Probabilistic Techniques

Problem set \#1 - The basics

Assignment: 30. 9. 2021
Hints: $\quad 9.10 .2021$ (!!)
Deadline: 14. 10. 2021
Send to: Matěj (matej@kam.mff.cuni.cz)
By classical probability space we denote the probability space $\left(\Omega, 2^{\Omega}, \operatorname{Pr}\right)$ where Ω is a finite set and $\operatorname{Pr}[A]=$ $|A| /|\Omega|$. We define $[n]=\{0,1, \ldots, n-1\}$.

If you do not understand something (a term, notation, the whole problem, ...), please send me an e-mail. Even if you in fact should know it from some previous course. It is not fun to grade homework solving a different problem :).

1. Consider a classical probability space on p elements, where p is a prime number. Let A and B be two events. Show that A and B are independent if and only if one of them is \emptyset or Ω.
[1 point]
2. Compute the probability that in a random permutation of $[n]$, the elements 0 and 1 are in one cycle.
[3 points]
3. Prove that there exists an absolute constant $c>0$ such that for every n and every $n \times n$ matrix A with pairwise distinct entries, there is a permutation of columns of A such that no row contains an increasing subsequence of length greater than $c \sqrt{n}$.
[4 points]
4. Consider the classical probability space on an underlying set with 8 elements. Find an example of four events A, B, C, D such that:

- all triples of them are independent,
- the four events are not independent.
[2 points]

5. Find an example of events A, B, C in a classical probability space such that they are not independent, but it holds that

$$
\operatorname{Pr}[A \cap B \cap C]=\operatorname{Pr}[A] \operatorname{Pr}[B] \operatorname{Pr}[C]
$$

[1 point]
6. Recall that $G(n, p)$ is a random graph of n vertices such that every pair of vertices forms an edge with probability p independently of every other pair. Show that

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}[G(n, 1 / 2) \text { is connected }]=1
$$

[4 points]
7. Prove that there exist constants $c_{1}, c_{2}>0$ such that for every pair of integers n and m :
(a) If $m \geq c_{1} n^{2}$ then a random mapping from $[n]$ to $[m]$ is injective ${ }^{1}$ (1-to- 1) with probability at least 0.99 .
[1 point]
(b) If $m \leq c_{2} n^{2}$ then a random mapping from $[n]$ to $[m]$ is injective with probability at most 0.01.
[2 points]

