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Abstract. Let G = (V,E) be a graph endowed with a non-negative integer edge-weight
function w : E → Q+. Given a zero-one vector c = (c1, . . . , ck) and subsets F1, . . . , Fk of
E, let F = (F1, . . . , Fk) and C(k) = (F, c). Let S be a family of subsets of E. We say that
S ∈ S is C(k)-constrained if for each i 6 k, |S ∩ Fi| = ci mod 2. We show that the following
problems admit a polynomial extension complexity for k fixed: (1) Find min weight C(k)-
constrained s, t-path and (2) Find min weight C(k)-constrained cycle. This extends recently
obtained strongly polynomial algorithms for these problems. We next generalise these results
to show that a general scheduling problem with local constraints admits polynomial extension
complexity.

1. Introduction

Let G = (V,E) be a graph. We let n = |V | and m = |E|. A subset E′ ⊂ E is called a
circuit if the graph (V,E′) has only one non-trivial component and each vertex-degree zero or
two. A subset E′ ⊂ E is called a cycle if it is a disjoint union of circuts; equivalently, if each
degree of the graph (V,E′) is even. A subset E′ ⊂ E is called a perfect matching if each degree
of the graph (V,E′) is one. A subset E′ ⊂ E is called a edge-cut if there is V ′ ⊂ V such that
E′ = {e ∈ E; |e∩ V ′| = 1}. Let T ⊂ V have an even cardinality. We say that E′ ⊂ E is a T-join
if v ∈ V has an odd degree in the graph (V,E′) if and only if v ∈ T . Let G be endowed with a
non-negative integer edge-weight function w : E → Q+. Given a zero-one vector c = (c1, . . . , ck)
and subsets F1, . . . , Fk of E, let F = (F1, . . . , Fk) and C(k) = (F, c). Let S be a family of subsets
of E. We say that S ∈ S is C(k)-constrained if for each i 6 k, |S ∩Fi| = ci mod 2. We consider
the following problem:

OPT Constrained T-join (OPT CT). Given graph G = (V,E), a weight function w : E → Q+

and C(k), find optimum (min or max) total weight of a C(k)-constrained T-join.

Analogously one defines OPT Constrained Cycle (OPT CC), OPT Constrained s, t-Path (OPT
CP), OPT Constrained Perfect Matching (OPT CPM) and OPT Constrained Edge-Cut (OPT
CE-C). An important special case of OPT CC is the Max Cut problem for the graphs embeddable
in a fixed Riemann surface.

Let P ⊂ R
d be a polytope. A polytope Q ⊂ R

d+r is called an extension or extended formulation
of P if P can be obtained by some linear projection of Q. The extension complexity of a polytope
P is defined as the minimum number of facets over all extensions of P .

1.1. Motivation and Main Results. Two facts (explained in more detail in 1.2) are known
for decades: (1) the Isolation Lemma implies for k fixed there is a weakly polynomial randomised
algorithm for OPT CT and (2) the theory of Kasteleyn orientations implies a weakly polynomial
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deterministic algorithm for OPT CT, k fixed, and the graphs embeddable in any fixed Riemann
surface. It has been a well-known open problem to find strongly polynomial algorithms.

Let T be the set of all characteristic vectors of the T-joins of G. Let E denote the set of the
vectors in ZE

+ where each entry is even. Let W be the set of the vectors of T + E whose sum of
entries is at most M . Let Wc ⊂ W be the set of the C(k)-constrained elements of W . We show

Theorem 1. Let k and |T | be fixed positive integers. Then the extension complexity of convWc

is polynomial in n and M .

Theorem 1 is proved in section 2. It implies existence of strongly polynomial algorithms:

Corollary 1.1 ([6]). Let k and |T | be fixed positive integers. Then MIN CT, MIN CP and MIN
CC admit strongly polynomial algorithms. MIN CE-C admits a strongly polynomial algorithm for
the graphs embeddable in any fixed Riemann surface.

Proof. MIN CT is solved by min (wTx : x ∈ convWc) since the weiths w(e) are assumed to be
non-negative. MIN CP is equivalent to MIN CT for |T | = 2 and MIN CC is equivalent to MIN
CT for |T | = ∅. Finally, MIN CE-C for a fixed Riemann surface of genus g is by the background
result (4) below reduced to MIN CC with 2g additional parity constraints.

�

1.2. State-of-the-art. We first write down some background results.
(1) A generalisation of a well-known construction of Fisher (see [3], [9] p.104) reduces OPT

CT in the class of graphs embeddable in a fixed Riemann surface S to OPT CPM in the class of
graphs embeddable in S. Given graph G embedded in the surface S, the construction produces
graph G′ embedded in S so that there is a natural weight preserving bijection between the set
of the T−joins of G and the set of the perfect matchings of G′.

(2) There is a well-known randomised algorithm to solve OPT CPM for k fixed and the edge-
weights bounded by a polynomial in n; it goes as follows. Let x, y1, . . . , yk be k+1 variables. We
define the generating function of perfect matchings by P(G,w,C(k)) =

∑
M perfect matching

∏
e∈M ze

where ze = xw(e)
∏

j:e∈Fj
yj.

Because of our assumptions, the number of possible monomials of a non-zero coefficient in
P(G,w,C(k)) is polynomial in n. Clearly, we solve OPT CPM if we can determine which of
these potential monomials of P(G,w,C(k)) indeed have a non-zero coefficient in P(G,w,C(k)).
A well-known randomised algorithm to decide if a coefficient of a monomial of the generating
function of perfect matchings is non-zero is called Isolation Lemma [10]. See also [6] for related
considerations.

(3) It is well-known that the generating function of perfect matchings P(G,w,C(k)) of a graph
G of genus g in variables x, y1, . . . , yk can be written as a linear combination of 4g Pfaffians (see [8],
[2], [4], [5], [13], [1]); such a Pfaffian is a determinant-type expression in variables x, y1, . . . , yk
that can be calculated by a weakly polynomial algorithm. Hence for k fixed and the graphs
embeddable in a fixed Riemann surface we can calculate the whole P(G,w,C(k)) in a polynomial
time.

(4) A well-known folklore lemma (see e.g. Gerards [7]) relates, for a graph G embedded in a
Riemann surface of genus g, the set of edge-cuts of G and certain subset of cycles of the geometric
dual of G.

Lemma 1.2. Let G be a graph embedded in a Riemann surface of genus g and let G∗ = (V ∗, E∗)
be its geometric dual. Then there are subsets E1, . . . , Ek of E∗, k = 2g, so that F ⊂ E is edge-cut
of G if and only if the corresponding set of dual edges F ∗ ⊂ E∗ is a cycle in G∗ and for each
i 6 k, |Ei ∩ F ∗| = 0 mod 2.
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(5) Gerards showed in [7] that the T-joins polyhedron of a graph G = (V,E) embeddable in a
fixed Riemann surface have a polynomial extension complexity. The T−join polyhedron PT (G)
is the set of all real vectors x such that there exists a convex combination y of elements of T
such that xe > ye for each e ∈ E.

Theorem 2. [7] Let G = (V,E) be a graph embeddable in a fixed Riemann surface S. Then the
T−join polyhedron PT (G) have a polynomial extension complexity.

(6) Geelen and Kapadia [6] reduce OPT CT for k and |T | fixed to a polynomial number of
shortest path algorithm runs.

(7) MIN CE-C was recently proved to be polynomial by Nagele, Sudakov, Zenklusen [12].
Earlier, MIN CE-C with k 6 2 and ci = 1 for each i 6 k was proved to be polynomial by
Padberg and Rao [11].

2. Proof of Theorem 1

Consider a 0/1-vector of length 2|E(G)| ∗M viewed as M blocks of size 2|E(G)|, where each
block of 2|E(G)| contains at most one one. A natural interpretation of this encoding is of at
most M directed edges of G. Let P (G,M) be the convex hull of all such vectors that satisfy the
following properties:

• Each block of 2|E(G)| contains at most one one.
• The M edges given in the specific sequence form a collection of walks between disjoint

pairs of vertices from T and further closed walks.
• The M edges form a C(k)-constrained subset of edges.

Lemma 2.1. P (G,M) is an extended formulation of convWc.

Proof. The vertices of Wc are exactly those multisets of edges of G that can be partitioned into
walks between pairs of vertices of T and a set of closed walks. The subset of edges must also
satisfy the requirement of being C(k)-constrained. So the sum over all indices correspoding to a
given edge in P (G,M) gives the value for the edge in Wc. �

The following has been shown by Tiwary [14].

Theorem 3. If the vertices of a d-dimensional 0/1-polytope Q – when viewed as a binary string
– can be accepted by a one pass nondeterministic Turing machine requiring space s(n) then the
extension complexity of Q is at most 2O(s(n))d.

It is now easy to see that the vertices of P (G,M) can be accepted by a one pass deterministic
Turing machine that requires space O(log |E(G)|+ |T |+ k).

Theorem 4. The vertices of P (G,M) – viewed as binary strings – are accepted by a one pass
deterministic Turing machine requiring sapce O(log |E(G)| + |T |+ k).

Proof. The accepting Turing machine TM notes down the starting vertex u when reading the
first block. For each block it verifies that at most one one is present. From the location of this
one TM deduces which edge is being used and hence the next vertex in the walk. Whenever
the walk hits some vertex v of T , the vertices u, v are removed from T and the procedure is
repeated. When T is empty TM verifies that the remaining stream encodes a walk given in a
correct sequence. During processing of each edge e ∈ Fi, TM increases the count of number
of edges in Fi modulo 2. At the end of the computation TM verifies that the number of edges
seen in Fi equals ci modulo 2 and so that set of edges in the stream describe a C(k)-constrained
subset. Since TM only needs to store the current set T , the k modular sums corresponding to
each Fi and the identity of the current edge being processed the total space used is as desired.

�
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This completes the proof of Theorem 1. In the next section, we extend Theorem 1 to provide
a general framework to optimally and efficiently schedule jobs with local constraints.

3. Scheduling jobs with local constraints

Let G = (V,E) be a graph, n = |V |, m = |E| and let E be the edges of the symmetric
orientation of G. Let w : E → Q. Finally let A1, . . . , Ad be subsets of E.

A walk on graph G is a sequence (a1, . . . , al) such that each ai is an orientation of an edge of
G, and the head of ai is the tail of ai+1 for each i < l. We say that walk X is closed if its terminal
vertex is equal to its starting vertex. A walk will be a ’trajectory’ of a job in the ’production
network’ given by graph G. We are interested in multiple jobs that satisfy some constraints.
Some jobs may have constraints depending on other jobs, such as at time 3 no two jobs share an
edge. We call such jobs special jobs. A job whose constraints do not depend on any other job is
called a normal job. An example of a normal job is a job with constraint “whenever an edge of
Ai is used, another edge of Ai is not used for 10 steps”.

For each t ∈ Z we use notation s(X, t) for a vector of {0, . . . ,∆}d+4. The meaning of s(X, t) is
that it contains complete ’local information’ of walk X at time t; each component s(X, t)i, i 6 d,
concerns set Ai ⊂ E; s(X, t)d+1 is some global information for X such as “the (parity of) total
number of edges in X”, s(X, t)d+2 encodes the starting vertex of walk X , s(X, t)d+3 encodes the
desired end vertex of the job whose partial trajectory is walk X and s(X, t)d+4 ∈ {0, 1} indicates
whether X is faulty (at time t).

Scheduling jobs with local constraints
Input: G,w,∆, δ,K,A1, . . . , Ad and further:

• An algorithm A(i, s(X, t), a) takes the information vector of walk X representing partial
trajectory of job i and an edge a to be added to the walk X , and produces information
vector s(X + a, t + 1) for the new walk. The index i allows for choosing different such
algorithms for different walks. The algorithm is allowed to use only linear space. Apart
from producing the information vector s(X + a, t + 1) the algorithm is also allowed to
manipulate the fixed number of global registers r1, . . . , rc.

• Another algorithm A′(s(X1, t), . . . , s(Xδ, t)) that takes the information vectors of δ spe-
cial walks and outputs whether the walks satisfy some mutual constraints. This algorithm
is also allowed to use only linear space.

Output: Special walks X1, . . . , Xδ and normal walks Xδ+1, . . . , XK consistent with the input
algorithms and such that for each j 6 K, s(Xj ,M)d+4 = 1 where M is an upper bound on
the length of all admissible walks. Moreover we require that the total weight of the walks is
optimised.

Theorem 5. Let C be the set of all characteristic vectors of multi-sets of edges of valid collections
of walks in the problem defined above. Then the extension complexity of convC is polynomial in
∆δ·d|V |δKM |E|.

Proof. The K walks are considered to be given as a 0/1 string of length 2|E|MK with the
following interpretation. For the first 2|E|δM bits each consective block of 2|E|δ bits represents
the δ next edges of the special walks. Within these blocks each block of length 2|E| contains
exactly one one corresponding to which directed edge is the next edge in the correpsonding walk.
After the first 2|E|δM bits the next bits are considered in groups of 2|E|M bits specifying a walk
of length at most M by representing one edge by a vector of length 2|E| with at most one one
corresponding to the next edge in the walk.

The Turing machine accepting only the valid jobs works as follows. It creates the information
vectors s(Xi,M) for 1 6 i 6 δ by applying algorithm A(·) on the current information vectors
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after reading the current edge. At each step it also applies algorithm A′ on these information
vectors to decide whether some constraint is violated or not. After this the algorithm reads each
walk separately and uses the same space on the work tape to construct s(X,M) deciding at the
end whether the walk is valid or not.

The total space used is O((log∆d + log |V |)δ + log k) and so by Theorem 3 the extension
complexity of all valid jobs is at most polynomial in ∆δ·d|V |δKM |E|. �

Since any polynomial method for optimizing linear functions over polytopes can then be used
to find the optimum collection of jobs, we get the following corollary.

Corollary 3.1. There is an algorithm to solve the general scheduling problem defined above
whose running time is polynomial in ∆δ·d|V |δKM |E|.

Concluding remark. Theorem 1 is a special case of Theorem 5: Wc = C for the instance
of the local scheduling problem where k = d, Ai = Fi for i = 1, . . . , d, c = |T |+ d, δ = 0, ∆ = 1
and K 6 M . There are no special walks, the global registers r1, . . . , rd describe the parity of
the current valid collection in A1, . . . , Ad and the remaining global registers rd+1, . . . rc describe
whether each vertex t ∈ T has degree zero or one in the current valid collection.

Our approach (Theorem 5) provides polynomial scheduling for a variety of temporal con-
straints. Moreover, if processors are interpreted as jobs then the algorithms A and A′ may also
model message passing among the processors, and between a processor and the global memory
in parallel and distributive computation.
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