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Let A be a structure. A partial function f: A — A is a partial
automorphism of A if f is an isomorphism A|pom(r) — AlRange(f)-
If v is an automorphism of A such that f C «, we say that f
extends to a.

Example
A graph G is vertex-transitive if every partial automorphism f with
|Dom(f)| < 1 extends to an automorphism of G.

Definition
A structure G is homogeneous if every partial automorphism of G
with finite domain extends to an automorphism of G.
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The following are the only finite homogeneous graphs:
» mK, and complements,
> GCs,
> L(K33).
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Definition (EPPA, extension property for partial
automorphisms)

Let B be a structure and let A be its induced substructure. B is
an EPPA-witness for A if every partial automorphism of A extends
to an automorphism of B.

A class C of finite structures has EPPA if for every A € C there is
B ¢ C, which is an EPPA-witness for A.

Theorem (Siniora, 2017; exercise)
The class of all finite groups has EPPA.
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A connection to model theory

Let C have EPPA and pick Ag € C.

Put M = J; A;. Then M is homogeneous.

If C has EPPA  jep + “issmar then there is a countable homogeneous
structure M such that C is the class of all finite substructures of a
M (denoted by Age(M)).

Theorem [Kechris, Rosendal, 2007]: /f M is countable and
homogeneous then Age(M) has EPPA if and only if Aut(M) can
be written as the closure of a chain of compact subgroups.
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Pointwise convergence topology

Let M be a countable set with the discrete topology. The pointwise
convergence topology on MM is simply the product topology.

The symmetric group Sym(M) C MM is a topological group with
the inherited topology where pointwise stabilisers of finite sets
form a neighbourhood basis of the identity.

Fact
G < Sym(M) is closed if and only if G is the automorphism group
of a homogeneous relational structure with vertex set M.

Theorem [Kechris, Rosendal, 2007]: If M is countable and
homogeneous then Age(M) has EPPA if and only if Aut(M) can
be written as the closure of a chain of compact subgroups.
Theorem [Hodges, Hodkinson, Lascar, Shelah, 1993 +
Kechris, Rosendal, 2007] If M is countable and homogeneous
and Age(M) has EPPA - some reasonable properties then every subgroup of
Aut(M) of index < 2¢ is open.
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EPPA numbers of graphs

Unless stated otherwise, all structures are graphs from now on.
Definition
eppa(A) = min{|B| : B is an EPPA-witness for A}.
eppa(n) = max{eppa(A) : |A| = n}.
Theorem (Hrushovski, 1992)

For every n we have that

2"/2 < eppa(n) < (2n2")! < oo.

Problem (Hrushovski, 1992)

Improve the bounds.
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Theorem (Herwig, Lascar, 2000)

For every G with n vertices, m edges and maximum degree A we
have that eppa(G) < (47y™) € 20(nlogn),

In particular, bounded degree graphs have polynomial EPPA
numbers.

Theorem (Evans, Hubi¢ka, K, NeZet¥il, 2021)

eppa(n) < n2""1

Independently proved also by Andréka and Németi.
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Theorem (Herwig, Lascar, 2000)

If the maximum degree of G is A, then it has an EPPA-witness on
at most (%) vertices.

Proof.
1. Let G=(V, E) be a graph. Assume that G is A-regular.

2. Define H so that V(H) = (E) and XY € E(H) if XNY #0.

3. Embed ¢0: G — H sending vi— {e € E: v € e}.

4. A partial automorphism of G gives a partial permutation of E.

5. Extend it to a permutation of E respecting the partial
automorphism.

6. Every permutation of E induces an automorphism of H. N

For non-regular graphs, add “half-edges” to make them regular.

Sym(E) ~ <£>



An upper bound [Evans, Hubi¢ka, K, NeZet¥il, 2021]

Given set A, define graph Ha.
Ha={(x,f):xe€ A f: A\ {x} = {0,1}}.
{(x,f),(v.8)} € E <= x#yand f(y) # g(x).

1. For a permutation 7: A — A define 11
ar: H, — H, by
ax((x, 1)) = (7(x), g), where 1
gly) = f(z=1(y)). U
2. an € Aut(Ha). 01
3. For x # y € A define o, by
axy((z,f)) = (z,8) where 00
g(w) =1—f(w)if{x,y} ={z,w}
and g(w) = f(w) otherwise. H4 T Y

4. ay, € Aut(Ha).
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11
5. Fix a graph G and consider Hg. W

6. Embed G to H¢ vertex-by-vertex, 10
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An upper bound [Evans, Hubi¢ka, K, Neget¥il, 2021] II.

Ha={(x,f):xe A f: A\ {x} = {0,1}}.
{0 1),(v:8)} € E <= x#yand f(y) # g(x).

5. Fix a graph G W
A

6. Embed G to | Z§2) X Sym(A) ~Ax24

preserving prc

7. Pick a partial automorphism f of 01
G, project it to G, and extend it to
a permutation 7 of G.
00
8. Consider a;. There is a canonical H

choice of ay,,'s such that
QU O Qlqyy O+ + O Qiy,y, extends f.

G
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1. Finite homogeneous graphs (Gs, L(K33), mK,, mK,).
2. Complements of Kneser graphs (O(n®) for constant A).
3. Valuation graphs (n2"~1).
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A lower bound

Observation (Bradley-Williams, Cameron, Hubitka, K, 2023)
eppa(n) > Q(2"/+/n).

Proof (basically Hrushovski'92).

@ Every permutation of the left part
is a partial automorphism of G.

» Claim: In every EPPA-witness,
for every S € (,57]2) there is a
vertex connected to S and not to
[n]\ S.

» Pick arbitrary S € (,57]2)

> eppa(G) > (n72) € Q(2"/\/n).
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Random graphs

G(n,1/2) is the uniform distribution on graphs with n vertices.
Observation (B-WCHK, 2023)

Asymptotically almost surely eppa(G(n,1/2)) > n.

Proof (sketch).

1. Find an independent set / of size 2log,(n). Theorem.
2. There is a vertex connected to about half of /. Calculation.

3. So eppa(G(n,1/2)) = (ﬁ(‘;;gzz((n"g) € Q(n?/\/log(n)). Stirling.
L]

Conjecture
eppa(G(n,1/2)) is superpolynomial.
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Problem
Close the gap Q(2"/+/n) < eppa(n) < n2"1. (I doubt the lower
bound is tight.)

Conjecture

If G is not sub-homogeneous then eppa(G) € Q(n?). (Even w(n)
would be nice.)

Question
Are bounded-(co)degree graphs and sub-homogeneous graphs the
only ones with polynomial EPPA numbers?

Problem
Improve the bounds for G(n,1/2) (or other random graphs).

Problem
Compute the exact EPPA numbers of cycles. (Dibs! Likely

eppa(C,) = (’2’) ifn>17.)
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Open problems ||

Problem
Compute the exact EPPA numbers of other graphs.

Problem

Study EPPA num Onﬁeﬁxgr‘yg 4"_1 resp. n3"1
upper bounds, many' | pers e

Problem

If G is K,,-free, whift '?()—free
Answers?)

EPPA-witnesses? ( f m is constant.)

Question (Herwig, Lascar, 2000)
Do finite tournaments have EPPA?

Problem
Improve bounds for hypergraphs.
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Hypergraphs

Theorem (Hubitka, KoneZny, Nesetfil, 2022)
n—1
For every k > 2, eppa,(n) < n2(ic)

Observation (B-WCHK, 2023)

For every m, there is a 3-uniform hypergraph G on n =2"+ m+1
vertices with eppas(G) > (2™)! € 29(nlogn),

Note that there are only 20(7logn) partial automorphisms of an
Yy p y
n-vertex structure.)
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G

» ab is a hyperedge <= the b-th bit of ais 1.

» If H is an EPPA-witness for G, v € H and a € G, put
f(a) = Xpegapvermy 2°- (f =id)

» Claim: For every permutation f of {0,...,2™ — 1} there is
v € H such that f, = f.
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» ab is a hyperedge <= the b-th bit of ais 1.

» If H is an EPPA-witness for G, v € H and a € G, put
f(a) = Yhecabvermy 2 (F =1d)

» Claim: For every permutation f of {0,...,2™ — 1} there is
v € H such that f, = f.

» Permute the blue vertices of G according to f and fix the red
vertices. Let g € Aut(H) be an extension. Then fy() = f.



Proof

2M — 1 e
o m—1
—
o b
le 0
Oe

G

ab- is a hyperedge <= the b-th bit of a is 1.

If H is an EPPA-witness for G, v € H and a € G, put

f(a) = Yhecabvermy 2 (F =1d)

Claim: For every permutation f of {0,...,2" — 1} there is
v € H such that f, = f.

Permute the blue vertices of G according to f and fix the red
vertices. Let g € Aut(H) be an extension. Then fy() = f.

Consequently, |H| > (2™)! € 29Q(nlogn)



