## Combinatorics

Exercise 6 - List colouring

## Problems

1. Let $G$ be a $d$-degenerate graph. Prove that $c h(G) \leq d+1$.
2. Let $G$ be a graph such that every subgraph $H \subseteq G$ satisfies $|E(H)| \leq k|V(H)|$. Prove that $G$ has an orientation with maximum outdegree $\leq k$
3. For every $k$, find a bipartite graph $G_{k}$ with $c h\left(G_{k}\right) \geq k$. Conclude that one cannot bound $c h(G)$ from above by any function of $\chi(G)$.
4. Let $G$ be a bipartite graph with $n$ vertices. Prove that $\operatorname{ch}(G) \leq\left\lceil\log _{2}(n)\right\rceil+1$.
5. Prove that every orientation of a bipartite graph has a kernel.
6. Let $G_{n}$ be the star with $n+1$ vertices (i.e. the graph $K_{1, n}$ ).
(a) Observe that $\operatorname{ch}\left(G_{n}\right)=2$.
(b) Let $G$ be a graph, let $k$ be an integer and consider the following "game" played on $G$ by two players, Painter and Paint shop clerk. There are $k$ rounds. In each of the $k$ rounds, Painter points at a vertex $v$ of her choice and Paint shop clerk offers her a new colour which has not yet been offered for $v$. That is, after $k$ rounds, Painter has a list of some colours for every vertex and the sum of the sizes of these lists is $k$. After this, Painter wins if $G$ has a list colouring using these lists. If $k$ is the smallest number for which Painter has a winning strategy on $G$ in $k$ rounds, we write $i c h(G)=\frac{k}{|V(G)|}$.
i. Observe that $i \operatorname{ch}(G) \leq \operatorname{ch}(G)$.
ii. Prove that $i \operatorname{ch}\left(G_{n}\right) \leq 1+\frac{2 \sqrt{n}}{n+1}$ (in other words, one needs just a little bit more than 1 colour per vertex on average).
