Probabilistic techniques Problem set #3 - Markov and Chebyshev inequalities

Hints: 17 November 2020 Deadline: 24 November 2020 Please send your solutions to dbulavka@kam.mff.cuni.cz

1. Let $n \geq 2$ be a positive integer and $v_1 = (x_1, y_1), \dots, v_n = (x_n, y_n)$ vectors with x_i and y_i integers such that $x_i^2, y_i^2 \leq \frac{1}{10000} \frac{2^n}{n}$. Prove that there exist two non-empty disjoint subsets $I, J \subset [n]$ such that

$$\sum_{i \in I} v_i = \sum_{j \in J} v_j.$$

[4 points]

- 2. Let X denote the number of isolated vertices in G(n, p(n)) with $p(n) = c \frac{\ln(n)}{n}$. Show that
 - (a) $\lim_{n\to\infty} \Pr[X=0] = 1 \text{ for } c > 1.$

[2 points]

(b) $\lim_{n\to\infty} \Pr[X \ge 1] = 1 \text{ for } 0 \le c < 1.$

[3 points]

- 3. Let G be a graph with n vertices, b and m be positive integers. If G has at least (b+m)n/2 edges prove that there exists a subset $B \subset V(G)$ of size at least b such that each vertex of B has at least m neighbors. [3 points]
- 4. Let X be a non-negative integer random variable such that $\mathbb{E}[X^2]$ is finite and nonzero. Prove that

$$\Pr[X=0] \le \frac{\operatorname{Var}[X]}{\mathbb{E}[X^2]}.$$

[2 points]

5. Prove that

 $\lim_{n\to\infty} \Pr[G(n,1/2) \text{ has an induced cycle of length} > 3\log_2 n] = 0.$

Remember that (v_1, \ldots, v_k) is an induced cycle of length k if it satisfies that $v_i v_j$ is an edge if and only if $j = i + 1 \mod (k)$. [3 points]

6. Let X be a real random variable with $Var[X] = \sigma^2$ and $\mathbb{E}[X] = 0$. For every real number $\lambda > 0$ prove the inequality

$$\Pr[X \ge \lambda] \le \frac{\sigma^2}{\sigma^2 + \lambda^2}.$$

[2 points]