convez hull of the characteristic vectors
{22>0; for each 4 CX,2(4) < r(A)}.

Proof. (sketch) The convex hull is clearly g subset of P,
theorem introduceqd in the beginnj

Intersection of finitely many half-
vertices. Each vertex cof Pis
{zwz < b} which intersects P exactly in

- It is usual for

» for algorithmic purposes, by such an Eamwmnmobnm-ﬁmmaum

4.3 Circuits

Definition 4.3.1. A cire

.r.t. mbﬁcmmobv non-
*mpty dependent set.

The circuits of graphic matroids are the cycles of the underlying graphs.

Theorem 4.3.9. A non-empty set C js the set of the circuits of & matroid if
md only if the following conditions qre satisfied.

C1) If ¢4 # Cy are circuits then C1 is not

Z2) If ¢y # Cy are circuits and z ain
circuit,

» We define S to be the set of all subsets which do

»©) Is a matroid. Axiomg (I1) and
C X and for a contradiction. Jet Ji, Jo
maximal subsets of 4 that belong to S and [J1] < |73, and let [J1NJ3| be as

g€ as possible. Let z ¢ J1—Js and C the unique circuit of JoUz. Necessarily
Teis f € C — J; and Js=(LUz)—f belongs to S by the uniqueness of C.
en [J3N Jy| < [J20Jy], a contradiction. 0

*Proposition 4.3.4. Let A c X and =

[ S
EE DALY L LUVA LI

U{z} contains at most one circuit.

mb ,§g z € o(4) if and only if there

Corollary 4.3.3. If A is

is a circuit C with x € C'C AU {z}. | . "
Proof. If z € 0(A) and B is maximal independent in A, then BUz is depe
roof.

N:&. U_HQHHOQ OOHHGN.H:M &a circuit the : €l u_ _.Qn b .UQ i mv o
OH— “_U O N.B.Qo a HHHN.UGHHH@H ::—O €1
Q. Hﬂﬂ@ﬂEHﬂm Q — Z. MH;HH@H.. .NU 1 U kA. C T
OH:”. mmn. mn k# CO; S m‘wmo BN.EHHHN.M HHHQ.@ QHHQ.OHHR m

O
and hence x € o(A).

4.4 Basic operations

iti . .
.:Q.OHUGHHQ.OBH “.—HH NE.\ H.H. QHHAM OHHMV H.%. _.\»_ < Nﬂ N\HHQ > 1S Hb&.@@@b&.@ﬂﬁ m E.
1 -

Each truncation of a matroid is a matroid.

i XiNXy=0. M7 + M, A&ng
iti . Let M;, My be matroids and X; ={ (
Ummsmd_wb M\Mw_m gmm Bmpﬁoﬁ on X; UXo mcor.g.mﬁ Als mnmwwmw%\ma if and

MMH_W Mum A LWD is independent in M; and AN X; is independen .

Definition 4.4 i fXii=1,---,nand let §; =
iti 4.3. Let X be a disjoint union o irl .
{AC .x;.w |A| <1}. Then >.(Xi, S;) is called a partition matroid.
(3} * (3

= isa
It follows immediately from the definition that M \ U = (X \ U, S| X\U)
matroid. This operation is called deletion of U.

i f
imal independent subset o
iti . ﬁﬂﬂkgmymn.\gmﬁmﬁnﬁ :
%\mmbwm u/ow AN.M.\MJ\ Mmoﬂamnao: of T") is a matroid on T defined so that A4 is
Eamlvobmobﬁ. if and only if AU J is independent in M.

. , 1A —
4.4.5. M/T' is a matroid and its rank ?:&8@ i mp.wsmmmm r'(A)
.Hmwwmmu%wb lﬂv . Hence M/T' does not depend on the choice of J.
r - .

dlet J be a
Proof. Obviously M/T’ satisfies (I1) Mbmﬂ ﬁwvg\b%\ﬂ mommmw oﬁwwmd o
: is 1 in .
imal subset of A that is independen . \ -
MMWMB& independent in AU T”, by the choices of J, J'.

4.5 Duality )

. dis M* =
troid. Its dual matroid is
ition 4.5.1. Let M = (X,S) be a ma ( LoD,
Wmmmw“wﬁwwmp that I € S* if and only if 7(X \ I) = r(X) (r is the rank o

jon T* sati *(A4) =
P sition 4.5.2. M* is a matroid and its rank function r* satisfies r*(A)
ropo 5.2,
[A] — r(X) + (X \ A).

let J be a
.. is (I3’). Let A C X and ]
in the only nontrivial property is ( . . ndent (in
3,8.\. m,mw m”mcbmmﬁ of A which belongs to S*. Let B be a e mm MM% m%wﬂ X\ J.
BmuDB,Umoa of X\ A and let B’ be a basis of M moEEEEm diction). Hence
m’m\»\wwmﬁm is z € (A\ J) \ B’ then J was not maximal (a contradi ) O
T
A\ .w C B’ and the formuls for »* follows.



The objects (bases, circuits, closed sets) of M* are called dual objects or
coobjects, e.g., dual bases or cobases. Let us note some simple facts: M™ =
M. The dual bases are exactly complements of the bases. The cocircuits are
minimal (w.r.t. inclusion) sets intersecting each basis. The cocircuits are exactly

complements of hyperplanes. A hyperplane of M is a closed set whose rank is
one less than 7(X)).

Proposition 4.5.3. Let G be a graph. Then the cocircuits of the graphic ma-
troid M(G) are ezactly the minimal edge cuts.

Proof. Note that edge cuts are exactly the sets of edges intersecting each basis
of M(G). |

Corollary 4.5.4. Let G be a planar graph and G* its geometric dual. Then
M(G*) = M(G)*.

Definition 4.5.5. M is called a minor of N if M is obtained from N by some
finite sequence of deletions and contractions.

Let G be a graph. A minor of G is a graph obtained from G by deletions
and contractions of edges. Observe the following: H is a minor of G if and only
if M(H) is a minor of M(G).

The following series of propositions are proved by comparing the rank functions
(we recall that the rank function uniquely determines the matroid).

Proposition 4.5.6. We have
(1) (M/T)* =M*\T,
(2) (M\T)*=M*/T,
(8) M is a minor of N if and only if M* is a minor of N*,

(4) M is a minor of N if and only if M may be obtained from N by a deletion
(contraction) followed by a contraction (deletion).

A matroid M is called cographic if it is isomorphic to M*(G) for some graph
G. Tt is also called a cocycle matroid of G. For example, it is not difficult to ob-
serve that U7 = ({1,2,3,4},{0,1,2,3,4,12, 13, 14, 23,24,34}) is not cographic.
Next we recall Kuratowski’s theorem (Theorem 2.10.15): G is planar if and only
if G has no minor isomorphic to K5 or K3 3.

Proposition 4.5.7. M(Ks) and M(K3,3) are not cographic.

Proof. Assume M(K33) = M*(G). Then |E(G)| =9, G is a simple graph
because no pair of edges separates K33, and each edge cut of ¢ contains at
least 4 edges. Hence each degree of G is at least 4 and we get 4|V (GQ)| < 18:
a contradiction because G is simple. For K5 one can use the fact that such a
graph G has no circuit of length 3. O

B D I

graphs. ;
Theorem 4.5.8. @ is planar s\ E.s.& mi@ if its cycle matroid is cographic.

Proof. By Corollary 4.5.4, if G is planar then M(G) = M*(G*). To show the
other direction, using the Kuratowski theorem, it suffices to observe that a minor .
of a cographic matroid is cographic (by dualizing the statement that a minor of
a graphic matroid is graphic), and use Proposition 4.5.7. O

Here is an equivalent formulation: a matroid M is both graphic and co-
graphic if and only if M is the cycle matroid of a planar graph.

4.6 Representable matroids

A matroid is called binary if it is representable over the 2-element field GF(2).
It is called regular if it is representable over an arbitrary field. Let A be a
matrix representing matroid M and let A’ be obtained from A by operations of
adding a row to another row. Then again A’ represents M. A representation of
a matroid M is called standard w.r.t. a basis B if it has the form I|A, where I is
the identity matrix of r(M) rows whose columns are indexed by the elements of
B. Since the elementary row operations do not change the matroid, we get that
each representable matroid has a standard representation w.r.t. an arbitrary
basis.

Theorem 4.6.1. Let I|A be a standard representation of M. Then AT|I isa
representation of M*.

Corollary 4.6.2. If M is representable over a field F and N is a minor of M
then both M* and N are representable over F.

Proof. Deletion clearly corresponds to deletion of the corresponding column in
a representation. For contraction we use Theorem 4.6.1 and the duality between

contraction and deletion.
O

Clearly, Uy is not binary. Hence binary matroids do not have U4 as a minor.
Next we list some seminal results of Tutte, characterizing classes of matroids by
forbidden minors.

Theorem 4.6.3. M is binary if and only if M does not have U4 as a minor.
M s regular if and only if M is binary and does not have Fy or E7 as a minor.
M is graphic if and only if M is regular and does not have M(Ks)* or M(K3,3)*
as a minor.

We recall that F7 denotes the Fano matroid. It is easy to observe that the
graphic matroids areregular: Let D = (V, E) be an arbitrary orientation of G
and let Ip be the incidence matrix of D (see Section 2.3). Then Ip represents
M(G) over an arbitrary field, since a set of columns is linearly dependent if and
only if its index set contains a cycle of G.
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4.7 Matroid intersection

Given two matroids on the same set X » the matroid intersection problem is to
find a common independent set of maximum cardinality. Let us mention two
special cases: maximum matching in bipartite graphs (here the two matroids
are partition matroids), and maximum branching in a digraph (branching is a
forest in which each node has in-degree at most one); here one of the matroids
is the corresponding graphic matroid and the second one is a partition matroid
of the set-system of sets of the incoming edges at each vertex.

Theorem 4.7.1. For two matroids (X, 51) and (X, Ss), the mazimum |J| such
that J € S1 N Sy equals the minimum of r, (A) +7r2(X\ A), over all A C X.

Proof. If J € S1NS, then for each A C X,JNA € 5; and JN(X\A) € S,. Hence
|| < 71(A) + r2(X \ A). The second part is proved by induction on |X|. Let &
equal the minimum of r;(A4) +r5(X \ A) and let z be such that {z} €81 n8S,.
Note: if there is no such z then k = 0, and if we take 4 — {z;m1({z}) = 0}, we
are done. Let X' = X — z. If the minimum over 4 C X’ of T1(A) +r2(X \ A)

also equals & then we are done by the induction assumption. Let S. denote S; .

contracted on X \ z. If the minimum over A C X' of r1(A) + (X \ 4) is at
least k£ — 1 then the induction gives a common independent set of 81, 5% of size
k—1 and adding z gives the desired common independent set of S;,.55. If none
of these happens, then there are A, B C X’ so that

r1(A) + (X \A) <k —1
and
ri(BU{z}) — 1+ (X' \B)U{z}) =1 < k—2.
Adding and applying submodularity we get
SECmcEv+:E:$+s§/E:mvis@imcmc?é <2%-—1.

It follows that the sum of the middle two terms or the sum of the outer two
terms is at most k& — 1, a contradiction. d

A polynomial time algorithm exists provided the rank can be found in poly-
nomial time, even for the weighted case, but we do not include this here.

4.8 Matroid union and min-max theorems

The matroid union is closely related to the matroid intersection, as we will see.

Theorem 4.8.1. Let M’ = (X, S') be a matroid and f an arbitrary function
rom X' to X. Let § = {f(I);I € S'}. Then (X, S) is a matroid with rank
unction -

r(U) = minrcu{lU — T| +'(f 71(T))}.

{0

4.8. MATROID UNION AR

Proof. It suffices to show the formula for the rank ?boﬁﬂbm%“b oMﬁo%mm_Wp M
is non-empty and hereditary. The formula ».ozwﬂm WOHM heorem 4.1 since
r(U) is equal to the maximum size of a common Eammmu .mﬁm 5 e
partition matroid (X', W) induced by the family (f~1(s);s .

Definition 4.8.2. If M; = (X;,S:),i = 1,--- ,k are matroids and X = UX;
then their union is defined as (X, {I1 Ulz---UIx; I; € Si}).

Corollary 4.8.3. Matroid union (; partitioning) theorem: The union of matroids
is again a matroid, with its rank function given by

r(U) = mingcu{|U = T|+ (T N X1) + - + (T N Xx)}-
Proof. We first make X; mutually disjoint and then use Theorem 4.8.1. O

. iparti h. For each u € V define
le 4.8.4. Let G = (V, W, E) be a bipartite grap or :
WMMHWM& M, on the set of neighbours of u so that a set is E&o@mwmmww MM Nﬂm
only if its cardinality is at most one. Then the union of My,u € V is called the

transversal matroid.

Corollary 4.8.5. The mazimum size of a union of k independent sets of a
matroid M is
minrcx{| X \ T|+ kr(U)}.
Corollary 4.8.6. X can be covered by k independent sets if and only if for each
UcX,
kr(U) > |U].
Proof. X can be covered by k independent sets if and only if there is a union of

k independent sets of size | X]|. 5

Oou.o_._mﬁ.% 4.8.7. There are k disjoint bases if and only if for each UcX,
k(r(X) —r(U)) < 1X - Ul.

Proof. There are k disjoint bases if and only if the maximum size of the union
of k independent sets is kr(X). 5

Corollary 4.8.8. A finite subset X of a vector space can be covered by k linearly
independent sets if and only if for each U C X,

kr(U) > |U-

i i ti-
These are some examples of min-maz theorems, the pillars of discrete op
mization. _ Q
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