Probabilistic Techniques Problem set #5 — Markov chains and Balls&Bins

Assignment:	19. 12. 2018
Hints:	For individual problems, upon request after 9. 1. 2019 (10 pushups for a hint)
Deadline:	31. 1. 2019

Note that some of the problems might require material from the last lecture (9. 1. 2019).

- 1. By a homogeneous discrete time Markov chain we mean a sequence of random variables X_0, X_1, \ldots such that for every n we have $\Pr[X_{n+1} = k | X_n = i, X_{n-1} = i_{n-1}, \ldots, X_0 = i_0] = \Pr[X_{n+1} = k | X_n = i]$.
 - (a) Let Y_0, Y_1, \ldots be integers chosen independently uniformly from $\{-1, 0, 1\}$ and let $X_n = \max\{Y_0, \ldots, Y_n\}$. Decide whether X_0, X_1, \ldots is a homogeneous discrete time Markov chain. [1 point]
 - (b) Let Y_0, Y_1, \ldots be integers chosen independently uniformly from $\{-1, 0, 1\}$ and let $X_n = \max\{Y_n, Y_{n+1}\}$. Decide whether X_0, X_1, \ldots is a homogeneous discrete time Markov chain. [1 point]
- 2. At the exam, Chad was given the following task: "Count to k." Chad starts with X = 0 and for n steps does the following:
 - With probability 1/4 decides that X < k and therefore increments X by 1,
 - with probability 1/4 decides that X > k and therefore decrements X by 1, and
 - with probability 1/2 decides that he needs more time to think and does nothing (which still counts as a step).

Prove that there are constants $0 < c_1, c_2$ (independent from n) such that $c_1\sqrt{n} \leq \mathbb{E}[|X|] \leq c_2\sqrt{n}$. [2 points]

- 3. Construct satisfiable 2-SAT formulas with n variables (for arbitrarily large n) such that the randomized 2-SAT algorithm from the lecture takes $\Omega(n^2)$ steps (in expectation) to find a satisfying assignment. (Recall that in each step, the algorithm picks an arbitrary unsatisfied clause and flips one of its variables.)[2 points]
- 4. We say that a graph G is triangle 2-colourable if there is a 2-colouring of the vertices of G such that no triangle in G is monochromatic. (Convince yourself that every 3-colourable graph is triangle 2-colourable.)

Let G be a 3-colourable graph. Start with $c: V(G) \to \{0,1\}$ being constant 0 and then do the following. While there is a monochromatic triangle in G (with respect to c), pick one of its vertices at random and flip its colour. Show that the expected number of steps for this process to find a suitable triangle 2-colouring is polynomial in |V(G)|. [3 points]

- 5. Let X be a Poisson random variable with mean $\mu \in \mathbb{Z}$. Prove that $\Pr[X \ge \mu] \ge \frac{1}{2}$. (Hint: Show that $\Pr[X = \mu + h] \ge \Pr[X = \mu h 1]$ for every $0 \le h \le \mu 1$.) [2 points]
- 6. Throw m balls uniformly independently into n bins, where the bins are numbered from 0 to n 1. We say that there is a k-gap starting at j if bins j, j + 1, ..., j + k 1 are all empty.
 - (a) Compute the expected number of k-gaps.
 - (b) Prove a Chernoff-like bound for the number of k-gaps X, that is, the inequality

$$\Pr[X \ge (1+\delta)\mathbb{E}[X]] \le e^{-c\mathbb{E}[X]\delta^2},$$

where $0 < \delta < 1$ and c is a positive constant.

7. Consider the following variant of balls into bins, where the bins are numbered from 0 to n - 1. Let us have $k = \log_2 n$ batches of balls, each containing $b = \lceil n/\log_2 n \rceil$ balls. The process will consist of k rounds. In each round, we choose starting bin j uniformly at random and put one ball into each of the bins numbered $j, (j+1) \mod n, \ldots, (j+b-1) \mod n$. Show that the maximum load in this case is only $O(\log \log n/\log \log \log n)$ with probability approaching 1 as n goes to infinity. [3 points]

[4 points]

[1 point]