Combinatorics

Exercise 1 - Stalling for time (there still hasn't been a lecture - or has it?)

Problems

1. Prove that the vertices of every k-uniform hypergraph with less than 2^{k} hyperedges $(k \geq 2)$ can be 2-coloured so that no hyperedge is monochromatic.
2. Prove that the vertices of every k-uniform hypergraph with less than $\frac{4^{k-1}}{3^{k}}$ hyperedges $(k \geq 2)$ can be 4-coloured so that every hyperedge contains all colours.
3. Let G be a graph with m edges. Prove that G contains a bipartite subgraph with at least $\frac{m}{2}$ edges.
4. Let $v_{1}, \ldots, v_{n} \in \mathbb{R}^{n}$ be unit vectors. Prove that there are $c_{1}, \ldots, c_{n} \in\{-1,1\}$ such that

$$
\left\|c_{1} v_{1}+\cdots+c_{n} v_{n}\right\| \geq \sqrt{n}
$$

5. Let G be a bipartite graph with n vertices and suppose that each vertex is given a personalised list of more that $\log _{2}(n)$ possible colours. Prove that it is possible to pick a colour for each vertex from its list so that no two adjacent vertices share the same colour.
6. Prove that for every $n \geq 2$ there exists a graph on $2^{\frac{n}{2}}$ vertices containing no cliques and independent sets on n vertices.
7. (Kraft inequality) Let \mathcal{F} be a finite subset of $\{0,1\}^{<\omega}$ such that no member of \mathcal{F} is a prefix of another one. Let N_{i} denote the number of strings of length i in \mathcal{F}. Prove that $\sum_{i} \frac{N_{i}}{2^{i}} \leq 1$.
8. (Erdös-Ko-Rado theorem) Let $n \geq 2 k$ be positive integers and let \mathcal{C} be a collection of pairwise intersecting k-element subsets of $\{0, \ldots, n-1\}$. Prove that $|\mathcal{C}| \leq\binom{ n-1}{k-1}$ and construct such a collection attaining this bound.
9. (IMO 2011, Windmill problem - not a probabilistic proof) Let \mathcal{P} be a finite set of points in the plane in general position. Given $p \in \mathcal{P}$ and a line ℓ passing through p, we start rotating the line clockwise centered in p. Whenever the line hits another point $q \in \mathcal{P}$, we continue rotating it around q (then it hits yet another point, so that points becomes the new pivot etc). Prove that it is possible to select a starting $p \in \mathcal{P}$ and a line ℓ such that this process hits every member of \mathcal{P} infinitely many times.
