Combinatorics

Exercise 1 - Hall's theorem

Homework

Deadline: 12. 10. 2020
Send to: matej@kam.mff.cuni.cz (in PDF, preferably $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$, of course)

1. Prove or find a counterexample to the following statement: Let I and X be infinite sets and let $\mathcal{M}=\left\{M_{i}\right\}_{i \in I}$ be a set system such that $\bigcup \mathcal{M}=X$. If \mathcal{M} satisfies the Hall condition ($\forall J \subseteq I:$ $\left.\left|\bigcup_{j \in J} M_{j}\right| \geq|J|\right)$, then \mathcal{M} has SDR.
2. Let G be a bipartite graph with 42 vertices such that whenever you pick 31 vertices, they will contain at least one edge. Show that G has a matching with at least 12 edges.
3. Prove that a tree has a perfect matching if and only if deleting any vertex creates exactly one component with an odd number of vertices.

Problems

1. What if I asked about more iterations?
(a) Does the system of all 3 -elements subsets of $\{1,2,3,4\}$ SDR?
(b) Does the system of all 3 -elements subsets of $\{1,2,3,4,5\}$ SDR?
2. Find 6 different perfect matchings in the Petersen graph and prove that there are no more of them.

3. Dilworth's theorem says that if a finite poset (P, \prec) has the largest antichain of size r, then P can be decomposed into R chains. Prove that Dilworth's theorem implies the harder implication of Hall's theorem.
