Probabilistic Techniques

Problem set \#3 - Неравенства Маркова и Чебышёва

Assignment: 6. 11. 2019
Hints: 20. 11. 2019
Deadline: 27. 11. 2019

1. During the first tutorial session, we proved that each graph G of minimum degree δ has a dominating set of size at most $n \frac{1+\ln (\delta+1)}{\delta+1}$. But who would be satisfied with just a dominating set! Prove that there exists a constant $c>0$, such that in every graph G on n vertices with minimum degree $\delta>1$, there exists a subset $A \subseteq V(G)$ of size $|A| \leq c n \frac{\log (\delta)}{\delta}$, such that for each vertex $u \in V(G) \backslash A$, there are vertices $v \in A$ and $w \in V(G) \backslash A$, such that u is connected by an edge to both v and w. [2 points]
2. Let x be a point chosen uniformly randomly from the unit square $[0,1]^{2}$, that is, each of its coordinates is a random number chosen uniformly independently from the unit interval $[0,1]$. Let $X=\|x\|_{2}^{2}$ be the random variable computing the square of the Euclidean norm of x.
(a) Compute $\operatorname{Pr}[X>1]$.
(b) Compute $\mathbb{E}[X]$. What does Markov's inequality say about $\operatorname{Pr}[X>1]$?
(c) Compute $\operatorname{Var}[X]$.
[1 point]
3. Let $n \geq 2$ be a positive integer, and let $v_{1}=\left(x_{1}, y_{1}\right), \ldots, v_{n}=\left(x_{n}, y_{n}\right)$ be two-dimensional vectors, such that all x_{i} 's and y_{i} 's are integers, and furthermore $x_{i}^{2}, y_{i}^{2} \leq \frac{1}{10000} \frac{2^{n}}{n}$. Prove that there exist two non-empty disjoint subsets $I, J \subseteq[n]$, such that

$$
\sum_{i \in I} v_{i}=\sum_{j \in J} v_{j}
$$

4. Let X denote the number of isolated vertices in $G(n, p(n))$ where $p(n)=c \frac{\ln (n)}{n}$. Show that:
(a) $\lim _{n \rightarrow \infty} \operatorname{Pr}[X=0]=1$ for $c>1$.
(b) $\lim _{n \rightarrow \infty} \operatorname{Pr}[X \geq 1]=1$ for $0 \leq c<1$.
5. Show that for every $\varepsilon>0$ it holds that

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left[\omega(G(n, 1 / 2)) \geq(2+\varepsilon) \log _{2}(n)\right]=0
$$

where $\omega(G)$ is the size of the largest clique in graph G.
[3 points]
Note: In fact, this holds even with $\varepsilon=0$.
6. Let X be a non-negative integer random variable such that $\mathbb{E}\left[X^{2}\right]$ is finite and nonzero (and thus $\mathbb{E}[X]$ is finite, too). Prove that

$$
\operatorname{Pr}[X=0] \leq \frac{\operatorname{Var}[X]}{\mathbb{E}\left[X^{2}\right]}
$$

