the chain complex C,
(see Definition 3.6)
ZP (K5 F) the [th ordered simplicial cycle group
(see Definition 3.11)
ZP(X;F) the Ith ordered singular cycle group
(see Definition 3.17)
Z1(K;TF) the [th unordered simplicial cycle group
(see Definition 3.11)
Z)(X;TF) the [th unordered singular cycle group
(see Definition 3.17)
2] the homology class of a cycle Z
in the corresponding homology group
Chapter 4
M, M’', M"” manifolds, M" is assumed to be compact
N, Ny non-negative integers
q an integer
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Chapter 5

® the tensor product
2X the set of all subsets of X
CK the cone over K
Ci«(K) the simplicial chain complex of K with Zy coefficients
C.(X) the singular chain complex of X with Z, coeflicients
note that its augmented analogues is denoted 5*()( : Zs) in Chapter 3
HY(K) the dth singular) cohomology group of K with coefficients in Z,

K the combinatorial deleted product of K
0?(K)  the Zy-Van Kampen obstruction to embeddability of K into R?
R an arbitrary topological space, e.g. R?
RP? the d-dimensional projective space over the reals
RIP* the infinitely dimensional projective space over the reals
S the d-dimensional sphere
S the infinitely dimensional sphere
()k( ) the set of all k-element subsets of X
Chapter 6
F a fixed family of sets
0 a chain map
H a hypergraph
[m]  theset {1,2,...,m}
n the number of sets in the family F, i.e., F = {Uy,...,U,}
®, U constraning maps (see the discussion before Lemma 6.6)
Ur a shorthand for (¢, Us
Ux defined as R¢
S an edge of an hypergraph
sd K the barycentric subdivision of K
v(K) the number of vertices of K
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