Combinatorics

Exercise 2 - Tutte theorem

Problems

1. How many minimum vertex covers and how many minimal vertex covers does the star on n vertices have? 1
2. Let G be a graph and let $\mu(G)$ be the size of its maximum matching. Prove that every maximal matching in a graph has at least $\frac{\mu(G)}{2}$ edges.
3. Show that Tutte theorem implies Hall's theorem (the difficult implication).
4. Prove that every 3-regular bridgeless graph has a perfect matching.
5.

(a) How many perfect matchings does K_{n} have? How many of them contain a given fixed edge e ?
(b) Let n be even. Prove that every graph on n vertices with more than $\binom{n-1}{2}$ edges has a perfect matching.

[^0]
[^0]: ${ }^{1}$ Just understand and remember the difference between minimum (nejmenší) and (inclusion) minimal (minimální vzhledem k inkluzi).

