Combinatorics

Exercise 9 - Projective planes and BIBD's

Homework

Deadline: 21. 12. 2022
Send to: matej@kam.mff.cuni.cz (in PDF, preferably $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$, of course)

1. A finite affine plane is a set system $\mathcal{A}=(X, \mathcal{L})$ satisfying the following axioms:

A1 For every $L \in \mathcal{L}$ and every $x \in X \backslash L$ there is unique $L^{\prime} \in \mathcal{L}$ such that $x \in L^{\prime}$ and $L^{\prime} \cap L=\emptyset$,
A2 for every two distinct $x, y \in X$, there is unique $L \in \mathcal{L}$ such that $x, y \in L$,
A3 for every $L \in \mathcal{L}$ it holds that $|L| \geq 2$, and
A4 there exists distinct $x, y, z \in X$ such that $\{x, y, z\} \nsubseteq L$ for every $L \in \mathcal{L}$.
(a) Prove that if one removes one line and all of its points from a projective plane, one gets an affine plane. [1 point]
(b) Prove that if \mathcal{A} is an affine plane, then one can add $n+1$ points and 1 line (and extend the existing lines by some of the new points) to get a projective plane. [1 point]

Problems

1. Recall the axioms of projective planes from the lecture and prove that if (A1) and (A2) hold, then (A3) is equivalent to ($\mathrm{A} 3^{\prime}$).
2. Draw the projective plane of order 3. (The aim of this is that you get hands-on experience with the general construction of projecctive planes, it might be useful e.g. at the exam.)
3. Let q be a prime and n, d positive integers. Put $V=G F(q)^{n}$ (as a vector space) and let \mathcal{B} consist of all d-dimensional subspaces of V. Find v, k, λ such that (V, \mathcal{B}) is a (v, k, λ)-BIBD.
