Combinatorics

Exercise 3 - Edmonds' algorithm

Homework

Voluntary homework for bonus points
Deadline: 20. 10. 2020 23:59 (then I publish the solution)
Send to: matej@kam.mff.cuni.cz (in PDF, preferably $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$, of course)

1. Analyze Edmonds' algorithm from the course lecture notes and prove that it runs in polynomial time ${ }^{1}$
(a) Find an algorithm which finds Edmonds forest in polynomial time.
(b) Observe that Step 2 of IsMaximumMatching can be implemented in polynomial time.
(c) Show how Step 3 of IsMaximumMatching can be implemented in polynomial time (except for the recursive call to IsMaximumMatching $(\widetilde{M}, \widetilde{G}))$.
(d) Let $T(n)$ be an upper bound on time in which IsMaximumMatching runs on any graph on n vertices. Use the above points to show that $T(n) \leq T(n-2)+p(n)$, where $p(n)$ is some polynomial in n. Use that to conclude that $T(n)$ itself is a polynomial in n.
(e) Conclude that FindMaximumMatching itself called on a graph on n vertices itself does as most $q(n)$ steps when called on a graph on n vertices, where $q(n)$ is polynomial in n.

Problems

1. For every $k \geq 1$, build a graph with minimum degree at least k and exactly one perfect matching.
2. Prove that if G has no perfect matching, then G has a vertex v such that all edges incident with v belong to some maximum matching (each to a different one of course).
3. Construct a 3-regular graph with no perfect matching.
4. From last time.
(a) How many perfect matchings does K_{n} have? How many of them contain a given fixed edge e ?
(b) Let n be even. Prove that every graph on n vertices with more than $\binom{n-1}{2}$ edges has a perfect matching.
5. Decide if the following statement is true or false: If G is a 3-regular graph with no bridges, then there are six perfect matchings M_{1}, \ldots, M_{6} in G such that every edge of G is contained in exactly two of them.
[^0]
[^0]: ${ }^{1}$ If implemented for example in Pascal, C, C++ etc. Feel free to ask me any questions if you are not sure what I mean by running in polynomial time.

