Probabilistic Techniques

Problem set \#1 - The basics

Assignment: 3.10.2018
Hints: 10.10.2018
Deadline: 17.10.2018
By classical probabilistic space we denote the probabilistic space $\left(\Omega, 2^{\Omega}, \operatorname{Pr}\right)$ where Ω is a finite set and $\operatorname{Pr}[A]=|A| /|\Omega|$.

1. Consider a classical probability space on p elements, where p is a prime number. Let A and B be two events. Show that A and B are independent if and only if one of them is \emptyset or Ω.
[1 point]
2. Compute the probability that in a random permutation of $1,2, \ldots, n$, the elements 1 and n are in one cycle.
[3 points]
3. Prove that there exists an absolute constant $c>0$ such that for every n and every $n \times n$ matrix A with pairwise distinct entries, there is a permutation of columns of A such that no row contains an increasing subsequence of length greater than $c \sqrt{n}$.
[4 points]
4. Consider the classical probability space on an underlying set with 8 elements. Find an example of four events A, B, C, D such that:

- all triples of them are independent,
- the four events are not independent.

5. Find an example of events A, B, C in a classical probability space such that they are not independent, but it holds that

$$
\operatorname{Pr}[A \cap B \cap C]=\operatorname{Pr}[A] \operatorname{Pr}[B] \operatorname{Pr}[C]
$$

[1 point]
6. Recall that $G(n, p)$ is a random graph of n vertices such that every pair of vertices forms an edge with probability p independently of every other pair. Show that

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}[G(n, 1 / 2) \text { is connected }]=1
$$

7. Chad's favourite number is k. He recently bought a coin with probability $0 \leq p \leq 1$ for heads and decided to toss it n times. Before doing that, he did some calculations and realised that the events "a head is obtained on the first toss" and "exactly k heads are obtained" are independent. Determine all possibilities for k (depending on p and n).
[2 points]
https://kam.mff.cuni.cz/~matej/teaching/1819/pt
