
Introduction to approximation

and randomized algorithms
4th exercise session 26th November 2019

Exercise 1. Consider the standard knapsack problem. That is
we have n items with weights wi and costs ci and knapsack of size
B into which we want to put items maximizing the cost.

a) Consider a greedy algorithm that adds items from the high-
est cost until they fit. Why isn’t this algorithm good?

b) Try to consider a better algorithm. We first sort the items
by their density (that is the ratio ci/wi) and greedily choose
items from the highest density until they fit. Show that this
algorithm also isn’t good.

c) Try to make a minor modification to the previous algorithm
such that we get a 2-approximation.

Exercise 2. We’ll look at the k-center problem now. In this prob-
lem, we are given a metric space (V,d) with n points and we want
to choose k centers (that is k points from V ), such that the maxi-
mal distance between a point and its closest center would be min-
imized. So we are minimizing a function maxv∈V d(p,S), where
S is the set of chosen centers and d(v,S) is a distance between v
and its closest point in S, that is d(v,S) = mins∈S d(v,s). Find a
greedy 2-approximation algorithm for this problem. It could be
useful at the analysis of this algorithm to consider that we have
an optimal solution of this problem and we are comparing it with
the solution found by our algorithm.

Exercise 3. During the lecture you’ve seen a problem of schedul-
ing on identical machines. Now we’ll look at a similar problem
and that is scheduling on identical machines with dependencies.
On input we get n tasks with lengths pi, m machines and a graph
of dependencies, where there is an edge from task i to task j if and
only if task i has to be completed before starting the task j. The
goal is to find a schedule of minimum length which respects the



given dependencies. The graph of dependencies has to be acyclic,
otherwise no such schedule would exist.

1. Show that we can lower bound the optimum by length of
any chain. By chain we mean an arbitrary directed path in
the graph of dependencies, where the length of a chain is a
sum of task lengths which are in the chain.

2. Construct a greedy 2-approximation algorithm.


