
Probabilistic Techniques
Problem set #2 – Expectation and the method of alteration

Assignment: 17. 10. 2018
Hints: 31. 10. 2018
Deadline: 7. 11. 2018

It is possible that the method of alteration, which might be needed for some (at most two) of the problems, will be

presented at the lecture on 24. 10. If this indeed is the case, we will briefly discuss it at the tutorials on 17. 10.

1. What is the expected number of cycles of a random permutation of [n]? [2 points]

2. Let M be an n× n matrix with entries uniformly independently chosen from {−1, 1}. Determine

(a) E[det(M)], [1 point]

(b) E[det(M2)]. [2 points]

3. Let G = (V,E) be a bipartite graph with n vertices such that each vertex v ∈ V is assigned a list L(v)
of dlog2(n)e + 1 colours. Prove that there is a proper colouring of G such that each vertex v gets a
colour from L(v). [2 points]

4. Let G be a graph with n vertices, let d be its average degree, ∆ its maximum degree and α(G) the
size of its largest independent set (that is, induced subgraph with no edges). Show that:

(a) α(G) ≥ n
∆+1 , [1 point]

(b) α(G) ≥
∑

v∈V (G)
1

deg(v)+1 , [3 points]

(c) α(G) ≥ n
d+1 . [1 point]

You can get the point for (c) even if you only prove the implication (b)⇒(c) without proving (b).

5. Chad is taking this year’s incarnation of Probabilistic Techniques I and is quite hopeless with the
homework. He asked for further hints and Matěj, being his magnanimous self, gave Chad the following
offer:

“Yes, I will give you further hints, but in order to get one hint, you must do 10 push-ups.
But there is a catch: Each time you do 10 push-ups, I shall only give you a hint to a problem
which is chosen uniformly independently randomly from all n of them.”

Chad is now wondering what the expected number of push-ups he needs to do in order to get at least
one hint for every problem is, and because he really sucks with probability, he asked you for help.

But because cooperation is forbidden for this course, you have to send your solutions to
Matěj instead! [2 points]

6. Prove that for every n there is a bipartite graph with both parts of size n, at least Ω
(
n4/3

)
edges, but

with no K2,2 as a subgraph. [2 points]

7. Prove that R(4, t) ∈ Ω
(
(t/ log t)2

)
, where R(k, `) is the smallest number of vertices of a complete

graph such that in every 2-colouring of its edges one can find either a Kk in the first colour or a K` in
the second colour. [3 points]

Hint: You might want to first prove (and you can get partial points for it) that for every n, k, ` ∈ N
and every p ∈ [0, 1] it holds that

R(k, l) > n−
(
n

k

)
p(

k
2) −

(
n

`

)
(1− p)(

`
2).
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