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Abstract

Measures of allocation optimality differ significantly when
distributing standard tradable goods in peaceful times and
scarce resources in crises. While realistic markets offer
asymptotic efficiency, they may not necessarily guarantee fair
allocation desirable when distributing the critical resources.
To achieve fairness, mechanisms often rely on a central au-
thority, which may act inefficiently in times of need when
swiftness and good organization are crucial. In this work,
we study a hybrid trading system introduced in (Jedličková,
Loebl, and Sychrovský 2022) which combines fair allocation
of buying rights with a market. An analogue of Price of An-
archy in this system, called frustration, is defined as a differ-
ence between the amount of goods the traders are entitled to
according to their assigned buying rights and the amount of
goods they are able to acquire in the market. Our contribution
is the study of a realistic complex double-sided market mech-
anism for this system. The empirical analysis of this mecha-
nism suggests that with the fairness mechanism present, the
Price of Anarchy decreases.

1 Introduction
Most of the goods available to the general public are meant
to increase the quality of life of individuals or count as lux-
uries, and are traded using standard market mechanisms.
Other resources serve a more social purpose – when allo-
cated well, they increase the well-being of the entire soci-
ety like public housing, school seats, or healthcare products.
Among those, some are desirable to be readily available to
everyone, e.g., essential medicines, various equipment, or
even vaccines that enable to reach herd immunity in the pop-
ulation only when enough people have developed protective
antibodies against future infections. In times of need like
disasters, local epidemics, or even conflicts and wars, these
resources need to be distributed swiftly and in a highly or-
ganized manner to reach as many eligible people as possible
in a limited timeframe.

Allocating such public resources is commonly reserved
for governmental services and done at prices below market-
clearing or even free of charge. However, leaving the com-
petitive markets out of the allocation process often results in
inefficiencies, both economic and temporal, caused by prob-
lems inherent to centralized planning (Moroney and Lovell
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1997). On the other hand, real-world trading markets, fre-
quently modeled as large double auctions with many sell-
ers and buyers on each side, are capable of distributing
the goods flexibly and reliably. The problem remains that
even though, with increasing size, the participants are in-
centivized to be truthful (which leads to asymptotic effi-
ciency (Cripps and Swinkels 2006)), the resulting goods re-
allocation is not necessarily socially optimal in terms of be-
ing available to everyone. Any discrepancy in wealth is then
only exacerbated by crises similar to the coronavirus pan-
demic or the war in Ukraine we experienced in recent years.
In such settings, scarce resources necessary for keeping the
society up and running could be easily swayed by its more
fortunate members, which has to be countered by carefully
designed measures.

As an attempt to combine the best of both worlds, the fol-
lowing hybrid distribution system called Crisdis is suggested
in (Jedličková, Loebl, and Sychrovský 2022): a trustworthy
central authority provides a marketplace where buyers and
sellers engage in two-sided repeated trading over a period
of many days. At the beginning of each market day, the au-
thority allocates buying rights to the participating members
(e.g., individual hospitals), which are traded together with
the goods. Everything else1 is left up to the sellers and buy-
ers themselves, with one requirement only: at the end of each
trading day, each buyer needs to possess the number of rights
greater or equal to the number of goods. The straightfor-
ward motivation for this arrangement is that the traders sell-
ing some of their assigned rights obtain extra funds, which
they can use in future markets to satisfy their demand for the
critical goods better. Another motivation is that the needs of
individual participants used to allocate the rights can be eval-
uated independently by the central authority using real-time
crisis data, thus sidestepping the bottleneck of many auction
mechanisms – the proneness to strategic manipulation.

The utmost priority of Crisdis is to improve the accessi-
bility of critical goods to all eligible buyers during crises in a
trading system which is as realistic as possible. For this pur-
pose, (Jedličková, Loebl, and Sychrovský 2022) introduced
a measure of the social efficiency of the allocations realized
by the semi-distributed system called frustration. Frustration

1In this context, we have in mind not just deciding on the price,
but also storage, delivery, etc.



can be seen as a scaled negative difference between fairness
and reality: for a participating buyer, it is the scaled differ-
ence between the (potential) allocation of rights to the buyer
and the number of goods purchased by them if the value is
at least zero, and zero otherwise. Assuming the market at-
tains its equilibrium, the sum of frustrations of the traders
describes the system’s Price of Anarchy, i.e., the price the
society pays for allocating the goods through the market and
not directly as suggested by the fairness mechanism.

In (Jedličková, Loebl, and Sychrovský 2022), the authors
study how frustration evolves during repeated interactions
in the system under a single-sided auction mechanism based
on activities of buyers. This work contributes by a thorough
study of a more realistic double-sided mechanism.

1.1 Contributions
We study trading in a system consisting of a sequence
of complex double-sided markets combined with a fair-
ness mechanism designed to improve social good. Follow-
ing (Jedličková, Loebl, and Sychrovský 2022), we focus
on the well-known and thoroughly studied contested gar-
ment distribution for fairly allocating the rights (Aumann
and Maschler 1985)2. As market mechanisms, in Section 3,
we derive four different allocation strategies, ranging from
random acceptable allocations to maximum clearing under
average-price bids.

Our priority in this work is to study the behavior of a
large complex system, which makes it difficult to analyze the
traders’ behavior theoretically. For this reason, in Section 4,
we introduce a reinforced-learning algorithm in an attempt
to approximate the system’s equilibrium. In Section 5 we
present the empirical results. First, we perform a thorough
numerical analysis demonstrating how close to the equilib-
rium we are able to converge to. Then we carry out a series
of ablation experiments, showing that the Price of Anarchy
in the system without the fairness mechanism may be high.
We confirm that together with intuitive governmental reg-
ulations akin to increased storing prices for the goods, the
system with the fairness mechanism is able to decrease the
Price of Anarchy. In the last part of the paper, we summarize
the desired features of the trading system enlightened by the
experiments.

1.2 Related work
Our work belongs to the literature on redistributive mecha-
nisms, especially those mitigating inequalities. Perhaps the
most related paper studies a two-sided market trading goods
of homogeneous quality, optimizing the traders’ total utili-
ties (Dworczak, Kominers, and Akbarpour 2021). The dif-
ference lies in our explicit incorporation of the buyers’
varying needs into the consideration and the fact that in
our model, the valuations are common knowledge. This
work was recently generalized into a setting with hetero-
geneous quality of tradable objects, more diverse measures
of allocation optimality, and imperfect observations about
the traders (Akbarpour, Dworczak, and Kominers 2020).

2Our experimental results show that this fairness mechanism
performs well in practice.

Figure 1: Fairness and market mechanisms positioned in a
feedback loop of our redistribution system. One iteration of
the loop corresponds to one Market. ⇡ refers to the strategies
and T checks the termination condition.

Another related work presents multiple markets and non-
market mechanisms for allocating a limited number of iden-
tical goods to several buyers (Condorelli 2013). The results
are intuitive, as the author shows that when the buyers’ will-
ingness to pay coincides with the designer’s allocation pref-
erences, market mechanisms are optimal, and vice versa. In
crises environments studied in our work, it is reasonable to
assume that the critical resources are highly valuable to all
participants, yet, some may lack the money to obtain them.
Together with the fact that it is in society’s interest to allo-
cate the goods fairly, these results suggest that leaving the
distribution solely to free markets is inadvisable.

2 Problem Definition
We assume the existence of a centralized marketplace where
critical goods are traded periodically among the buyers and
the sellers using an internal currency. We consider only one
type of good and call it Good. To simplify the presentation
we assume here that the Good is divisible3. We refer to each
trading period as a Market. The structure of the entire system
is depicted in Figure 1. In order to reduce volatility during
trading, similarly as in (Jedličková, Loebl, and Sychrovský
2022), we introduce a new type of tradable resource called
Right. In each Market, in order to buy the Good, the buyer
also needs to possess an equivalent amount of the Right. The
Rights are allocated to the buyers before the trading begins
by a centralized Fairness mechanism using the sellers’ of-
fers. The traders then engage in a series of interactions re-
sulting in their announcement of bids. A dedicated Market
mechanism then allocates the Goods based on the bids.

The residual resources of Good are then transferred to the
next Market, as we model the shortage of the critical Good
for an extended amount of time. However, the residual of
Right disappears after each Market. We call this finite se-
quence of Markets a Crisis.

2.1 One trading period: the Market
Formally, we model the trading of the goods during the
Market as an imperfect-information double-auction repre-
sented as a sequential game G = (T ,M,G,D,�, µ, u, k).

3However, the results can be translated to periodic trading of
larger quantities of indivisible Good; see (Jedličková, Loebl, and
Sychrovský 2022) for a detailed explanation.



The set of traders T consists of buyers B and sellers S;
the sets of buyers and sellers are assumed to be disjoint.
The set M = (M1,M2, . . . ,M|B|) 2 R+,|T |

0 determines
the real and non-negative amount of money each buyer re-
ceives at the beginning of the Market. Similarly, the set G =

(G1, G2, . . . , G|S|) 2 R+,|S|
0 specifies the real and non-

negative amount of Good each seller is able to offer for trade.
The demands D = (D1, D2, . . . , D|B|) 2 R+,|B|

0 describe
the optimal real and non-negative amount of Good each
buyer hopes to acquire during the trading. Function � then
implements the fairness mechanism, assigning real-valued,
non-negative Rights R = (R1, R2, . . . , R|B|) 2 R+,|B|

0 to
the individual buyers. To allocate the Rights, the mechanism
needs to know the amount of Good put up for trade. This
amount is given by the strategies of the sellers. For each
seller s 2 S, the set ⇧̂s of their strategies contains pairs
(vGs , p

G
s ), where vGs  Gs is the amount of Good offered at

price pGs . The profile of one strategy per seller is denoted as
⇡̂S 2 ⇧̂S . The fairness mechanism is then formally defined
as follows:

Definition 1. For any sellers’ strategy profile ⇡̂S , the fair-
ness mechanism is a function � : R+

0 ⇥ R+,|B|
0 ! R+,|B|

0
allocating Rights to each buyers, satisfying
X

b2B

�b(V,D) = V 8 D 2 R+,|B|
0 ,

Db = 0) �b(V,D) = 0 8 D 2 R+,|B|
0 , 8b 2 B

�b(V,↵(D)) = �↵�1(b)(V,D) 8 D 2 R+,|B|
0 , 8b 2 B, 8↵,

where ↵ is a permutation of buyers and V =
P

vs2⇡̂S
vs.

In this work, we focus exclusively on a fairness mechanism
implementing the contested garment distribution (CGD)
(Aumann and Maschler 1985), as different fairness methods
do not influence the strategizing of the traders significantly.
Function µ is of more importance to us, allocating the re-
sources after the bidding phase. The bidding is determined
by the conditional strategies of the buyers. After observing
the seller’s offers, for a buyer b 2 B, their set of strategies
⇧̂b consists of tuples of three pairs (vRb , p

R
b , v

R
b , p

R
b , v

G
b , p

G
b ),

where vRb  �b(V,D) and pRb are the amount and ask-
ing price of Right the buyer intends to sell, and (vRb , p

R
b ),

(vGb , p
G
b ) are the amounts and bidding prices of Right and

Good, respectively, the buyer wants to acquire after observ-
ing other buyers’ offers for selling the Right. The profile of
one conditional strategy per buyer is denoted as ⇡̂B 2 ⇧̂B .
The market mechanism is then formally defined as:

Definition 2. For any sellers’ strategy profile ⇡̂S and any
buyers’ conditional strategy profile ⇡̂B , the market mecha-
nism is a function µ : ⇧̂S ⇥ ⇧̂B ! R+,|T |

0 ⇥ R+,|B|
0 ⇥

R+,|T |
0 which given bids of all traders returns a realiza-

tion of trades, i.e., a reallocation of Good, Right and Money
among the traders. We abuse the notation a little and write
µG

(⇡̂S , ⇡̂B) and µM
(⇡̂S , ⇡̂B) to refer to the restrictions to

reallocated Goods and Money, respectively.

The choice of the market mechanism affects the strategizing
of the traders to a great extent. We hence dedicate the entire
next section to the study of multiple such mechanisms.

What remains is to define the utility function u. The sell-
ers are motivated solely by profit. Thus, the utility they get
from the Market is the amount of Money they receive. We
refine this simple model by adding negative utility for the
Good the seller has at the end of each Market. This penalty
represents the societal desire for the sellers to sell most of the
available critical Good, and include the state penalties which
are usually in place during crises as well as damaged repu-
tation4. Moreover, in case the Market terminates the Crisis,
the sellers obtain also a small additional utility compensat-
ing for the Good they still keep stocked5. Formally,

us(⇡̂S , ⇡̂B) =

⇢
µM
s (⇡̂S , ⇡̂B) + C1µG

s (⇡̂S , ⇡̂B) NT,
us-NT + C2µG

s (⇡̂S , ⇡̂B) T,
(1)

where NT/T denote non-terminal/terminal markets, and C1

and C2 are suitable constants. The utility of a buyer should
incentivize them to keep a steady supply of Good through-
out the Crisis. Therefore, after each trading period, they re-
ceive utility for the Good they have (up to their demand),
which represents their regular consumption (e.g., per day).
The buyers also receive some small utility C3 per unit of
Money they have at the end the Crisis. Formally,

ub(⇡̂S , ⇡̂B) =

⇢
min

�
Db, µG

(⇡̂S , ⇡̂B)
 

NT,
ub-NT + C3µM

(⇡̂S , ⇡̂B) T.
(2)

Finally, we move to the description of the process of how
the sellers and the buyers engage in trading in our iterated
two-sided market. We assume that after the Rights are al-
located, the bidding periods are repeated k-times, during
which the buyers are allowed to alter their strategies. The
full description follows:
1. Each seller declares the amount of Good for sale along

with the selling price.
2. Each buyer is assigned Rights according to the fairness

mechanism �.
3. The trading is then repeated k times:

i Each buyer declares the amount of Right they are will-
ing to sell along with the asking price.

ii Each buyer, given the available amounts and asking
prices of Good and Right, declare their bidding price
and desired amount of Good and Right separately.

iii The bids are cleared using the market mechanism µ.
iv The partial utilities are computed and shown to the

traders.
4. The traders receive their final utilities as a sum of utilities

from the individual trading periods.
4Without such penalty and if the Good is not perishable and the

distribution crisis continues for a longer time, the strategic behavior
of sellers would probably be to keep selling small amounts of the
Good for very high prices.

5We assume here that the price at the end of the crisis does not
immediately drop to zero.



An important aspect of our model is that the buyers can use
the Money they obtained only in the next Market of the se-
quence. This gives the active buyers the advantage of buying
the critical Good earlier than the passive buyers; the price of
this advantage is the cost of buying additional rights.

2.2 Sequence of markets: the Crisis
We assume the trading takes place periodically, in a finite se-
quence of Markets, denoting, e.g., trading days. After each
non-terminal trading, the sellers keep the unsold amount
of Good and the buyers keep the Money and unconsumed
amount of Good for the next Market. In contrast, the un-
used amount of Right is disposed of after each Market ter-
minates. New Rights are then allocated in the next Market
by the fairness mechanism according to the total amount of
offered Good and estimated demands.

In this work, we model the full-blown crisis, leaving the
boundary situations, i.e., the beginning and the end of a
crisis, for future work. Hence we assume all traders are
Markovian and base their strategies in the sequence of Mar-
kets on local observations exclusively, not conditioning their
decision-making on past-Markets experiences. The condi-
tional strategies (i.e., after making the observations) in the
sequence and in individual Markets hence coincide. For any
trader r, let us denote their set of unconditional strategies –
functions taking the observations and outputting the condi-
tional strategies – as ⇧r. The set of strategy profiles ⇡ =

(⇡1,⇡2, . . . ,⇡|T |), ⇡1 2 ⇧1,⇡2 2 ⇧2, . . . ,⇡|T | 2 ⇧|T |
is then ⇧. As is usual, a situation in which no trader has an
incentive to unilaterally change their strategies is called an
equilibrium.
Definition 3. Let ⇡⇤ 2 ⇧ be a profile of one unconditional
strategy per each trader. We call ⇡⇤ an equilibrium, if for
any other profile ⇡ 2 ⇧ and all traders r it holds that

TX

i=1

kX

j=1

ur(⇡
⇤|(i, j)) �

TX

i=1

kX

j=1

ur(⇡|(i, j)),

where ⇡|(i, j),⇡ 2 ⇧ is the restriction of unconditional pro-
file ⇡ to the corresponding conditional strategies in Market
game Gi in the sequence, and trading period j.

During the entire crisis, we study how the amount of Good
acquired by buyers evolves for different Market mechanisms
and compare it to the amount of Rights assigned to them.
The resulting discrepancy describes the inherent inequality
in the system, formally defined as frustration.
Definition 4. Let ⇡ 2 ⇧ be a strategy profile and
G1,G2, . . . ,Gt be the corresponding sequence of t  T Mar-
kets with fairness mechanism � and market mechanism µ.
Then the frustration of buyer b after Market t is

f t
b(⇡) = max

(
�b(⇡|(t, 0))�

Pk
j=1 µ

G
b (⇡|(t, j))

�b(⇡|(t, 0))
, 0

)
.

The Price of Anarchy in the system is then the accumu-
lated frustration the buyers experience in the sequence of
t  T Markets when the equilibrium ⇡⇤ is reached, i.e.,

PoAt
=

Pt
i=1

P
b2B f i

b(⇡
⇤
)

t|B| . (PoA)

.

3 Market Mechanisms
In this section, we study how to clear the bids in the Market,
i.e., the mechanisms that can be used to schedule individual
trades based on the inputs (bids) of the traders. We consider
mechanisms with both absolute and average bidding prices,
and we require that each market mechanism satisfies the fol-
lowing criteria for all inputs:
1. no trader sells more Good or Right than they offer;
2. no buyer buys more Good or Right than their declared

desired amount;
3. no trader sells Good or Right for a lower price than their

asking price;
4. no buyer buys Good or Right for a higher (or higher av-

erage) price than is their bidding price; and
5. no buyer can buy Rights from themselves.
Note that the last condition ensures that the desired amount
of Right is actually what a buyer would expect. Without it,
the buyer can trade virtually with themselves and thus get a
lower amount of Right from the Market, even if they could
buy more. There exist various market mechanisms which
satisfy these properties.

Let us focus first on absolute bidding mechanisms which
are those that prohibit any trades where the bidding price is
larger than the asking price, i.e., pGb > pGs and/or pRb > pRb0 .
The clearing constraints (compatibility of asking and bid-
ding prices and possibly other constraints) will be repre-
sented by two bipartite graphs: GG = (B,S,EG) which
represents the compatibility for trading the Good and GR =

(BS , BB , ER) which represents the compatibility for trad-
ing the Right. Here, BS and BR are disjoint copies of B, BS

represents the sellers of Right and BR represents the buyers
of Right. A trader of B can be both a seller and a buyer of
Right, but GR does not connect their representing vertices
by an edge. Both GG, GR are equipped with a positive real
weight wG : VG ! R and wR : VR ! R. The weights
of the vertices naturally represent the individual amount (of
Good or Right) offered for sale and the individual amount
(of Good or Right) desired to buy.

Random allocation A simple random trading mechanism
used for purchasing both Rights and Goods proceeds as fol-
low. First, the buyers are randomly permuted. In this order,
each buyer is given an randomly permuted lists of offers
of the traders for Good and Right respectively. The buyer
first trades Good with sellers, until he has no Right left. In
the second stage, the buyer trades Good and Right in equal
amount. This continues until they buy in total their accept-
able volume, or there are no more offers. We also ensure at
every step that the asking price is lower than their acceptable
price, and the buyer purchases amount up to the amount of-
fered by the other party.

This mechanism has a unsatisfactory property. Since the
buyers are presented with offers in random order, they often
do not buy the cheapest option. This can be realistic since
no single buyer will be able to see all the offers and choose
among them. However, if the trading proceeds sequentially,



it is natural for the buyer to consider the cheapest offers first.
This also gives incentive to the sellers and traders to make
offers at a lower price.

Greedy allocation This algorithm is a modification of
the random allocation which aims to address the issues
mentioned in the last section. At the beginning, the buyers
are sorted by the acceptable price of Good pGb in descending
order. The mechanism again has two stages for each buyer.
In the first stage, the buyer uses the Rights allocated to him
to buy Goods, starting with the cheapest offer. When they
have no Right left, they buy the same amount of Rights and
Goods, again starting with the cheapest offers. We proceed
until all offers are exhausted, or the buyer bought their
acceptable volume and continue with the next buyer.

The Random and Greedy allocations are heuristics which
can be implemented easily but do not necessarily lead to op-
timal allocation which clears maximum amount of bids.

Maximum clearing using absolute prices An allocation
clearing maximum amount of bids where we also require
that no Right is bought without buying equal amount of
Good, can be obtained using network flows. We call a mech-
anism utilizing this approach Maximum clearing. Its advan-
tage is that it works also for indivisible Good. Another ad-
vantage is that the result of the Maximum clearing alloca-
tion is the list of individual tradings with compatible asking
and bidding prices. The final price of each individual trad-
ing may be chosen in various ways from this compatibility
interval.
Theorem 1. Maximum clearing allocation can be found ef-
ficiently using a reduction to the Max Flow problem. As a
consequence, a Maximum clearing allocation is polynomial
for both divisible and indivisible Good.

The proof is deferred to Appendix A.

Maximum clearing using average prices In this variant
of the Maximum clearing mechanism, we view the prices pGb
and pRb as maximum average prices b is willing to pay.
Theorem 2. Maximum clearing allocation with average
bids can be found efficiently using a linear program.

The proof is deferred to Appendix B.

4 Learning the System Equilibria
In this section, we describe a reinforced learning algorithm
we use to obtain an approximation of the system’s equi-
librium. Because no analytical solution is known, we treat
the entire interaction as a multi-agent reinforcement learning
(MARL) problem as it is common in the literature (Fu et al.
2022; Liu et al. 2022; Perolat et al. 2022; Muller et al. 2019),
with the assumption that the learning algorithm shall con-
verge to a solution close to the equilibrium. We further ver-
ify the quality of the solution by computing its exploitabil-
ity (Lanctot et al. 2017). The sellers and buyers are repre-
sented as agents who interact in the environment described
in sections 2 and 3. Each agent is trained to maximize their
own expected future utility in this environment.

4.1 Learning environment
The states of the environment relate to the information pro-
vided to the traders they may use to condition their strate-
gies on, as described in subsection 2.1. A state of a seller in
a given Market is determined by the amount of Good they
have in stock. Note that the amount of Money the seller has
is not relevant, as it does not impact their future strategy. In
each moment, a buyer may be described by three values: the
amount of Good, Right, and Money they possess.

During the learning process, the agents are not provided
with the complete state of the Market. More specifically, we
assume the sellers have access to the full state of the buy-
ers, but not of the other sellers. This corresponds to sell-
ers investing in some market research6. The buyers know
the amount of Goods, Right and Money they have, and the
amount and price of offered Goods and Rights. For simplic-
ity, and to reduce the action space, we assume there exists
a maximum price P the Good and Right can be offered at.
Since the offered volume is bounded by the volume owned
by a trader, the traders’ actions fall in a closed interval.

Next, we focus on the traders’ utilities. To clearly identify
them, we need to specify constants Ci. Let us focus on the
sellers first: their utility is given by two constants represent-
ing the price of storing the Good, and the expected future
utility for the amount of Good in the terminal Market. We
set the latter to be the market clearing price. This means the
sellers expect to sell the Good for at least that price. The
price of storing, C1, may be chosen arbitrarily; however, it
needs to be sufficiently high. If |C1|T2 < C2, it becomes
beneficial for the sellers to keep the Good, and the selling
price would thus be P . The buyers’ utility is given in terms
of the future expected utility for Money in the terminal Mar-
ket. The relative penalty influences the mean utility a buyer
obtains and again, it may be chosen arbitrarily. The future
utility for Money is the utility for Good attainable with that
Money, which is at least the utility for Good purchased at the
maximum price P . C3 should hence inversely depend on P .

4.2 Learning algorithm and network architecture
For training the agents’ strategies we adopt an actor-critic
algorithm called Twin-Delayed Deep Deterministic Policy
Gradient (TD3) (Fujimoto, Hoof, and Meger 2018). We
depict the pseudocode of the learning algorithm in Algo-
rithm 1. The policy ⇧t of each trader t is a random variable
with a Gaussian distribution with mean and standard devia-
tion represented by a neural network.

The architecture of neural networks we employ is shown
in Figure 2. The buyers’ actor needs to process the offers of
the sellers and consecutively offer the Right for sale before
processing the offers of other buyers. To accomplish that,
the output of the first hidden layer is concatenated with the
offers of the other buyers, and only the first hidden layer is
used to predict the buyer’s offer. In this way, the network
can be used to obtain the buyer’s offer without the offers of

6We are primarily interested in the case where buyers are hospi-
tals. In such a scenario, it would not be difficult to obtain an accu-
rate estimate of the funds and supply. The Rights assigned to each
buyer are public information.



Algorithm 1: Equilibrium Learning Algorithm

1: B  set of buyers, S  set of sellers, D  {}
2: for episode 2 {1, . . . Nsims} do
3: for t 2 {1, . . . T} do
4: GS  GS + g, MB  MB +mB

5: oS , oB  observation of sellers/buyers
6: ⇡S  clip(⇧S(oS(s)), 0, 1)
7: ⇡B  clip(⇧B(oB(b),⇡S), 0, 1)
8: ⇡B  clip(⇧B(oB(b),⇡S ,⇡B), 0, 1)
9: Trade according to a market mechanism µ

10: Compute utilities ub, us

11: D  D [ {oB , oS ,⇡S ,⇡B , ub, us}
12: GB  max(GB � dB , 0)
13: if t mod Ntrain is zero then
14: Sample batch ⇠ D
15: Train on batch using TD3
16: end if
17: end for
18: Reset episode
19: end for

others influencing the result. Since the actions come from a
bounded interval, the actors use a sigmoid activation func-
tion on the output layer on the means, which is then properly
rescaled. The standard deviation uses the softplus activation.

Moreover, we enhance the vanilla TD3 algorithm with up-
going policy update (Vinyals et al. 2019) and reward clip-
ping to [�1, 1]. To accelerate training, we also allow the
sellers to share the same replay buffer D. This makes the
sellers’ policies similar without using an identical actor.

5 Empirical Evaluation
Finally, we demonstrate the properties of our hybrid system
with fairness and market mechanisms, and the effectiveness
of our learning algorithm, on practical examples. First, we
assess the quality of the learned solutions using NashConv,
a measure of exploitability. In the second part, we analyze
to which degree the incorporation of Rights affects how the
Price of Anarchy of the approximated equilibrium evolves
throughout the entire crisis. We evaluate systems combining
three degrees of fairness with all four market mechanisms
from Section 3. The variants of fairness we consider are sys-
tems with: (i) no distributed Rights (i.e., a free market), (ii)
Rights and k=1 tradings; and (iii) Rights and k=2 tradings.

Experimental setting All experiments were conducted on
a computational cluster with AMD EPYC 7532 CPUs run-
ning at 2.40GHz. We utilized only 5 of its 16 cores and 3GB
of RAM. The code was implemented in Python using tensor-
flow 2.6, tensorflow-probability 0.15, mip 1.14, and numpy
1.21. The open-source CBC solver carried all LP compu-
tations. The complete list of all hyperparameters of Algo-
rithm 1 can be found in Appendix C.

Experimental domain We consider a sequence of T = 10

Markets with four buyers and four sellers. We choose a pro-
totypical setting where three of the four buyers receive sig-
nificantly more funds then the last buyer. At the same time,
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FC N units
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concatenate

FC N units

FC 2 units FC 4 units

⇡sell ⇡buy
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FC 1 unitFC 1 unit

min
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Figure 2: Architectures of the used neural networks: (Left)
sellers’ actor, (Middle) buyers’ actor, and (Right) the critic.

this last buyer suffers a large demand, in most cases exceed-
ing the demands of the others. We refer to the first three
buyers as rich and to the last buyer as poor. We generate
the instances of this setting by sampling the demands and
the earnings of the buyers uniformly randomly from given
intervals. For the rich buyers, the demand db in drawn from
U(1, 2) and the earning mb ⇠ U(4, 6). For a poor buyer,
db ⇠ U(4, 6) and mb ⇠ U(1, 2). The set of demands and
earnings is then normalized such that Eb⇠B [db] = 1 and
Eb⇠B [mb] = 1/8. To fix a scale7, we set the maximum price
as P = 1. The constants in the utilities are then chosen as
C1 = �1/8, C2 = 1/2 and C3 = 1/P = 1.

5.1 Exploitability
We measure the quality of a candidate solution from episode
t through its exploitability. For computing the exploitability
we employ the notion of NashConv (Lanctot et al. 2017),
given as

PT
i=1

Pk
j=1

P
⌧2T u⌧ (⇡|(i, j)) � u⌧ (⇡t|(i, j)).

Here, u⌧ (⇡t|(i, j)) denotes the utility of trader ⌧ in mar-
ket i and trade j under policy profile ⇡t. The policy pro-
file ⇡ is then a profile of approximate best-responses to ⇡t.
We train a best-response of each trader separately for 100
episodes, keeping the opponents’ policies fixed, and start-
ing from the policy of trader ⌧ in ⇡t. Because obtaining
the best-responses is immensely computationally demand-
ing (the entire computation took about seven hours for each
combination of the fairness mode and market mechanism),
we chose one specific instance to assess the exploitability of,
with earnings mb = (4/32, 5/32, 6/32, 1/32) and demands
db = (1/2, 1/2, 1/2, 5/2). In Figure 3 we present the results
achieved with all four market mechanism in a system with
Rights and k = 1. The results suggest the algorithm was
able to reach a sufficiently close approximation of the equi-
librium. Moreover, we verified the inclusion of Rights or the
value of k do not have a significant effect on exploitability.

5.2 Price of Anarchy
In Figure 4 we depict the prices the society pays for dis-
tributing the critical Goods through a (regulated) market in-
stead of centrally. All results are averaged over 10 instances
and show also the standard errors. The top row compares

7This corresponds to choosing a currency such that the price of
a unit of Good is at most one.



Figure 3: The exploitability of candidate solutions when learning the equilibrium in systems with Rights and k=1 trading period
for four different market mechanisms. The dashed line shows the original values, the solid line highlights the 5-running mean.

Figure 4: (Top) The Price of Anarchy and (Bottom) the individual frustrations of the four buyers in systems with three variants
of fairness for four different market mechanisms. The poor buyer is always bottom right in the frustration graphs.

the Prices of Anarchy of systems with the three earlier de-
scribed modes of fairness for the four introduced market
mechanisms. Note that the PoA is always lower in the sys-
tems with Rights. Moreover, introducing a second trading
period further decreases it. Another noteworthy observation
is that maximum clearing allocations offer lower PoA than
the other two, more basic mechanism.

The bottom row then shows the individual frustrations
of the buyers. As expected, the poor buyer experiences
the highest frustration. Otherwise the results observed with
overall PoA clearly translate into the frustration of each
buyer as well. Interestingly, the results suggest that intro-
ducing the fairness mechanism into the trading is beneficial
not only for the poor buyer but for the rich buyers as well.

The computation of the approximated equilibrium over
the period of 3000 episodes took about one hour for each
instance, fairness mode, and market mechanism.

6 Conclusion
To the best of our knowledge, we are the first to introduce a
system explicitly combining a double-sided market mecha-
nism with a fairness mechanism allocating the buying rights
for more socially just redistribution of critical goods during
the times of need. We adopted the contested garment distri-
bution as a baseline fair allocation and studied four separate

market mechanism: random, greedy, absolute-prices maxi-
mum clearing, and average-prices maximum clearing. Our
two main theoretical results show that the last two alloca-
tions can be computed in polynomial time. We then defined
an analogue of Price of Anarchy (PoA) in our system as the
sum of scaled differences between the amount of goods each
trader was entitled to according to the fairness mechanism
and the amount they were actually able to secure in the mar-
ket, which we refer to as the individual frustrations. Further-
more, we developed a reinforcement-learning algorithm ca-
pable of approximating an equilibrium of the system in order
to evaluate the PoA in practice. In the last part of our work,
we show on a notorious example of a system with an under-
funded and short-supplied buyer that introducing the buying
rights may significantly decrease the frustrations, ergo, the
PoA, especially for mechanisms prioritizing the amount of
goods sold. Yet, it still remains an open question whether
there exists a mechanism admitting zero PoA in the limit.

Future work We see two major limitations of our work.
First, we focused on the full-blown crises and assumed a
constant resupply of the goods over many trading periods.
We would like to study more complex models akin to, e.g.,
the bullwhip effect. Second, we restricted our fairness model
to the contested garment rule. Considering other models may
change the system dynamics, and perhaps improve the PoA.
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A Proof of Theorem 1
Theorem 1. Maximum clearing allocation can be found ef-
ficiently using a reduction to the Max Flow problem. As a
consequence, a Maximum clearing allocation is polynomial
for both divisible and indivisible Good.

Proof. Given the disjoint copies of the graphs GG, GR, we
construct an instance of the Max Flow problem as follows:

1. introduce two new vertices s, t;
2. join s by an arc (s, v) to each vertex v of B in GG. Let

the capacity cap(s, v) of this arc be equal to the amount
of the remaining rights of v, i.e., the assigned amount mi-
nus the amount intended to be sold. Clearly, each buyer b
desires to buy at least cap(s, v) of Good.

3. join s by an arc (s, v) to each vertex v of BS in GR.
Let the capacity of this arc be equal to wR(v), i.e., the
amount (possibly zero) of Right v intends to sell;

4. orient each edge of GR towards BB , the capacity of
(x, y) being equal to wR(y), i.e., the amount of Right
y intends to buy;

5. orient each edge of GG towards S, the capacity of (x, y)
being equal to wG(y), i.e., the amount of Good y intends
to sell;

6. introduce a copy B0 of B and join each vertex v 2 BB

of GR by an arc (v, v0) to its copy v0 2 B0, its capacity
being wR(v), i.e., the amount of Right y intends to buy;

7. join each v0 2 B0 to S in the same way as its copy v is
joined to S in GG, orient these new edges towards S and
let the capacity of each such arc terminating in y 2 S be
wG(y), i.e., the amount of Good y intends to sell;

8. join each vertex y of S to t by the arc (y, t), its capacity
being wG(y), i.e., the amount of Good y intends to sell.

This finishes the construction of the instance of the Max
Flow problem. It is straightforward to see that max flow from
s to t provides a clearing of bids with the maximum amount
of the Good sold. Also, it is ensured that Right is bought
along with the same amount of Goods.

B Proof of Theorem 2
Theorem 2. Maximum clearing allocation with average
bids can be found efficiently using a linear program.

Proof. We can find the maximum clearing allocation using
the following linear program, where the variable rb,b0 repre-
sents the amount of Right sold to b0 by b, with (b, b0) 2 ER
and the variable gs,b represents the amount of Good sold
to b by s, with (s, b) 2 EG. We also introduce the vari-
ables m and M , representing the minimal, resp maximal,
amount of goods bought by a buyer. Furthermore, we define
c as c = ✏ ⇤ U where ✏ is the desired sensibility of the ob-
jective function and U an upper bound on (M � m): U =

max
b2B

 
min(db,

P
(s,b)2EG

wG(s))

!
; c will be used to normal-

ize (M � m) in order to not interfere with the rest of the

objective function. In our experiments, we used c = 1
1000 .

max
P

(s,b)2EG

gs,b � c(M �m) (1)

s.t.P
(s,b)2EG

gs,b  rb +
P

(b0,b)2ER

rb0,b � vRb 8b 2 B (2)
P

(s,b)2EG

gs,b  vGb 8b 2 B (3)
P

(s,b)2EG

gs,b  vGs 8s 2 S (4)
P

(b,b0)2ER

rb,b0  vRb 8b 2 B (5)

m 
P
s2S

gs,b 8b 2 B (6)

M �
P
s2S

gs,b 8b 2 B (7)
P

(s,b)2EG

gs,b ⇤ pGs  pGb
P

(s,b)2EG

gs,b 8b 2 B (8)
P

(b0,b)2ER

pRb0 ⇤ rb0,b  pRb
P

(b0,b)2ER

rb0,b 8b 2 B (9)
P

(s,b)2EG

pGs gs,b +
P

(b0,b)2ER

pRb0rb0,b  Mb 8b 2 B (10)

gs,b � 0 8(s, b) 2 EG (12)
rt,b � 0 8(t, b) 2 ER (13)

In this linear program, the objective function (1) maxi-
mizes the exchanges of goods, and spreads the distribution
over the buyers. The constraints (2) and (3) then enforce
that the buyers buy less good than they have rights, and the
amount of good they buy does not exceed their demand vGb .
The constraint (4) imposes a restriction on the amount of
good the sellers may sell, ensuring it is at most vGs , i.e.,
the amount they committed themselves to be willing to sell.
Similarly, the constraint (5) imposes that the buyers selling
good sell at most the amount they intend to sell vRb . The
constraint (6), resp (7), assures that m is lower, resp. higher,
than the minimal, resp. maximal, amount of good bought by
a buyer, and the sense of the objective function ensure that it
will be exactly this quantity. The constraint (8) imposes that
the buyers pay at most in average pgb for the goods. The con-
straint (9) forces that the buyers pay at most in average prb for
the rights. The constraint (10) is the budget constraint.

C Hyperparameters
The experiments used the following values of parameters:

Actor learning rate 3 · 10�4

Critic learning rate 10
�3

Actor hidden layer size 32
Critic hidden layer size 256
Batch size 512
L2 penalty 10

�2

Discount factor 0.99
Target network update rate 0.002
Actor training frequency 3
Entropy penalty 3 · 10�3

Training episodes 3000
NashConv training episodes 100


