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Introduction

This detailed syllabus contains definitions, statements of the main results and concise com-
ments. It should not substitute a textbook, and you will find no proofs and no solved ex-
ercises here. A part of the material is covered in more detail in the book J. Matoušek,
J. Nešetřil: Invitation to Discrete Mathematics, 2nd edition, Oxford University Press, 2009
(Chap. 10). There are many textbooks of probability theory; an introduction for begin-
ners is, e.g., H. Tijms: Understanding Probability. Cambridge Univ. Press., 2004, and
a more advanced and comprehensive book is G. R. Grimmett, D. R. Stirzaker: Probabil-
ity and Random Processes, Oxford University Press, 2001. A reasonable-looking textbook
at http://www.math.uiuc.edu/~r-ash/BPT/BPT.pdf can even be freely downloaded at
present.

1. Chance, or randomness, is often symbolized by a die (plural: dice). The probability of
getting a six in a single roll is 1

6 . The probability of two sixes in two rolls is 1
36 . Tossing

a fair coin is still a simpler experiment: both heads and tails have probability 1
2 .

2. What is meant by probability? For a “real” probability this is a philosophical ques-
tion, with various answers, none of them completely satisfactory. (Dice can be rolled
repeatedly, “empirical probability” can be defined as a limit for an enormous number of
rolls—but does it make any sense to talk about the probability of unique events, such
as the gorillas, or the humans, surviving the year 2015?) Where does randomness come
from? (Maybe from quantum theory? Or from chaos theory—what we in our ignorance
perceive as random might perhaps be really predetermined?)

3. The mathematical theory of probability does not consider these philosophical conun-
drums. It construct a mathematical model of probability. This model works amazingly
well, ask insurance companies (one that are not going bankrupt, that is). But for real-
life problems it must be applied thoughtfully (ask insurance companies that are going
bankrupt). It is well known to psychologists that people generally cannot estimate prob-
abilities reliably, especially very small or very large ones (see, for example, Thinking fast
and slow by Daniel Kahneman). For example, in an experiment, only 45 % students
were able to finish their thesis by the time for which they were 99 % sure to finish it.

4. Probability in computer science: randomized algorithms (simpler and faster than deter-
ministic ones; often the only feasible approach for massive amounts of data), statistical
tests and evaluation of experiments, mathematical proofs.
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Probability spaces, mainly discrete ones

5. We perform a random experiment. Let Ω denote the set of all possible outcomes.
Examples:

• Tossing a coin: Ω = {H,T} (heads, tails).

• Rolling a die: Ω = {1, 2, 3, 4, 5, 6}.
• Three consecutive coin tosses:

Ω = {HHH,HHT,HTH,HTT, THH, THT, TTH, TTT}.
• The first raindrop falling on a square garden table: Ω = all points of a square.

Elements of Ω are called elementary events.

6. An event is a subset A ⊆ Ω. Examples:

• coin toss—we can consider 4 events: A1 = {H} (heads tossed), A2 = {T} (tails
tossed), A3 = {H,T} (heads or tails tossed, this is a certain event, it always
occurs), and A4 = ∅ (nothing tossed, this is the impossible event, it never
occurs).

• rolling a die, Ω = {1, 2, 3, 4, 5, 6}: “an even number rolled” A1 = {2, 4, 6}, “six
rolled” A2 = {6}, “nothing rolled” A3 = ∅.
• first raindrop: “falls in the left half of the table”, “falls at most 10 cm from the

border”, “falls on a flower printed on the tablecloth”, etc.

7. To every event A we assign a real number P[A] ∈ [0, 1], called the probability of A.
Examples:

• For tossing a fair coin we have
P[{H}] = P[{T}] = 1

2 , P[{H,T}] = 1, P[∅] = 0.

• For a “fair” die we have P[{1}] = P[{2}] = · · · = P[{6}] = 1
6 , and, for example,

P[{1, 3, 5}] = 1
2 .

• We can also consider a loaded die (of a cheater) with P[{6}] = 1
5 , P[{1}] = P[{2}] =

· · · = P[{5}] = 4
25 . Thus, not all one-element events need to have the same

probability.

8. A probability space (also sometimes called a sample space) is formally a triple (Ω,F ,P),
where

• Ω tells us, which elementary events are considered;

• F ⊆ 2Ω specifies, which subsets of Ω are admitted as events;

• and P:F → [0, 1] is a function that assigns to every event its probability.

9. Every probability space has to satisfy certain axioms. Here we will not present them in
full generality, since we do not yet have the necessary mathematical tools ready (specif-
ically, contemporaty probability is based in measure theory, which is usually covered
only later in the curriculum, if at all). We introduce only discrete probability spaces
precisely, ones with the set Ω finite or countable, and such that all subsets of Ω are
events.



3

We are thus leaving aside, e.g., “geometric” probability (what is the probability of
the first raindrop falling at most 10 cm from the border, etc.), as well as probabilities
concerning arbitrarily long sequences. (For example: We repeatedly toss a coin. Is it
more likely that we first encounter the sequence HHT, or HTT? This is a “real” question,
you can make bets about it! And it has a surprising answer: HHT wins twice as often.)

10. A discrete probability space is a triple (Ω,F ,P), where Ω is a finite or countable
set, F = 2Ω (that is, every subset is an event), the probability of every event A ⊆ Ω
satisfies

P[A] =
∑
ω∈A

P[{ω}] ,

and P[Ω] = 1.

This means that a discrete probability space is fully determined by the probabilities of
all one-element events. The probabilities of these singletons can be chosen as arbitrary
nonnegative numbers whose sum over Ω equals 1 (for infinite Ω this is a sum of an
infinite series).

11. Here we will work mainly with finite discrete probability spaces, where Ω is a finite set.
(In this case we will usually omit the word “discrete”.)

12. A basic example of a finite probability space is a classical probability space, where P[A] =
|A|
|Ω| ; thus, all singleton events have the same probability.

13. Remark: If we wanted every singleton to have the same probability for Ω infinite, these
probabilities would have to be all 0. Indeed, in geometric probability (a random point in
a square, say), every single point has zero probability. At the same time, there are events,
such as the whole square, with nonzero probability, which looks paradoxical—how can
infinitely many points with zero probability combine into something with nonzero prob-
ability? This is where measure theory is needed, to define geometric probability in a
consistent way.

14. Here are some specific examples of classical probability spaces, particularly important
for discrete mathematics.

• A random sequence of n tosses by a fair coin: Ω = {H,T}n, every possible sequence
of outcomes has probability 1/2n.

• A random permutation of the set {1, 2, . . . , n}: Ω = Sn (the set of all permutations),
each permutation has probability 1/n!.

15. Let us stress that for a given mathematical or practical problem, a probability space
can often be chosen in several different ways; some of them may turn out to be more
convenient than others.

16. What are probability spaces good for? They provide a safe foundation and often they
help in clarifying various tricky questions. Example: Bertrand’s box paradox ; here we
present it in a version with cards. There are three cards in a hat: one with both sides
red, another with both sides black, and a third one with one side red and one black. You
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blindly draw one of the cards and put it on the table. Then you look and see that the
top side is red. What is the probability that the bottom side is red too? An intuitive
answer is 1

2 , but the truth is 2
3 . (Also see a modern version— the Monty Hall problem).

Conditional probability, independent events

17. The conditional probability of an event A assuming that an event B has occurred is
defined as

P[A |B] =
P[A ∩B]

P[B]

(it is defined only for P[B] > 0).

18. Often it is useful to compute the probability of A by “case distinction”: if B1, . . . , Bn

are disjoint events whose union is all of Ω, then

P[A] = P[A |B1] P[B1] + P[A |B2] P[B2] + · · ·+ P[A |Bn] P[Bn] .

This simple statement is sometimes called the theorem about complete probability.

19. Example (somewhat artificial but valuable). Let us say that 0.1% of the population
is HIV-infected. Let us imagine that you had a HIV test, which is known to give a
positive result for an actually infected person in 95 % of cases, while for persons not
infected it gives a (false) positive result in 5 %. You have no particular reason to expect
to be infected (i.e., you can be regarded as a “random person” in this respect), but
your test comes out positively. What is the probability, that you are really infected?
Here the probability space is the population (and you are a randomly selected person),
the event H = HIV positive, the event T = tests positively, assumptions: P[H] = 0.001,
P[T |H] = 0.95, P[T |not H] = 0.05; we want to know: P[H |T ]. The result is less than
2 %, so you need not worry too much.

By formulating the reasoning in this example in a general way, we obtain the Bayes
theorem:

P[Bi |A] =
P[A |Bi] P[Bi]∑n

j=1 P[A |Bj ] P[Bj ]
,

where B1, . . . , Bn are events as in the previous item (disjoint and covering Ω).

20. Two events A and B are called independent if P[A ∩B] = P[A] P[B]. Equivalently, A
and B are independent if P[B] = 0 or P[A |B] = P[A]. (Intuition: if we learn whether
event B has occurred, we have gained no new information about the probability of B
occurring.) More generally: events A1, A2, . . . , An are independent if we have, for every
index set I ⊆ {1, 2, . . . , n}, the equality P[

⋂
i∈I Ai] =

∏
i∈I P[Ai].

21. Example: we consider a random sequence of n zeros and ones (or n fair coin tosses),
A1 = {the first 5 entries are all 1s},
A2 = {the sixth entry is 0},
A3 = {there are an odd number of 1s among the last 5 entries}.

The events A1 and A2 are “obviously” independent. The events A1, A2, A3 are also
independent, but this has to be checked carefully according to the definition.

Another example: a random permutation π of {1, 2, . . . , 32 (a well-mixed pack of cards);
the events A = {π(1) = 1} and B = {π(2) = 2} are not independent!
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22. There is a widespread error in intuitive interpretations of independent events (“I have
not rolled a six for such a long time—so now it must come!”—in reality, the dice have
no memory and the probability does not depend on what happened before).

23. Example: Ω = {blue-eyed blond woman, brown-eyed brown-haired woman, blue-eyed
brown-haired man, brown-eyed blond man}, all four have probability 1

4 (classical prob-
ability space); events A1 = blue eyes, A2 = blond hair, A3 = woman (or, if you prefer
numbers, Ω = {000, 011, 110, 101}). Every two of these events are independent, but all
three are not.

24. Product of (discrete) probability spaces:
(Ω1, 2

Ω1 ,P1)× (Ω2, 2
Ω2 ,P2) = (Ω, 2Ω,P),

where Ω = Ω1 × Ω2 and P[A] =
∑

(ω1,ω2)∈A P1[{ω1}]P2[{ω2}].

25. Let us consider a product probability space with Ω = Ω1 × Ω2, and let A1 be an event
that depends only on the first component; that is, A1 = A′1 × Ω2 for some A′1 ⊆ Ω1.
Similarly, let A2 be an event that depends only on the second component. Then A1 and
A2 are independent.

26. Example: a “sequence of n tosses of a fair coin” can be constructed as a product proba-
bility space, the product of n spaces, one for each coin toss. A more interesting example:
Ω = {0, 1}, P[{1}] = p (an experiment with success probability p), the product of n
copies of this space models a sequence of n independent repetitions of this experiment.
For ω ∈ {0, 1}n we have P[{ω}] = pj(1− p)n−j , where j is the number of 1s in ω.

Random variables, expectation

27. A (real) random variable on a discrete probability space (Ω, 2Ω,P) is an arbitrary
function X: Ω→ R.

Example: We toss a fair coin n times, so Ω = {H,T}n, i.e., all n-term sequences of
H’s and T ’s. Examples of random variables on this space: the number of times heads
was tossed; the number of heads minus the number of tails, the sine of the number of
heads. (Remark: One can also consider complex random variables, or random variables
whose values are points in the plane, etc. But here we talk only about real random
variables.) Be very careful to distinguish between an event (only two possible outcomes,
occurred/not occurred—formally an event is a set), and a random variable (the result
is a number, and formally a random variable is a function). In a sense, an event can be
regarded as a special case of a random variable, as will be mentioned later.

28. Let X: Ω→ R be a random variable on a discrete probability space (Ω, 2Ω,P). The
expectation of X is defined as

E[X] :=
∑
ω∈Ω

P[{ω}]X(ω).

(For Ω infinite, the infinite series in the definition of E[X] need not converge, and then
the expectation of X does not exist.) Intuition: E[X] is the average value of X if we
make a very large number of experiments.
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29. E[X] can also be computed as
∑

v∈V v·P[X = v], where V is the set of all values attained
by X (this is just rearranging the sum in the definition). Here P[X = v] is a commonly
used shorthand for the probability of the event {ω ∈ Ω : X(ω) = v}.

30. Another notion, which in practice is sometimes confused with the expectation: the
median of a real random variable X is a number m such that P[X < m] ≤ 1

2 and
P[X > m] ≤ 1

2 . For example, half of people have salary smaller than the median and
half larger. But, as a rule, a substantial majority has salary smaller than average
(and everyone wants at least the average salary—which many politicians are willing to
promise before elections).

31. Linearity of expectation: E[αX] = αE[X], E[X + Y ] = E[X]+E[Y ] for any two, totally
arbitrary, random variables X and Y , and α ∈ R (assuming that all the expectations ex-
ist). The proof is immediate from the definition. But, for example, E[XY ] 6= E[X]E[Y ]
in general.

32. The indicator of an event A is the random variable IA: Ω→ {0, 1} given by

IA(ω) =

{
1 for ω ∈ A
0 for ω 6∈ A.

We have E[IA] = P[A]. The indicator IA is the counterpart of A in the realm of random
variables; in this sense, random variables are more general than events.

33. Examples (calculating the expectation):

• X = number of heads in a sequence of n tosses of a fair coin. The expectation E[X]
can be calculated according to the definition. A much easier way, the method of
indicators: Ai is the event “the ith comes out heads”; X = IA1 + IA2 + · · ·+ IAn ,
E[IAi ] = 1

2 , E[X] = n
2 .

• Y = the number of left maxima of a random permutation π of the set {1, 2, . . . , n},
i.e., the number of i such that π(j) < π(i) for all j < i. Event Ai := “i is a left
maximum”. We calculate E[Y ] = 1 + 1

2 + · · ·+ 1
n ≈ lnn.

34. Example: Every graph G = (V,E) has a bipartite subgraph with at least 1
2 |E| edges.

Proof: Partition the vertex set into two parts at random, let X be the number of edges
going “across”, and calculate E[X] = 1

2 |E|.

35. Random variables X,Y (on the same probability space) are called independent if for
every a, b ∈ R, the events “X ≤ a” and “Y ≤ b” are independent. Similarly for more
than 2 random variables.

36. For independent random variables we have E[XY ] = E[X]E[Y ].


