Combinatorics

Exercise 9 – Projective planes and BIBD's

Homework

Deadline: 21. 12. 2022

Send to: matej@kam.mff.cuni.cz (in PDF, preferably LATEX, of course)

- 1. A finite affine plane is a set system $\mathcal{A} = (X, \mathcal{L})$ satisfying the following axioms:
 - A1 For every $L \in \mathcal{L}$ and every $x \in X \setminus L$ there is unique $L' \in \mathcal{L}$ such that $x \in L'$ and $L' \cap L = \emptyset$,
 - A2 for every two distinct $x, y \in X$, there is unique $L \in \mathcal{L}$ such that $x, y \in L$,
 - A3 for every $L \in \mathcal{L}$ it holds that $|L| \geq 2$, and
 - A4 there exists distinct $x, y, z \in X$ such that $\{x, y, z\} \not\subseteq L$ for every $L \in \mathcal{L}$.
 - (a) Prove that if one removes one line and all of its points from a projective plane, one gets an affine plane. [1 point]
 - (b) Prove that if \mathcal{A} is an affine plane, then one can add n + 1 points and 1 line (and extend the existing lines by some of the new points) to get a projective plane. [1 point]

Problems

- 1. Recall the axioms of projective planes from the lecture and prove that if (A1) and (A2) hold, then (A3) is equivalent to (A3').
- 2. Draw the projective plane of order 3. (The aim of this is that you get hands-on experience with the general construction of projecctive planes, it might be useful e.g. at the exam.)
- 3. Let q be a prime and n, d positive integers. Put $V = GF(q)^n$ (as a vector space) and let \mathcal{B} consist of all d-dimensional subspaces of V. Find v, k, λ such that (V, \mathcal{B}) is a (v, k, λ) -BIBD.