
Introduction to approximation

and randomized algorithms
3rd exercise session 13th November 2019

Exercise 1. Let us have a biased coin, where we get heads with
an unknown probability p. But we would like to have a fair coin.
Are you able to simulate a flip of a fair coin by using a few flips of
the biased coin? What is the expected number of the biased coin
flips to simulate one flip of a fair coin?

Exercise 2. Now consider the oposite problem. We are given a
fair coin and we want to simulate a flip of a biased coin, where
we get heads with probability p. In each of the following cases
find a way how to simulate the needed flip and also compute the
expected number of fair coin flips to simulate one biased coin flip.

a) First assume, that p = `/2k for k,` ∈ N such that 0 < ` < 2k.
b) Try to extend the previous algorithm to work for any rational

p, that is a p of a form p = a/b where a,b ∈ N
c) Finally, try to find an algorithm that works for all values of

p, that is even for irrational p.

Exercise 3. We’ll look at the problem of maximum k-cut now. In
this problem, we are given an undirected graph G = (V,E) with
nonnegative edge wights we. Our goal is to partition the vertex set
V into groups V1, . . . ,Vk in such a way, that the sum of edge weights
of edges going between different groups is maximized. Try to find
a randomized k−1

k
-approximation algorithm for this problem. If

you would find it easier, you might look first at the variant for
k = 2, which is the standard maximum cut.

Exercise 4. Now consider the problem of minimum dominating
set. On input we are given an undirected graph G = (V,E) and we
want to find a set U ⊆ V of minimum size such that each vertex
v ∈ V is dominated by some vertex u ∈ U . We say that a vertex v
is dominated by a vertex u, if v = u or v is a neighbor of u. This



problem is NP -hard, so we would like to find a good approxima-
tion. In this exercise our goal is O(log n)-approximation. We’re
also going to restrict ourselves to d-regular graphs. Follow these
steps:

1. First show that if we’d be able to find a dominating set of size
cn logn
d+1

in polynomial time, then we would get an (c log n)-
approximation algorithm.

2. Algorithm will choose k = cn logn
d+1

vertices from V uniformly
at random (for suitable c which we’re going to choose later)
and inserts them into the set U . To simplify the analysis,
we allow ourselves to choose the same vertex multiple times.
Our goal now is to show that a set chosen in this way is a
dominating set with a high probability. First find a prob-
ability that vertex v ∈ V is dominated by the i-th chosen
vertex.

3. The next step is to find a probability, that vertex v ∈ V is
not dominated by any chosen vertex.

4. Finally find the probability that U is a dominating set. How
do we choose the value of c?


