Combinatorics

Exercise 1 – Hall's theorem & basics

Homework

Deadline: 19. 10. 2022

Send to: matej@kam.mff.cuni.cz (in PDF, preferably LATEX, of course)

- 1. Prove or find a counterexample to the following statement: Let I and X be **infinite** sets and let $\mathcal{M} = \{M_i\}_{i \in I}$ be a set system such that $\bigcup \mathcal{M} = X$. If \mathcal{M} satisfies the Hall condition $(\forall J \subseteq I : |\bigcup_{j \in J} M_j| \ge |J|)$, then \mathcal{M} has SDR.
- 2. Let G be a bipartite graph with 42 vertices such that whenever you pick 31 vertices, they will contain at least one edge. Show that G has a matching with at least 12 edges.
- 3. Prove that a tree has a perfect matching if and only if deleting any vertex creates exactly one component with an odd number of vertices.

Problems

- 1. What if I asked about more iterations?
 - (a) Does the system of all 3-elements subsets of $\{1, 2, 3, 4\}$ SDR?
 - (b) Does the system of all 3-elements subsets of $\{1, 2, 3, 4, 5\}$ SDR?
- 2. Dilworth's theorem says that if a finite poset (P, \prec) has the largest antichain of size r, then P can be decomposed into r chains. Prove that Dilworth's theorem implies the harder implication of Hall's theorem.
- 3. For every graph G = (V, E) it holds that

$$\sum_{v \in V} \deg_G(v) = 2|E|.$$

- 4. If G = (V, E) is a connected graph with $|V| \ge 2$ then there are $u \ne v \in V$ such that both G u and G v are connected.
- 5. Is there a graph with at least two vertices such that all of its vertices have pairwise different degrees?
- 6. Construct infinitely many graphs isomorphic to their complements.
- 7. Let σ be a permutation of $\{1, \ldots, 2n\}$. We say that σ is *splendid* if there is *i* such that $|\sigma(i) \sigma(i+1)| = n$, otherwise σ is *plain*. Prove that there are more splendid permutations than plain ones (without explicitly counting them if possible).
- 8. There are *n* points labelled 1, 2, ..., *n*. Between every pair of them there is an arrow going from the smaller to the larger one. A red-blue colouring of the arrows is *delicious* if there is no pair of points *A*, *B* with both blue and red oriented paths from *A* to *B*. Prove that there are *n*! delicious colourings (without using paper and pen if possible).
- 9. At the Rector's Sports Day there is a prestigious football tennis match between the students and the professors. The rules are as follows: Each time, one of the teams serves the ball and then one of the teams wins a point. The first team to reach *n* points wins. The professors are the first to serve and then there are two service schemes: Either the teams alternate, or the team to win the last point serves the next ball. Assuming that the probability of winning a point only depends on which team is serving, prove that the probability of winning the match is independent from the choice of the service scheme.