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Let A be a structure. A partial function f : A→ A is a partial
automorphism of A if f is an isomorphism A|Dom(f ) → A|Range(f ).

If α is an automorphism of A such that f ⊆ α, we say that f
extends to α.

Example

A graph G is vertex-transitive if every partial automorphism f with
|Dom(f )| ≤ 1 extends to an automorphism of G.

Definition
A structure G is homogeneous if every partial automorphism of G
with finite domain extends to an automorphism of G.
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Finite homogeneous graphs [Gardiner, 1976]

The following are the only finite homogeneous graphs:

▶ mKn and complements,

▶ C5,

▶ L(K3,3).
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Definition (EPPA, extension property for partial
automorphisms)

Let B be a structure and let A be its induced substructure. B is
an EPPA-witness for A if every partial automorphism of A extends
to an automorphism of B.

A class C of finite structures has EPPA if for every A ∈ C there is
B ∈ C, which is an EPPA-witness for A.
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an EPPA-witness for A if every partial automorphism of A extends
to an automorphism of B.
A class C of finite structures has EPPA if for every A ∈ C there is
B ∈ C, which is an EPPA-witness for A.

Theorem (Hrushovski, 1992)

The class of all finite graphs has EPPA.



Definition (EPPA, extension property for partial
automorphisms)

Let B be a structure and let A be its induced substructure. B is
an EPPA-witness for A if every partial automorphism of A extends
to an automorphism of B.
A class C of finite structures has EPPA if for every A ∈ C there is
B ∈ C, which is an EPPA-witness for A.

Theorem (Siniora, 2017; exercise)

The class of all finite groups has EPPA.
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3. Trivial observations
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4. Many open problems
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A connection to model theory

Let C have EPPA and pick A0 ∈ C.

A0

Put M =
⋃

i Ai . Then M is homogeneous.

If C has EPPA + JEP + “is small” then there is a countable homogeneous
structure M such that C is the class of all finite substructures of a
M (denoted by Age(M)).

Theorem [Kechris, Rosendal, 2007]: If M is countable and
homogeneous then Age(M) has EPPA if and only if Aut(M) can
be written as the closure of a chain of compact subgroups.
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Pointwise convergence topology

Let M be a countable set with the discrete topology. The pointwise
convergence topology on MM is simply the product topology.

The symmetric group Sym(M) ⊆ MM is a topological group with
the inherited topology where pointwise stabilisers of finite sets
form a neighbourhood basis of the identity.

Fact
G ≤ Sym(M) is closed if and only if G is the automorphism group
of a homogeneous relational structure with vertex set M.

Theorem [Kechris, Rosendal, 2007]: If M is countable and
homogeneous then Age(M) has EPPA if and only if Aut(M) can
be written as the closure of a chain of compact subgroups.
Theorem [Hodges, Hodkinson, Lascar, Shelah, 1993 +
Kechris, Rosendal, 2007] If M is countable and homogeneous
and Age(M) has EPPA + some reasonable properties then every subgroup of
Aut(M) of index < 2ω is open.
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EPPA numbers of graphs

Unless stated otherwise, all structures are graphs from now on.

Definition

eppa(A) = min{|B| : B is an EPPA-witness for A}.

eppa(n) = max{eppa(A) : |A| = n}.

Theorem (Hrushovski, 1992)

For every n we have that

2n/2 ≤ eppa(n) < (2n2n)! <∞.

Problem (Hrushovski, 1992)

Improve the bounds.
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Theorem (Herwig, Lascar, 2000)

For every G with n vertices, m edges and maximum degree ∆ we
have that eppa(G) ≤

(∆n−m
∆

)
∈ 2O(n log n).

In particular, bounded degree graphs have polynomial EPPA
numbers.

Theorem (Evans, Hubička, K, Nešeťril, 2021)

eppa(n) ≤ n2n−1

Independently proved also by Andréka and Németi.
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Theorem (Herwig, Lascar, 2000)

If the maximum degree of G is ∆, then it has an EPPA-witness on
at most

(∆n
∆

)
vertices.

Proof.

1. Let G = (V ,E ) be a graph. Assume that G is ∆-regular.

2. Define H so that V (H) =
(E
∆

)
and XY ∈ E (H) if X ∩ Y ̸= ∅.

3. Embed ψ : G→ H sending v 7→ {e ∈ E : v ∈ e}.
4. A partial automorphism of G gives a partial permutation of E .

5. Extend it to a permutation of E respecting the partial
automorphism.

6. Every permutation of E induces an automorphism of H.

For non-regular graphs, add “half-edges” to make them regular.

Sym(E ) ↷
(
E

∆

)
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An upper bound [Evans, Hubička, K, Nešeťril, 2021]

Given set A, define graph HA.
HA = {(x , f ) : x ∈ A, f : A \ {x} → {0, 1}}.
{(x , f ), (y , g)} ∈ E ⇐⇒ x ̸= y and f (y) ̸= g(x).

1. For a permutation π : A→ A define
απ : Hn → Hn by
απ((x , f )) = (π(x), g), where
g(y) = f (π−1(y)).

2. απ ∈ Aut(HA).

3. For x ̸= y ∈ A define αxy by
αxy ((z , f )) = (z , g) where
g(w) = 1− f (w) if {x , y} = {z ,w}
and g(w) = f (w) otherwise.

4. αxy ∈ Aut(HA).

00

01

10

11

HA
x y z



An upper bound [Evans, Hubička, K, Nešeťril, 2021] II.

HA = {(x , f ) : x ∈ A, f : A \ {x} → {0, 1}}.
{(x , f ), (y , g)} ∈ E ⇐⇒ x ̸= y and f (y) ̸= g(x).

5. Fix a graph G and consider HG .

6. Embed G to HG vertex-by-vertex,
preserving projections.

7. Pick a partial automorphism f of
G, project it to G , and extend it to
a permutation π of G .

8. Consider απ. There is a canonical
choice of αxiyi ’s such that
απ ◦ αx1y1 ◦ · · · ◦ αxkyk extends f .
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Summary of upper bounds

1. Finite homogeneous graphs (C5, L(K3,3), mKn, mKn).

2. Complements of Kneser graphs (O(n∆) for constant ∆).

3. Valuation graphs (n2n−1).
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A lower bound

Observation (Bradley-Williams, Cameron, Hubička, K, 2023)

eppa(n) ≥ Ω(2n/
√
n).

Proof (basically Hrushovski’92).

� Every permutation of the left part
is a partial automorphism of G.

▶ Claim: In every EPPA-witness,
for every S ∈

( [n]
n/2

)
, there is a

vertex connected to S and not to
[n] \ S .

▶ Pick arbitrary S ∈
( [n]
n/2

)
.

▶ eppa(G) ≥
( n
n/2

)
∈ Ω(2n/

√
n).
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Observation (B-WCHK, 2023)

If G contains an independent set I and a vertex connected to
exactly k members of I then eppa(G) ≥

(|I |
k

)
.

Corollary

If G is triangle-free with maximum degree ∆ then

eppa(G) ∈ Ω(n∆).

Corollary

Cycles have quadratic EPPA numbers.
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Random graphs

G (n, 1/2) is the uniform distribution on graphs with n vertices.

Observation (B-WCHK, 2023)

Asymptotically almost surely eppa(G (n, 1/2))≫ n.

Proof (sketch).

1. Find an independent set I of size 2 log2(n). Theorem.

2. There is a vertex connected to about half of I . Calculation.

3. So eppa(G (n, 1/2)) ≳
(2 log2(n)
log2(n)

)
∈ Ω(n2/

√
log(n)). Stirling.

Conjecture

eppa(G (n, 1/2)) is superpolynomial.
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Open problems

Problem
Close the gap Ω(2n/

√
n) ≤ eppa(n) ≤ n2n−1. (I doubt the lower

bound is tight.)

Conjecture

If G is not sub-homogeneous then eppa(G) ∈ Ω(n2). (Even ω(n)
would be nice.)

Question
Are bounded-(co)degree graphs and sub-homogeneous graphs the
only ones with polynomial EPPA numbers?

Problem
Improve the bounds for G (n, 1/2) (or other random graphs).

Problem
Compute the exact EPPA numbers of cycles. (Dibs! Likely
eppa(Cn) =

(n
2

)
if n ≥ 7.)
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Open problems II

Problem
Compute the exact EPPA numbers of other graphs.

Problem
Study EPPA numbers of directed graphs. (n4n−1 resp. n3n−1

upper bounds, many lower bounds persist)

Problem
If G is Km-free, what can we say about its Km-free
EPPA-witnesses? (There is one of size 22

O(n)
if m is constant.)

Question (Herwig, Lascar, 2000)

Do finite tournaments have EPPA?

Problem
Improve bounds for hypergraphs.

Thank you!

(Answers?)
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Hypergraphs

Theorem (Hubička, Konečný, Nešeťril, 2022)

For every k ≥ 2, eppak(n) ≤ n2(
n−1
k−1).

Observation (B-WCHK, 2023)

For every m, there is a 3-uniform hypergraph G on n = 2m +m+1
vertices with eppa3(G) ≥ (2m)! ∈ 2Ω(n log n).

(Note that there are only 2O(n log n) partial automorphisms of any
n-vertex structure.)
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Proof

▶ ab is a hyperedge ⇐⇒ the b-th bit of a is 1.

▶ If H is an EPPA-witness for G, v ∈ H and a ∈ G , put
fv (a) =

∑
b∈G :abv∈E(H) 2

b. (f = id)

▶ Claim: For every permutation f of {0, . . . , 2m − 1} there is
v ∈ H such that fv = f .

▶ Permute the blue vertices of G according to f and fix the red
vertices. Let g ∈ Aut(H) be an extension. Then fg( ) = f .

▶ Consequently, |H| ≥ (2m)! ∈ 2Ω(n log n).
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