Probabilistic techniques Problem set \#5 - Markov chains

Deadline: 6 January 2022
Please send your solutions to dbulavka@kam.mff.cuni.cz

1. By homogeneous discrete time Markov chain we mean a sequence of random variables X_{0}, X_{1}, \ldots such that for every n we have $\operatorname{Pr}\left[X_{n+1}=i_{n+1} \mid X_{n}=i_{n}, X_{n-1}=i_{n-1}, \ldots, X_{0}=\right.$ $\left.i_{0}\right]=\operatorname{Pr}\left[X_{n+1}=i_{n+1} \mid X_{n}=i_{n}\right]$.

- Let Y_{0}, Y_{1}, \ldots be integers chosen independently uniformly from $\{-1,0,1\}$ and let $X_{n}=$ $\max \left\{Y_{0}, \ldots, Y_{n}\right\}$. Decide whether X_{0}, X_{1}, \ldots is a homogeneous discrete time Markov chain.
[1 point]
- Let Y_{0}, Y_{1}, \ldots be integers chosen independently uniformly from $\{-1,0,1\}$ and let $X_{n}=$ $\max \left\{Y_{n}, Y_{n-1}\right\}$. Decide whether X_{0}, X_{1}, \ldots is a homogeneous discrete time Markov chain.
[1 point]

2. Construct satisfiable 2-SAT formulae with n variables (for arbitrary large n) such that the randomized 2-SAT algorithm from the lecture takes $\Omega\left(n^{2}\right)$ steps (in expectation) to find a satisfying assignment. (Recall that in each step the algorithm picks an arbitrary unsatisfied clause and flips one of its variables)
[2 points]
3. We say that a graph G is triangle 2-colorable if there is a 2-coloring of the vertices such that no triangle in G is monochromatic. (For example, a 3-colorable graph is triangle 2-colorable.) Let G be a 3 -colorable graph. Start with $c: V(G) \rightarrow\{0,1\}$ being constant 0 , and then do the following: while there is a monochromatic triangle in G (with respect to c), pick one of its vertices at random and flip its color. Show that the expected number of steps for this process to find a suitable triangle 2-coloring is polynomial in $|V(G)|$.
[3 points]
4. Show that in one communicating class of a Markov chain, there cannot be a state which is recurrent and another state which is transient.
[2 points]
5. In a finite Markov chain show that the following holds:

- There is at least one recurrent state.
[2 points]
- all recurrent state are positive recurrent (i. e., the expected time until the process returns to this state is less than infinity).
[2 points]

6. Let X be a Poisson random variable with mean $\mu \in \mathbb{Z}$. Prove that $\operatorname{Pr}[X \geq \mu] \geq 1 / 2$. (Hint: show that $\operatorname{Pr}[X=\mu+h] \geq \operatorname{Pr}[X=\mu-h-1]$ for every $0 \leq h \leq \mu-1$.)
[2 points]
7. Throw m balls uniformly independently into n bins, where the bins are numbered from 0 to $n-1$. We say that there is a k-gap starting at j if bins $j, j+1, \ldots, j+k-1$ are all empty.

- Compute the expected number of k-gaps.
[1 points]
- Prove a Chernoff-like bound for the number of k-gaps X, that is, the inequality

$$
\operatorname{Pr}[X \geq(1+\delta) \mathbb{E}[X]] \leq e^{-c \mathbb{E}[X] \delta^{2}}
$$

where $0<\delta<1$ and c is a positive constant.
[4 points]

