Probabilistic Techniques

Problem set \#5 - Markov chains and Balls\&Bins

Assignment: 19. 12. 2018
Hints: For individual problems, upon request after 9. 1. 2019 (10 pushups for a hint)
Deadline: 31. 1. 2019
Note that some of the problems might require material from the last lecture (9. 1. 2019).

1. By a homogeneous discrete time Markov chain we mean a sequence of random variables X_{0}, X_{1}, \ldots such that for every n we have $\operatorname{Pr}\left[X_{n+1}=k \mid X_{n}=i, X_{n-1}=i_{n-1}, \ldots, X_{0}=i_{0}\right]=\operatorname{Pr}\left[X_{n+1}=k \mid X_{n}=i\right]$.
(a) Let Y_{0}, Y_{1}, \ldots be integers chosen independently uniformly from $\{-1,0,1\}$ and let $X_{n}=\max \left\{Y_{0}, \ldots, Y_{n}\right\}$. Decide whether X_{0}, X_{1}, \ldots is a homogeneous discrete time Markov chain.
[1 point]
(b) Let Y_{0}, Y_{1}, \ldots be integers chosen independently uniformly from $\{-1,0,1\}$ and let $X_{n}=\max \left\{Y_{n}, Y_{n+1}\right\}$. Decide whether X_{0}, X_{1}, \ldots is a homogeneous discrete time Markov chain.
[1 point]
2. At the exam, Chad was given the following task: "Count to k." Chad starts with $X=0$ and for n steps does the following:

- With probability $1 / 4$ decides that $X<k$ and therefore increments X by 1 ,
- with probability $1 / 4$ decides that $X>k$ and therefore decrements X by 1 , and
- with probability $1 / 2$ decides that he needs more time to think and does nothing (which still counts as a step).

Prove that there are constants $0<c_{1}, c_{2}$ (independent from n) such that $c_{1} \sqrt{n} \leq \mathbb{E}[|X|] \leq c_{2} \sqrt{n}$. [2 points]
3. Construct satisfiable 2-SAT formulas with n variables (for arbitrarily large n) such that the randomized 2-SAT algorithm from the lecture takes $\Omega\left(n^{2}\right)$ steps (in expectation) to find a satisfying assignment. (Recall that in each step, the algorithm picks an arbitrary unsatisfied clause and flips one of its variables.)[2 points]
4. We say that a graph G is triangle 2-colourable if there is a 2 -colouring of the vertices of G such that no triangle in G is monochromatic. (Convince yourself that every 3-colourable graph is triangle 2-colourable.)
Let G be a 3-colourable graph. Start with $c: V(G) \rightarrow\{0,1\}$ being constant 0 and then do the following. While there is a monochromatic triangle in G (with respect to c), pick one of its vertices at random and flip its colour. Show that the expected number of steps for this process to find a suitable triangle 2-colouring is polynomial in $|V(G)|$.
[3 points]
5. Let X be a Poisson random variable with mean $\mu \in \mathbb{Z}$. Prove that $\operatorname{Pr}[X \geq \mu] \geq \frac{1}{2}$. (Hint: Show that $\operatorname{Pr}[X=\mu+h] \geq \operatorname{Pr}[X=\mu-h-1]$ for every $0 \leq h \leq \mu-1$.)
[2 points]
6. Throw m balls uniformly independently into n bins, where the bins are numbered from 0 to $n-1$. We say that there is a k-gap starting at j if bins $j, j+1, \ldots, j+k-1$ are all empty.
(a) Compute the expected number of k-gaps.
[1 point]
(b) Prove a Chernoff-like bound for the number of k-gaps X, that is, the inequality

$$
\operatorname{Pr}[X \geq(1+\delta) \mathbb{E}[X]] \leq e^{-c \mathbb{E}[X] \delta^{2}}
$$

where $0<\delta<1$ and c is a positive constant.
[4 points]
7. Consider the following variant of balls into bins, where the bins are numbered from 0 to $n-1$. Let us have $k=\log _{2} n$ batches of balls, each containing $b=\left\lceil n / \log _{2} n\right\rceil$ balls. The process will consist of k rounds. In each round, we choose starting bin j uniformly at random and put one ball into each of the bins numbered $j,(j+1)$ $\bmod n, \ldots,(j+b-1) \bmod n$. Show that the maximum load in this case is only $O(\log \log n / \log \log \log n)$ with probability approaching 1 as n goes to infinity.
[3 points]

