Combinatorics

Exercise 1 - Hall's theorem \& basics

Homework

Deadline: 19. 10. 2022
Send to: matej@kam.mff.cuni.cz (in PDF, preferably $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$, of course)

1. Prove or find a counterexample to the following statement: Let I and X be infinite sets and let $\mathcal{M}=\left\{M_{i}\right\}_{i \in I}$ be a set system such that $\bigcup \mathcal{M}=X$. If \mathcal{M} satisfies the Hall condition $(\forall J \subseteq I:$ $\left.\left|\bigcup_{j \in J} M_{j}\right| \geq|J|\right)$, then \mathcal{M} has SDR.
2. Let G be a bipartite graph with 42 vertices such that whenever you pick 31 vertices, they will contain at least one edge. Show that G has a matching with at least 12 edges.
3. Prove that a tree has a perfect matching if and only if deleting any vertex creates exactly one component with an odd number of vertices.

Problems

1. What if I asked about more iterations?
(a) Does the system of all 3 -elements subsets of $\{1,2,3,4\} \operatorname{SDR}$?
(b) Does the system of all 3-elements subsets of $\{1,2,3,4,5\}$ SDR?
2. Dilworth's theorem says that if a finite poset (P, \prec) has the largest antichain of size r, then P can be decomposed into r chains. Prove that Dilworth's theorem implies the harder implication of Hall's theorem.
3. For every graph $G=(V, E)$ it holds that

$$
\sum_{v \in V} \operatorname{deg}_{G}(v)=2|E|
$$

4. If $G=(V, E)$ is a connected graph with $|V| \geq 2$ then there are $u \neq v \in V$ such that both $G-u$ and $G-v$ are connected.
5. Is there a graph with at least two vertices such that all of its vertices have pairwise different degrees?
6. Construct infinitely many graphs isomorphic to their complements.
7. Let σ be a permutation of $\{1, \ldots, 2 n\}$. We say that σ is splendid if there is i such that $|\sigma(i)-\sigma(i+1)|=$ n, otherwise σ is plain. Prove that there are more splendid permutations than plain ones (without explicitly counting them if possible).
8. There are n points labelled $1,2, \ldots, n$. Between every pair of them there is an arrow going from the smaller to the larger one. A red-blue colouring of the arrows is delicious if there is no pair of points A, B with both blue and red oriented paths from A to B. Prove that there are $n!$ delicious colourings (without using paper and pen if possible).
9. At the Rector's Sports Day there is a prestigious football tennis match between the students and the professors. The rules are as follows: Each time, one of the teams serves the ball and then one of the teams wins a point. The first team to reach n points wins. The professors are the first to serve and then there are two service schemes: Either the teams alternate, or the team to win the last point serves the next ball. Assuming that the probability of winning a point only depends on which team is serving, prove that the probability of winning the match is independent from the choice of the service scheme.
