Syllabus

February, 2006

A * denotes a theorem which was stated, but not proved.

1

Characters; concepts of convergence $(\sigma_n, \text{ normed}, S_n)$; Cesaro means. Locally compact, Abelian (LCA) groups; some examples: $\mathbb{Z}_2, \mathbb{Z}_2^n, \mathbb{R}, \mathbb{T}$.

Fejer's theorem: If $f : \mathbb{T} \to \mathbb{C}$ is Riemann integrable, and f is continuous at t, then $\lim_n \sigma_n(f,t) = f(t)$. Further, if f is continuous, then the convergence is uniform.

*Kolmogorov's theorem: trigonometric polynomials are dense in continuous functions with the L_∞ norm.

Weierstrass's theorem: polynomials are dense in continuous functions with the L_{∞} norm.

$\mathbf{2}$

Chebyshev polynomials and their *minimality (in L_{∞} norm.) The *Hausdorff moment problem.

*Carleson's theorem: if f is Riemann integrable, then $S_n(f,t) \xrightarrow{n} f(t)$ a.e. *Kahane and Katznelson's converse: if E is a measure-zero set, then there is an integrable f such that $S_n(f,t) \xrightarrow{n} f(t)$ except on E.

 L_2 theory; the Riemann-Lebesgue lemma; convergence theorems: if $f \in C^1$ then $S_n(f,t) \to f$ uniformly.

The Bessel inequality. Parseval's theorem: $\langle f, g \rangle = \langle \hat{f}, \hat{g} \rangle$.

3

The convolution theorem: $\widehat{f * g} = \widehat{f}\widehat{g}$. A sketch of Steiner's "solution" to the Greek isoperimetric problem; Hurwitz's proof. The edge-isoperimetric inequality on the discrete cube.

Linear programming; the inclusion-exclusion principle. The Linial-Nisan result on approximation: if $P(\bigcap_{i \in S} A_i) = P(\bigcap_{i \in S} B_i)$ for all $|S| \leq k$, then $|P(\cup A_i) - P(\cup B_i)| \leq \exp(\Theta(k/\sqrt{n}))$.

Codes: distance/radius of a codes, the MacWilliams identity: $P_C(x, y) = |C|P_{C^{\perp}}(y - x, y + x)$. The Hadamard code, linear codes, the orthogonal code.

$\mathbf{5}$

Bit rate of a code; the Gilbert-Varshanov bound: $R(\delta) \ge 1 - H(\delta)$; the Elias bound: $R(\delta) \le 1 - H\left(\frac{1-\sqrt{1-2\delta}}{2}\right)$; the Delsarte linear programming problem; Krawtchuk polynomials; the sphere-packing bound: $R(\delta) \le 1 - H(\delta/2)$.

6

Influence of variables; the tribes function; the KKL theorem: there is a variable with influence $\mathbb{E}(f)\mathbb{E}(1-f)\Omega(\log(n)/n)$; the Bonami-Beckner hypercontractive inequality: $|T_{\epsilon}(f)|_2 \leq |f|_{1+\epsilon^2}$; *BKKKL (KKL for the solid cube); the measure μ_p ; sharp thresholds.

7

The correlation inequality $(\mu(fg) \geq \mu(f)\mu(g)$ in the monotone case); Kleitman's theorem: given a collection of size $\sum_{i=0}^{r} \binom{n}{i}$ of *n*-bit strings, there are two with Hamming distance 2r; *Talagrand's theorem for monotone functions; Russo's lemma— $d\mu_p(f)/dp = \sum_i \text{Inf}_i(f)$ (proved in exercise); *Erdös-Rényi result: connectivity has a sharp threshold; transitive graphs and graph properties; duals of Boolean functions; tribes and antitribes.

8

*Edge and vertex boundaries; the *Kruskal-Katona theorem: lexical ordering provides minimal shadow; canonical paths; first-passage percolation; sharp thresholds for graph properties.

$\mathbf{4}$