Probabilistic Techniques

Problem set #3 — Неравенства Маркова и Чебышёва

Assignment: 6. 11. 2019 Hints: 20. 11. 2019 Deadline: 27. 11. 2019

- 1. During the first tutorial session, we proved that each graph G of minimum degree δ has a dominating set of size at most $n\frac{1+\ln(\delta+1)}{\delta+1}$. But who would be satisfied with just a dominating set! Prove that there exists a constant c>0, such that in every graph G on n vertices with minimum degree $\delta>1$, there exists a subset $A\subseteq V(G)$ of size $|A|\le cn\frac{\log(\delta)}{\delta}$, such that for each vertex $u\in V(G)\setminus A$, there are vertices $v\in A$ and $w\in V(G)\setminus A$, such that u is connected by an edge to both v and w. [2 points]
- 2. Let x be a point chosen uniformly randomly from the unit square $[0,1]^2$, that is, each of its coordinates is a random number chosen uniformly independently from the unit interval [0,1]. Let $X = ||x||_2^2$ be the random variable computing the square of the Euclidean norm of x.
 - (a) Compute Pr[X > 1]. [1 point]
 - (b) Compute $\mathbb{E}[X]$. What does Markov's inequality say about $\Pr[X > 1]$? [1 point]
 - (c) Compute Var[X]. [1 point]
- 3. Let $n \geq 2$ be a positive integer, and let $v_1 = (x_1, y_1), \ldots, v_n = (x_n, y_n)$ be two-dimensional vectors, such that all x_i 's and y_i 's are integers, and furthermore $x_i^2, y_i^2 \leq \frac{1}{10000} \frac{2^n}{n}$. Prove that there exist two **non-empty disjoint** subsets $I, J \subseteq [n]$, such that

$$\sum_{i \in I} v_i = \sum_{j \in J} v_j.$$

[4 points]

- 4. Let X denote the number of isolated vertices in G(n, p(n)) where $p(n) = c \frac{\ln(n)}{n}$. Show that:
 - (a) $\lim_{n\to\infty} \Pr[X=0] = 1$ for c > 1. [2 points]
 - (b) $\lim_{n\to\infty} \Pr[X \ge 1] = 1 \text{ for } 0 \le c < 1.$ [3 points]
- 5. Show that for every $\varepsilon > 0$ it holds that

$$\lim_{n\to\infty}\Pr[\omega(G(n,1/2))\geq (2+\varepsilon)\log_2(n)]=0,$$

where $\omega(G)$ is the size of the largest clique in graph G.

[3 points]

Note: In fact, this holds even with $\varepsilon = 0$.

6. Let X be a non-negative integer random variable such that $\mathbb{E}[X^2]$ is finite and nonzero (and thus $\mathbb{E}[X]$ is finite, too). Prove that

$$\Pr[X = 0] \le \frac{\operatorname{Var}[X]}{\mathbb{E}[X^2]}.$$

[2 points]