
0.1. MINIMAL SPANNING TREE 1

0.1 Minimal spanning tree

Scene: Euclidean spanning tree

The scene shows a collection of poits that are called sites. Our goal is to connect them in the
most efficient by links directly connecting pairs of sites. The cost of the interconnections is the
sum of costs of all links. In this scene the cost of a link is equal to the Euclidean distance of its
end-points (some other scenes use a different metrics).

Let us recall that the Euclidean metric (denoted also as L2-metric) defines the distance d of
two sites s = [sx, sy] and t = [tx, ty] as follows:

d =
√

(sx − tx)2 + (sy − ty)2.

Click the button [Step], Algovision displays the optimum interconnection of sites. [Back]
erases the solution.

The set of sites can be modified if you switch from the choice [Compute] to [Edit]. When
in the edit mode, if you click to a point that doesn’t belong to any site, a new site is created.
Sites can be dragged by the mouse. If you click to an existing site with the right mouse button
pressed, Algovision suggests deleting the site, another click to the suggesting rectangle executes
the operation. After switching back to the compute mode, the minimum spanning tree of a new
configuration can be computed.

Try to modify the site set, and observe how the optimal tree changes.

Scene: A spanning tree in a metric graph

The scene shows again a site set, but some of site pairs are connected by blue links. The goal
is again to find the cheapest interconnecting all sites together (it will be drawn in green), but
under the constraint that any interconnecting link must be selected among pairs of sites that are
connected by a blue link.

Of course, the graph given by the blue links must be connected, because any subgraph of a
disconnected graph is disconnected as well. If the graph is disconnected, Algovision protests and
you have to switch into the edit mode and make the graph connected.

A spanning tree computed in the previous scene is a special case when the constraint graph is
complete (all pairs of vertices are connected by a blue edge).

Click to [Step] to display the solution, click to [Reset] to come back to the original input.
When in the edit mode, the set of sites can be edited in the same way as in the previous scene.

If a site is deleted, Algovision deletes all blue links incident with the site as well.
Moreover, it is possible to connect two directly unconnected sites by clicking the mouse over

one site and subsequent clicking over another site (the cursor drags the free end of an edge being
added). The editor adds a new link, and starts immediately a new process of adding further link
from the latter site. The process can be stopped by clicking to the empty space.

Finally, when a blue link is clicked by the right button, Algovision suggests deleting the link
and executes the operation if the menu is clicked.

Scene: A spanning tree in a labeled graph

The scene is similar to the previous one, but the cost of a link is not given by the Euclidean
distance of its end-sites but it is given by a (positive) integer written next to the link.

When in the edit mode, and a new blue link is created, its cost is set randomly between 1 and
99. It is also possible to change the cost of a blue link by clicking it by the right button of the
mouse and choosing [Set length]. A number field will appear in the control bar and you can
change the cost of the selected link in the field. Zero or negative cost of an edge is not allowed,
because this would change the nature of the problem. We restrict ourselves to small integer costs
just because this simplifies graphics, but all algorithms work in the same way for arbitrary positive
real cost.

2

Play freely with the site set, links and costs to observe how they influence the corresponding
optimum spanning tree.

Scene: A general algorithmic scheme

This scene shows a general scheme to determine the minimum spanning tree. The scheme
allows large freedom in selection that occurs in odd steps, while being deterministic in even steps.
Particular algorithms restrict odd step freedom, usually in order to obtain faster computation. Of
course, any implementation of the scheme guarantees the correct answer.

In this scene we assume metric costs of links, the case of general costs will be dealt with in the
next scene.

The site set can be modified as before, but the change resets the computation if it is not
completely finished.

The algorithm scheme is quite simple: links are added into an originally link-free graph one-
by-one in such a way that no cycle is created.

As mentioned, at the beginning the graph contains all sites but no links. During the compu-
tation certain links are present, but the graph contains no cycles. This means that the graph is a
forrest the components of which are unrooted trees. In this chapter, we will use the term “forrest”
to denote the forrest generated by edges that were already put into an unfinished spanning tree.

Each link addition decreases the number of components by 1 by merging two components into
one. It is clear that no link can be added to connect sites that are already in the same component
of the forrest. The computation ends when there is just one component.

In order to identify components we use colors. Nodes of any component have the same color,
which is different from components of other components. Especially, any two sites have different
color at the beginning.

Since there are N one-site components at the beginning and 1 component at the end, the
computation consists of N − 1 repetitions of the following two steps:

Step: A component choice

Choose an arbitrary component C of the forrest.

Step: Link choice

Among pairs (s, t) of sites such that s belongs to the component C and t is outside of C choose
the one with the smallest cost, breaking ties arbitrarily, and add it into the forrest.

The choice of a component is absolutly free, on the other hand the link choice is uniquely
determined by the component choice (unless there are more links of the minimum cost).

In the present scene Algovision selects a component in the component choice step randomly.
In order to illustrate the selection of the minimum link the selection process is animated by

extending neighborhoods of the same increasing radius around all nodes of the selected component
C until the first neighborhood touches a vertex outside of C, which signals that the shortest link
was found. The next click of the button [Step] connects the optimum pair of sites.

Scene: L1 metric

The scene repeats the previous one, but the cost d of a link connecting two sites s = [sx, sy]
and t = [tx, ty] is not determined by the Euclidean metric, but by L1-metric (or the sum metric)
defined as follows:

d = |sx − ty| + |sy − ty|.

Neighborhood of a site is not a circle, but a square with corners on the horizontal and vertical
lines passing through the site.

Scene: Lmax metric

0.1. MINIMAL SPANNING TREE 3

The scene repeats the previous two, but the cost d of a link connecting two sites s = [sx, sy]
and t = [tx, ty] is not determined by the Euclidean metric or L1-metric, but by Lmax-metric (or
L∞-metric or the maximum metric) defined as follows:

d = max(|sx − ty|, |sy − ty|).

Neighborhood of a site is not a circle, but a square with horizontal and vertical sides.

Scene: Metric graph

The scene repeats the previous ones, the cost of a link is again its Euclidean length, but the
interconnection links must be chosen among blue links in the same way as in the second scene of
this applet.

Neighboorhoods of sites are not shown completely, we just show how far they reach in the blue
links. The closest neighbor of a chosen component is found when the pink part of some (originally)
blue link reaches a site that is outside of the selected component.

Scene: Labeled graph

The scene repeats the previous one, the interconnection links must be chosen among blue links,
and the cost of a blue link is given by the number next to the link in the same way as in the third
scene of this applet.

We use again pink segments of links to show neighborhoods. However, in this case the speed
of the increase of segments is not the same, but correspond in the obvious way to the cost of the
link. (More precisely, the length of the pink segment in a link of the cost c is k/c, where the value
of k is the same for all links of the graph and increases in time).

Scene: Algorithm Jarńık - Prim

The scene shows an algorithm described by Jarńık in 1930 and rediscovered by Prim in 1957,
which is a simple variant of the general scheme. At the beginning choose a node v0 arbitrarily
(Algovision does it at random) and later the component C of the general scheme is always chosen
as the one containing the node v0.

During the computation one component always grows (the one containint v0), while the other
components remain one-node and are “eaten” by the large component.

The scene offers full choice of variants. There are three basic choices: [Valued graph] offers
blue link constraints with general numerical costs, [Metric graph] has blue link constraints, but
their costs are determined by a metric, and finally [Complete graph] has no constraints, and the
cost of a site pair is again determined by a metric. Note that the latter possibility is equivalent to
the constrained metric graph, where all site pairs are connected by a blue link (a complete graph).
In the second and third cases, L2, L1 and Lmax metrics can be chosen. Of course, it is also possible
to change the site set and, if appropriate, blue links and their costs.

An efficient implementation of Jarńık - Prim algorithm requires an efficient choice of the minimal
link starting in the large component. This can be done advantageously by using a priority queue.
Once a new node v is inserted into the large component, all links connecting v with nodes of
the large component are removed from the priority queue, because they no more represent links
connecting the large component with an outside vertex, on the other hand all remaining links
strating in v are addeed into the queue, because they are now links starting in the large component
(in v) and ending elsewhere.

Scene: Kruskal

This scene shows another minimum spanning tree algorithm that was described by Kruskal. At
the beginning it might seem that the Kruskal algorithm is not a special case of the general scheme,
and it is also visuaized in a different way. However, we will show that it can also be considered as
an implementation of the general scheme.

4

The algorithm again works by including links to connect components of the forrest that will
eventually become a spanning tree. It works as follows: links of the graph are sorted by non-
decreasing costs. Then, the links are scanned in this order. For each link the algorithm checks if
it connects two sites in different components or two sites that belong to the same component. In
the former case the link is added to the graph, while in the latter case it is simply discarded.

If small steps are chosen in the control bar, the considered edge is first marked using the red
color, if it is added into the forrest, it gets the original color and the green underground in the
next step, otherwise it changes the color to yellow. If longer steps are chosen, the red-marking
step is skipped. If [Computation] is selected, one gets immediately the result without giving
intermediate steps.

In other words, at each moment we add the link that has the minimum cost among all links
that connect two different components of the unfinished spanning tree.

The computation can be observed for a graph with blue link constraints with numerical or
metric costs. All three metrics L2, L1 and Lmax are available. There are too many links in
the case of the complete graph, and hence this variant (explained in the previous scene) is not
implemented.

Algovision considers links in the order of non-decreasing costs. If a considered link connects
two different components of the forrest, it is added into the collection of links selected for inter-
connection (it is emphasized by the green color). A link that connects two sites that are in the
same component at the moment it is explored is simply discarded (recolored to red).

Scene: Kruskal again

This scene shows another implementation and visualization of Kruskal algorithm. For simplicity
only unconstrained collection of sites is considered (no blue links), all three metrics L2, L1 and
Lmax are available.

The implementation is simple: we again add edges one-by-one into originally empty forrest
until it eventually becomes a tree completely connecting all sites. At each step we select a link of
the minimum cost among link connecting sites from different components.

The implementation is visualized as follows: we draw neiborhoods of the the same radius
increasing with the time around all nodes of the graph. The shape of neighborhoods is again
determined by the selected metric. The neighboorhoods have the same color as their centers,
which make it possible to distinguish neighborhoods of nodes from different components. Touch or
overlay of neighborhoods of nodes of the same component is not interesting, because an optional
link connecting such nodes would not be inserted into the forrest tree.

However, when two neighborhoods of different colors meet for the first time, the shortest link
connecting two different components is found. The link is then added into the forrest, and the
same procedure begins again, until the forrest is fully connected.

Try computation according Kruskal algorithm for different site sets and metrics. The algorithm
does not give any freedom (except for the case when two or more links of the same cost are found
to connect different components - in such a case Algovision chooses one of the links at random
without asking the user).

Kruskal algorithm is also an implementation of the above-described general scheme: the choice
of a component is done as follows: the link e of the minimum cost among links connecting different
components is found and then any one of the two components that are bridged by the link is chosen
as the component C. Then, of course, the choice of the minimum cost link connecting C with other
components must (or can, in the case of tie) return the link e, and therefore this implementation
of the general scheme computes in the same way as the Kruskal algorithm.

An efficient impementation of Kruskal algorithm requires initial sorting of links according their
costs and then repeated decision if a link connects two different components. The former problem
is easily solved by selecting one of sorting algorithms, e.g. those that were described in this book,
while the latter one is typically solved by using union-find data structure that was explained in
the chapter on data structures.

Scene: Correctness

0.1. MINIMAL SPANNING TREE 5

This scene shows why any implementation the general scheme is always correct, i.e., the obtained
spanning tree has the smallest possible sum of link costs among all spanning trees satisfying the
constraints. The key observation is to show that during the whole computation the following
statement is satisfied:

I: there is at least one minimum spanning tree containing all links of the forrest built according
the general scheme.

The statement (I) obviously holds at the beginning for trivial reasons, because at that time
the forrest contains no links. If (I) holds in the moment when the forrest becomes a spanning
tree, that the minimum spanning tree containing the constructed tree must be equal to it, i.e. the
constructed tree would be minimal.

It is therefore sufficient to show that adding any link chosen according the general scheme does
not violate the statement (I). In order to prove it, we will add additional steps into the computation
in a way that would not alter the result of computation. The added steps are used only to explain
logical relations that hold during the computation.

The new link becomes red and retains the color during additional steps, and hence its color is
different from colors of older links of the forrest. We will show what would happen if the red link
addition obstructs (I), i.e., if no minimum spanning tree containing old links of the forrest contains
the red link. Moreover, colors of the components that are bridged together by the red link remain
unchanged during the additional steps, even though the red link merges them together. Recoloring
occurs only after additional steps are finished.

The additional steps are following:

Step: Selected component marked

The component that was selected as the component C of the general scheme is highlighted by
white background of its nodes.

Step: Alternative spanning tree

As we suppose that the condition (I) was valid, but became invalid after addition of the red
link, there would exist a minimum spanning tree T that contains all old links of the forrest, but
no such tree contains the red link.

In this step a spanning tree T is shown that contains all old forest links (green); the other links
of T are yellow, but the red link doesn’t belong to T . 1.

Step: Alternative path

As we assume that the green-yellow spanning tree T is connected, the end-nodes of the red link
must be connected by a path π in T . Since the red link does not belong to T , it is also outside of
π. The path π is marked by the magenta background of its links.

Step: Bridge

The red link starts in the component C and finishes outside of C. The same would be true for
the path π. Let (u, v) is the first link of π such that u belongs to C and v is outside of C. We
would refer to the link (u, v) as to a bridge. The bridge becomes black in this step. If there are
links of the path π preceeding the bridge in the path, they change their color from light green to
dark green.

Step: Better tree

A black bridge has one end-node is the component C (sites with white background) and the
other end-node outside of C. However, the same is true for the red link, and the red link was
selected in such a way that is had the smallest cost among such links. Consequently, the cost of
the black bridge is as least as large as the cost of the red link.

1In fact, T is not minimal; our assumtion of invalidity of (I) is incorrect, a minimum spanning tree containing
the old eddges must contain the red link as well in most cases - what is shown is the minimum spanning tree among
those that contain old links but not the new red one

6

In this step the bridge is removed from the paths π and from the tree T , and the red link is
added into T to get a new graph T ′. The new graph is again a spanning tree: the only cycle that
the red link closed with T was the cycle consisting of the red link and links of the path π with the
magenta background; the cycle was destroyed by removing the black bridge that was one of the
links of the tree T . On the other hand, the new graph T ′ is connected; what was earlier connected
through the black bridge is now connected by means of the remaining links of the path π and the
red link.

Therefore the graph T ′ is a spanning tree, and because it was obtained from T by removing the
bridge and adding the red link that has cost that is smaller or in the worst case equal to the cost
of the bridge, the cost of the new spanning tree is at most the cost of T . However, we supposed
that the tree T was the minimum spanning tree, and hence the cost of both T and T ′ are the
same, which means that T ′ is also a minimum spanning tree - a contradiction with the original
assumption.

