Probabilistic techniques

 Problem set \#3 - Markov and Chebyshev inequalitiesAssignment: 4 November 2021
Hints: 18 November 2021
Deadline: 25 November 2021
Please send your solutions to dbulavka@kam.mff.cuni.cz

On the next tutorial I will sketch a solution to a simplified versions of problem 1.

1. Let $n \geq 2$ be a positive integer and $v_{1}=\left(x_{1}, y_{1}\right), \ldots, v_{n}=\left(x_{n}, y_{n}\right)$ vectors with x_{i} and y_{i} integers such that $x_{i}^{2}, y_{i}^{2} \leq \frac{1}{10000} \frac{2^{n}}{n}$. Prove that there exist two non-empty disjoint subsets $I, J \subset[n]$ such that

$$
\sum_{i \in I} v_{i}=\sum_{j \in J} v_{j}
$$

[3 points]
2. Let X denote the number of isolated vertices in $G(n, p(n))$ with $p(n)=c \frac{\ln (n)}{n}$. Show that
(a) $\lim _{n \rightarrow \infty} \operatorname{Pr}[X=0]=1$ for $c>1$.
[2 points]
(b) $\lim _{n \rightarrow \infty} \operatorname{Pr}[X \geq 1]=1$ for $0 \leq c<1$.
[3 points]
3. Let G be a graph with n vertices, b and m be positive integers. If G has at least $(b+m) n / 2$ edges prove that there exists a subset $B \subset V(G)$ of size at least b such that each vertex of B has at least m neighbors.
[3 points]
4. Let X be a non-negative integer random variable such that $\mathbb{E}\left[X^{2}\right]$ is finite and nonzero. Prove that

$$
\operatorname{Pr}[X=0] \leq \frac{\operatorname{Var}[X]}{\mathbb{E}\left[X^{2}\right]}
$$

[2 points]
5. Prove that

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left[G(n, 1 / 2) \text { has an induced cycle of lenght }>3 \log _{2} n\right]=0
$$

Remember that $\left(v_{1}, \ldots, v_{k}\right)$ is an induced cycle of length k if it satisfies that $v_{i} v_{j}$ is an edge if and only if $j=i+1 \bmod (k)$.
[3 points]
6. Let X be a real random variable with $\operatorname{Var}[X]=\sigma^{2}$ and $\mathbb{E}[X]=0$. For every real number $\lambda>0$ prove the inequality

$$
\operatorname{Pr}[X \geq \lambda] \leq \frac{\sigma^{2}}{\sigma^{2}+\lambda^{2}}
$$

[2 points]

