232 Chapter 9: Geometric Selection Theorems

estimating the term e(Y7 \ Z1, Y, ..., Y%), we use random subsets Ro, . ..

of size (1—¢)s of Y, ..., Y%, respectively. Thus,

eY1\ Z1,Ya,..., V) = (1 —)s"E[p(Y1 \ Z1, Ro, ..., Ry)].
Now for any choice of Ra, ..., Ry, we have
(1 =)$) n(Yi \ Z1, Ray..., Ri)

< ((1-e)s)= u(Y1,Ya,...,Ys)
(1—e) < p(Y,...,Ys).

p(Yl\Z1;R27" 'aRk)

Therefore,

k
eY1\ Z1,Ya, ..., Vi) < (1 =)' e(Vy, ..., Y2)

To estimate the term e(Z1, Za, ..., Zi—1,Yi\ Z;, Yit1, ..., Yy), we use random

subsets R; C Y; \ Z; and R;11 C Yiq1,..., Ri C Yy, this time all of s
A similar calculation as before yields

ize €s.

(21, Zoy. ., Zi1,Yi\ Zi, Yis1,.. ., Vi) <71 (1 —e)e(Va, ..., Vi)

(This estimate is also valid for ¢ = 1, but it is worse than the one derived
above and it would not suffice in the subsequent calculation.) From (9.2) we

obtain that e(Z1, ..., Zx) is at least e(Y1,...,Y)) multiplied by the factor
k k k k k k
1—(1—e)™ —(1—g)e = Y et =1-(1-g) 7= —c™= 4
i=2
>1—(1- 5)1_8k .
>1-27 4

where the last inequality follows from the inequality (#)Ua < GTH’, a >

0,b>0,0< a<1, between the ath degree mean and the arithmetic

mearn.

Now the function f(z) = 1—2% —x safisfies f(0) = f(1) = 1, and it is concave
on (0,1) since f”(z) = —(In2)22% < 0. Hence 1—2°" +-£% > 0 for all & € (0,1)

and Theorem 9.4.1 is proved.

O

Bibliography and remarks. Our presentation of Theorem 9.4.1
essentially follows Pach [Pac98], whose treatment is an adaptation of

an approach of Komlés and Sos.

The Szemerédi regularity lemma is from [Sze78], and in its full

glory it goes as follows: For every € > 0 and for every kg, there exist
K and ng such that every graph G on n > ng vertices has a partition
(Vo, Vi,..., Vi) of the vertex set into k+1 parts, kg < k < K, where
Vo| < en, |[Vi| = [Vo| = --+ = |Vk| = m, and all but at most ck?



