
Approximately Envy-free and Equitable Allocations of
Indivisible Items for Non-monotone Valuations*

Vittorio Bilò1, Martin Loebl2, and Cosimo Vinci1

1Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Italy,
{vittorio.bilo,cosimo.vinci}@unisalento.it

2Department of Applied Mathematics, “Charles” University of Prague, Czech Republic,
loebl@kam.mff.cuni.cz

Abstract

We revisit the setting of fair allocation of indivisible
items among agents with heterogeneous, non-monotone
valuations. We explore the existence and efficient com-
putation of allocations that approximately satisfy either
envy-freeness or equity constraints. Approximate envy-
freeness ensures that each agent values her bundle at
least as much as those given to the others, after some
(or any) item removal, while approximate equity guar-
antees roughly equal valuations among agents, under
similar adjustments. As a key technical contribution of
this work, by leveraging fixed-point theorems (such as
Sperner’s Lemma and its variants), we establish the exis-
tence of envy-free-up-to-one-good-and-one-chore (EF1cg)
and equitable-up-to-one-good-and-one-chore (EQ1c

g) al-
locations, for non-monotone valuations that are always ei-
ther non-negative or non-positive. These notions represent
slight relaxations of the well-studied envy-free-up-to-one-
item (EF1) and equitable-up-to-one-item (EQ1) guaran-
tees, respectively. Our existential results hold even when
items are arranged in a path and bundles must form con-
nected sub-paths. The case of non-positive valuations,
in particular, has been solved by proving a novel multi-

*This work was partially supported by: the Horizon EU Framework
Programme under Grant agreement No 101183743 (AGATE); the PNRR
MIUR project FAIR - Future AI Research (PE00000013), Spoke 9 -
Green-aware AI; the MUR - PNRR IF Agro@intesa; the Project SER-
ICS (PE00000014) under the NRRP MUR program funded by the EU –
NGEU; GNCS-INdAM.

coloring variant of Sperner’s Lemma that constitutes a
combinatorial result of independent interest. In addition,
we also design a polynomial-time dynamic programming
algorithm that computes an EQ1cg allocation. For mono-
tone non-increasing valuations and path-connected bun-
dles, all the above results can be extended to EF1 and EQ1
guarantees as well. Finally, we provide existential and
computational results for certain stronger up-to-any-item
equity notions under objective valuations, where items are
partitioned into goods and chores.

1 Introduction
Fair division Steinhaus [1948], the field that studies how
to fairly allocate resources among a set of agents, has nu-
merous applications across a variety of real-life scenar-
ios, such as divorce settlements, credit assignment, and
rent and land division, to name a few. Although fair divi-
sion has been studied for decades in mathematics and eco-
nomics, the field has attracted increasing attention from
the computer science and AI community in recent years,
driven by the flourishing of new fairness concepts and the
demand for computationally efficient solutions overcom-
ing the inherent impossibility of achieving optimal fair-
ness guarantees.

Two prominently investigated notions of fairness are
envy-freeness Foley [1966] and equitability Dubins and
Spanier [1961]. An allocation (of items to agents) is envy-
free (EF) if the value that every agent gives to her assigned

1

ar
X

iv
:2

50
3.

05
69

5v
2

 [
cs

.G
T

]
 8

 O
ct

 2
02

5

https://arxiv.org/abs/2503.05695v2

bundle (of items) is not less than the value she gives to the
bundle assigned to any other agent; it is equitable (EQ)
if the value that every agent gives to her assigned bun-
dle is not less than the value that the other agents assign
to their respective bundles. So, the two notions coincide
when agents have identical valuations.

The nature of valuation functions tremendously im-
pacts the solution of a fair division problem. When an
agent’s valuation is monotone non-decreasing (resp., non-
increasing), items are said to be goods (resp., chores) for
the agent; when it is non-monotone, items are said to
be mixed. Notable special cases of non-monotone val-
uations include non-negative (resp. non-positive) valua-
tions, where every bundle yields a non-negative (resp.
non-positive) value, and objective valuations, in which
items can be partitioned into goods and chores. Valua-
tions, either monotone and non-monotone, are additive,
when each item has a value and the value of a bundle is
defined by the sum of the values of its items.

While objective valuations have been widely studied
Aziz et al. [2022], Barman et al. [2024], less work has
been done for non-negative or non-positive ones, despite
their potential applicability in numerous settings. These
valuations, for instance, arise when items correspond to
nodes in an edge-weighted graph with exclusively pos-
itive or negative weights, allocations are interepreted as
clusterings, and the value of each bundle/cluster is then
determined by factors such as the total weight of internal
or cut edges, or other graph-connectivity properties. This
class of settings has interesting connections with cluster-
ing problems where further fairness guarantees are re-
quired (see, e.g., Dinitz et al. [2022], Chierichetti et al.
[2017], Schwartz and Zats [2022]).

Either envy-free or equitable allocations are guaran-
teed to exist under non-negative or non-positive valua-
tions in the setting of divisible items, where items can
be arbitrarily split among subsets of agents Dubins and
Spanier [1961], Stromquist [1980], Woodall [1980], Su
[1999], Cechlárová et al. [2013], Chèze [2017], Aumann
and Dombb [2015], Bhaskar et al. [2025]. In contrast,
in presence of indivisible items which have to be inte-
grally assigned to any of the agents, existence cannot
be guaranteed even for two agents with additive mono-
tone valuations. To overcome this limitation, a num-
ber of relaxations have been proposed in the literature.
They allow the removal of one item from a bundle when

agents perform bundle comparisons. The removal strat-
egy clearly depends on the nature of the considered items.
When an agent compares her bundle A against another
bundle B, she can choose between removing a chore
from A or removing a good from B. These relaxations
have given rise to the notions of envy-freeness-up-to-any-
good (EFX) Caragiannis et al. [2019], envy-freeness-up-
to-one-good (EF1) Lipton et al. [2004], Budish [2011],
equitability-up-to-any-good (EQX) Gourvès et al. [2014]
and equitability-up-to-one-good (EQ1) Freeman et al.
[2019]. By up-to-any-good, one means that the fairness
property holds irrespectively of which item is selected for
removal; by up-to-one-good, instead, the property must
hold for at least one removed item. Clearly, fairness up-
to-any-good implies fairness up-to-one-good.

An interesting and largely studied generalization of fair
division assumes the existence of an item graph modeling
proximity relationships among items. Every bundle has
to induce a connected subgraph and an item removal is
allowed only if it does not disconnect the induced sub-
graph Bouveret et al. [2017], Bilò et al. [2022], Igarashi
[2023], Misra et al. [2021], Suksompong [2019]. With this
respect, the path constraint assumes that the item graph is
a connected path.

Our Contribution.

Given the lack of positive results for non-monotone valu-
ations under standard approximate fairness notions, often
due to impossibility barriers (see, e.g., Amanatidis et al.
[2023], Barman et al. [2024]), we study slight relaxations
of EF1, EQ1 and EQX, denoted by EF1c

g (envy-free-up-
to-one-good-and-one-chore), EQ1cg (equitable-up-to-one-
good-and-one-chore), and EQXc

g (equitable-up-to-any-
good-or-any-chore), respectively. While EF1 and EQ1 re-
quire the envy-freeness and equitability properties, re-
spectively, to hold upon the removal of at most one item
from “some” bundle, EF1c

g and EQ1c
g allow the properties

to hold when removing at most one item from “each” bun-
dle (i.e., for each agent, at most one chore from her own
bundle and at most one good from others’ bundles). Simi-
larly, while EQX requires the equitability property to hold
regardless of which item is removed (i.e., whether it is a
good or a chore), EQXc

g allows it to hold for the removal
of either goods only or chores only (see Section 2). We
obtain positive results on the existence and computation

2

of allocations satisfying the above fairness criteria across
several broad classes of non-monotone valuations.

Results for non-negative or non-positive valuations:
Our main contribution concerns the existence and compu-
tation of allocations which are fair up-to-one-good-and-
one-chore, under non-negative or non-positive valuations.
In particular, we show that an EQ1cg allocation always ex-
ists and can be computed in polynomial time, for both
non-negative (Theorem 3.3 and 3.4) and non-positive val-
uations (Theorem 4.2). For EF1cg allocations, we only
show existence (Theorem 3.5 and Theorem 4.3). The exis-
tence and computation of approximately envy-free or eq-
uitable allocations under non-monotone valuations is one
of the major open problems in fair division (see, e.g., the
surveys by Amanatidis et al. [2023], Liu et al. [2024]).
Our results represent a significant step forward in this di-
rection, due to the generality of the non-monotone valu-
ations we consider (either non-negative or non-positive)
and the fairness guarantees achieved (requiring the re-
moval of at most one good and one chore).

It is worth noting that our results continue to hold even
under path constraints, and in this sense, they general-
ize the findings of Bilò et al. [2022], Igarashi [2023],
Misra et al. [2021], Suksompong [2019], which apply
only to monotone non-decreasing valuations, and the re-
sults of Bouveret et al. [2017, 2019], which address the
computational problem of finding EF and EQ allocations
(that, in general, may not exist). Our existential results
are obtained using Sperner’s Lemma Sperner [1928] or
its variants, and represent a non-trivial generalization of
the approaches previously explored in Bilò et al. [2022],
Igarashi [2023], as handling the non-monotonicity of the
valuations poses significant technical challenges (such as
the derivation and analysis of the cases described in Fig-
ure 3 of Appendix G). In particular, to address the specific
case of non-positive valuations, we introduce and exploit
a novel multi-coloring variant of Sperner’s Lemma (The-
orem 4.1), that constitutes a combinatorial result of inde-
pendent interest. The computational results have been ob-
tained by means of the dynamic-programming paradigm.
Finally, when valuations are monotone (non-decreasing or
non-increasing), our results extend to the stronger EQ1
and EF1 guarantees under path constraints, thereby gen-
eralizing the results of Igarashi [2023], Bilò et al. [2022],
Misra et al. [2021], which exibith EF1 and EQ1 alloca-
tions under monotone non-decreasing valuations and path

constraints.
Results for objective valuations: To complete the pic-

ture for non-monotone valuations, we also consider fair
allocations under objective valuations, and in most of
the cases the obtained results hold even under the up-to-
any-good-or-any-chore approximation guarantee. In par-
ticular, we show that an EQXc

g allocation always exists
and can be computed in pseudo-polynomial time (Theo-
rem E.1 of Appendix E), via a simple variant of the local-
search approach adopted by Barman et al. [2024]. This re-
sult extends to EQX when valuations are monotone non-
increasing (Corollary E.1 of Appendix E), thereby gen-
eralizing the result of Barman et al. [2024], which holds
only for monotone non-decreasing valuations. For valua-
tions that are both objective and additive, we strengthen
the above computational result by showing that an EQXc

g

allocation can be found through a simple and more
efficient greedy algorithm (Theorem E.3 of Appendix
E). This result strengthens the findings of Hosseini and
Sethia [2025], who establish existence and polynomial-
time computability of EQ1 allocations under additive ob-
jective valuations. With this respect, we also show that
a slight generalization of the polynomial-time algorithm
proposed by Hosseini and Sethia [2025], continues to pro-
duce EQ1 allocations even for objective valuations that
are non-additive (Theorem E.2 of Appendix E). It is worth
noting that, just as EQXc

g is considered a relaxation of
EQX, similar relaxations for EFX have been studied for
objective Hosseini et al. [2023] or identical non-monotone
valuations Bérczi et al. [2024]. However, these works only
show non-existence of these relaxed notions.

Most of the technical details on non-negative and
non-positive valuations are deffered to Appendix B-D,
while those regarding objective valuations are all deferred
to Appendix E-F. Table 1 summarizes both our results
and related work on the considered fairness notions and
classes of valuations, also specifying the cases that remain
unresolved and are therefore posed as open problems.

Further Related Work. Lipton et al. [2004] show that
an EF1 allocation always exists and can be efficiently
computed. Their result has been extended to objective val-
uations by Aziz et al. [2022], Bhaskar et al. [2021], Bérczi
et al. [2024]. Again under obejctive valuations, Hosseini
and Sethia [2025] show existence and polynomial time

3

Gen NNeg NPos NDec NInc Obj
EQ1cg
EF1cg

xa
?a

✓P,cns

✓cns
✓P,cns

✓cns
✓P,cns

✓cns
✓P,cns

✓cns
✓P

✓P

EQ1
EF1

xa
?a

?
?

?
?

✓P,cns

✓cns
✓P,cns

✓cns
✓P

✓P

EQXc
g xa ? ? ✓P- ✓P- ✓P-,✓P

ao
EQX
EFX

xa
xa

?
?a

?
?a

✓P-

?a

✓P-

?a

xa
xa

Table 1: Landscape of results for the considered fairness notions. Gen,
NNeg, NPos, NDec, NInc, and Obj stand, respectively, for General,
Non-negative, Non-positive, Non-decreasing, Non-increasing, and Ob-
jective valuations. Gray-highlighted results refer to our findings. ✓, x
and ? mean respectively “it always exists”, “it does not generally exist”
and “existence is an open problem”. Subscript “a” (resp., “ao”) means
that the the result of type x or ? (resp., ✓) holds even (resp., only) for ad-
ditive valuations. Superscript “P” (resp., “P-”) means that the existence
can be obtained via a polynomial (resp., pseudo-polynomial) algorithm,
and superscript “cns” means that the result holds even under path con-
straints.

computation of an EQ1 allocation; conversely, they show
that, under additive non-objective valuations, EQ1 alloca-
tions may not exist. Existence and computation of Pareto
optimal EF1 or EQ1 allocations have been studied by
Caragiannis et al. [2019], Freeman et al. [2019, 2020],
Garg and Murhekar [2024]. EF1 and EQ1 allocations un-
der non-objective valuations have been determined for re-
stricted cases only, and their general existence and com-
putation is a major open problem (see surveys by Amana-
tidis et al. [2023], Liu et al. [2024]).

EQX allocations were first proved to exist for ad-
ditive monotone non-decreasing valuations in Gourvès
et al. [2014]. Efficient algorithms computing one have
been later designed by Freeman et al. [2019, 2020], also
covering the non-increasing case. Existence and pseudo-
polynomial time computation of an EQX allocation for
monotone non-decreasing (and possibly non-additive)
valuations has been shown in Barman et al. [2024]. This
result is complemented by proving that, if one drops the
monotonicity assumption, EQX allocations may not exist
even for two agents with additive valuations. So, our re-
sults state that, slightly relaxing EQX to EQXc

g suffices to
recover existence under non-monotone valuations, as long
as they are objective (see Table 1).

The EFX criterion was introduced by Caragiannis et al.
[2019], and its existence, under additive non-negative or
non-positive valuations, has been addressed only in spe-

cific cases and it remains a major open problem in fair di-
vision (see surveys by Amanatidis et al. [2023], Liu et al.
[2024]); instead, for objective additive valuations, an EFX
allocation might not exist Hosseini et al. [2023]. Plaut and
Roughgarden [2020] show that an EFX allocation exists
and can be efficiently computed for non-negative addi-
tive valuations when agents assign the same ranking to
all items; this result has been also extended to additive
objective valuations with equally ranked items Aziz and
Rey [2020]. Restricting to identical valuations, EFX allo-
cations are known to exist for additive non-decreasing val-
uations Gourvès et al. [2014] and additive non-increasing
valuations Barman et al. [2023], whereas they may not
exist for non-monotone valuations Bérczi et al. [2024].

2 Model and Definitions
Let N = {1, 2, . . . , n} be a finite set of n agents and M
be a finite set of m items. Each agent i ∈ N has an in-
tegral valuation function vi : 2M → Z with vi(∅) = 0
for any i ∈ N . We denote by I = (N,M, (vi)i∈N) an
allocation instance. Given an agent i ∈ N , a bundle of
items S ⊆M and an item x ∈ S, we say that x is a good
(resp., a chore) for i w.r.t. S, if vi(S) ≥ vi(S\{x}) (resp.,
vi(S) ≤ vi(S\{x})). We observe that an item x for which
vi(S) = vi(S \{x}) is both a good and a chore for i w.r.t.
S. An item x is a good (resp., a chore) if it is a good (resp.,
a chore) for any agent i ∈ N w.r.t. any bundle S ⊆ M .
An allocation A = (A1, . . . , An) is a partition of M in
n (possibly empty) bundles of items, such that Ai is the
bundle assigned to agent i ∈ N . We aim at finding allo-
cations satisfying fairness criteria related to envy-freeness
and equity, as described below.

Envy-freeness. An allocation A = (A1, . . . , An) is:

• envy-free (EF) if, for any i, j ∈ N , vi(Ai) ≥ vi(Aj);

• envy-free-up-to-any-item (EFX) if, for any i, j ∈ N
such that vi(Ai) < vi(Aj), all the following condi-
tions hold: (i) vi(Ai) ≥ vi(Aj \ {g}) for any good g
for agent i w.r.t. Aj ; (ii) vi(Ai \ {c}) ≥ vi(Aj) for
any chore c for i w.r.t. Ai; (iii) either there exists a
good g for i w.r.t. Aj , or there exists a chore c for i
w.r.t. Ai;

4

• envy-free-up-to-one-item (EF1) if, for any i, j ∈ N
such that vi(Ai) < vi(Aj), there exists x ∈ Ai ∪Aj

such that vi(Ai \ {x}) ≥ vi(Aj \ {x});

• envy-free-up-to-one-good-and-one-chore (EF1cg) if,
for any i, j ∈ N such that vi(Ai) < vi(Aj), there
exists a subset X ⊆ M with |Ai ∩ X| ≤ 1 and
|Aj ∩X| ≤ 1, such that vi(Ai \X) ≥ vi(Aj \X).

For EF1 allocations, agent i stops envying agent j after
removing at most one chore from Ai or at most one good
from Aj , but not both. Similarly, under EF1c

g allocations,
agent i stops envying agent j after removing at most one
chore from Ai and at most one good from Aj , even simul-
taneously. We observe that EF⇒ EFX⇒ EF1⇒ EF1cg .

Equitability. The equitability notions we consider are
analogous to the envy-freeness criteria described above,
but the comparison each agent i makes is not against the
valuation vi(Aj) that she assigns to the bundle given to
any other agent j, but rather against the valuation vj(Aj)
that agent j assigns to her own bundle. Thus yields allo-
cations that are equitable (EQ), equitable-up-to-any-item
(EQX), equitable-up-to-one-item (EQ1) and equitable-
up-to-one-good-and-one-chore (EQ1c

g) (see Appendix A
for their explicit definition). In addition, we consider
equitable-up-to-any-good-or-any-chore (EQXc

g) alloca-
tions, a slight relaxation of EQX that, unlike EQX, allows
the equitability to hold after the removal of either goods
only or chores only. In particular, an allocationA is EQXc

g

if, for any i ∈ N , at least one of the following conditions
holds: (i) for any j ∈ N such that vi(Ai) < vj(Aj), there
exists at least one good for j w.r.t. Aj , and for any such
good g, vi(Ai) ≥ vj(Aj \ {g}); (ii) for any j ∈ N such
that vi(Ai) < vj(Aj), there exists a chore for i w.r.t. Ai,
and for any such chore c, vi(Ai \ {c}) ≥ vj(Aj). We
observe that EQ⇒ EQX⇒ EQXc

g ⇒ EQ1⇒ EQ1c
g .

Classes of Valuations. We consider the following
classes of valuations: (i) Objective: any item x is either a
good or a chore (independently on the considered agents
and bundles); in such a case, we can partition M into a
set of goods G and a set of chores C (choosing arbitrar-
ily how to classify dummy items that qualify as both);
(ii) Non-negative (resp., Non-positive): vi(S) ≥ 0 (resp.

vi(S) ≤ 0) for any i ∈ N , S ⊆ M ; (iii) Monotone non-
decreasing (resp., non-increasing): each item x is a good
(resp., a chore), independently on the considered agents
and bundles; (iv) Additive: vi(S) =

∑
x∈S vi(x) for any

i, S ⊆M .
We will prove our positive results for the most gen-

eral class of valuations, keeping in mind that monotone
non-decreasing (resp. non-increasing) valuations are also
non-negative (resp. non-positive), and that monotone, ei-
ther non-decreasing or non-increasing, valuations are also
objective; instead, objective valuations are not necessarily
non-negative or non-positive, and vice versa. Finally, we
assume the existence of a constant-time oracle that, given
i ∈ N and S ⊆M , returns vi(S) in constant time.

3 Non-negative Valuations
To address the case of non-negative valuations, we con-
sider a generalization of the fixed-point approach em-
ployed in Bilò et al. [2022], Igarashi [2023], that is ex-
tended in a non-trivial manner to handle the peculiarities
of these valuations.

Fairness under Path Constraints
We say that an allocation instance is path-constrained if
the m items of M are numbered from 1 to m and orga-
nized as a path P = (1, . . . ,m). Given s, t ∈ [m] ∪ {0},
let Js, tK denote the bundle {s, s + 1, . . . , t} if t ≥ s,
and the empty bundle otherwise. A bundle S is connected
if S = Js, tK for some s ∈ [m] and t ∈ [m] ∪ {0}.
An allocation A is connected if it is made by connected
bundles only. Given a connected bundle S = Js, tK,
let ∂S = {s, t} denote the boarder of S (observe that
∂S = S if |S| ≤ 2). For a given connected alloca-
tion A = (A1, . . . , An), we consider the following path-
based notions of EF1c

g and EQ1c
g: A is envy-free-up-to-

one-good-and-one-chore-over-paths (EF1Pc
g) if, for any

i, j ∈ N such that vi(Ai) < vi(Aj), there exists a subset
X ⊆ ∂Ai∪∂Aj with |∂Ai∩X| ≤ 1 and |∂Aj ∩X| ≤ 1,
such that vi(Ai \X) ≥ vi(Aj \X);A is equitable-up-to-
one-good-and-one-chore-over-paths (EQ1Pc

g) if, for any
i, j ∈ N such that vi(Ai) < vj(Aj), there exists a subset
X ⊆ ∂Ai∪∂Aj with |∂Ai∩X| ≤ 1 and |∂Aj ∩X| ≤ 1,
such that vi(Ai \X) ≥ vj(Aj \X).

5

Note that EF1Pc
g ⇒ EF1cg and EQ1Pc

g ⇒ EQ1c
g . Fur-

thermore, the notions of EQ1Pc
g and EF1Pc

g guarantee
that, even after some items are deleted, the bundles re-
main connected.

Sperner’s Lemma.

Before presenting our results, we provide a brief
overview of the underlying theoretical framework based
on Sperner’s Lemma. For more details, see, for example,
Flegg [1974].

Let conv(v1,v2, . . . ,vn) denote the convex hull of the
n vectors v1,v2, . . . ,vn. An (n − 1)-simplex ∆ is an
(n − 1)-dimensional polytope defined as the convex hull
of its n (affinely independent) vertices v1,v2, . . . ,vn.
Given k ∈ [n], a (k − 1)-face of an (n − 1)-simplex is
the (k−1)-simplex obtained as convex hull of a subset of
k−1 of its vertices. A triangulation T of a simplex ∆ is a
collection of sub-(k − 1)-simplices (with k ∈ [n]) whose
union is ∆, with the property that the intersection of any
two sub-simplices in T is either empty or a face shared by
both, which also belongs to T . Each sub-simplex ∆′ ∈ T
is referred to as an elementary simplex. The set of vertices
of T , denoted as V (T), is the union of the vertices of all
the elementary simplices in T (i.e., the union of all the
elementary 0-simplices).

Now, let T be a fixed triangulation of an (n−1)-simplex
∆ = conv(v1,v2, . . . ,vn). A coloring function of T is
a mapping L : V (T) → [n] that assigns a number, re-
ferred to as a color, from the set [n] to each vertex of T .
A coloring function L is called special if, for any vertex
x ∈ V (T) belonging to the (n−2)-face Fi of ∆ that does
not include vi (i.e., the face opposite to vi, obtained as
convex hull of all vertices of ∆ except for vi), the condi-
tion L(x) ̸= i holds. We observe that, if L is a special col-
oring function, then L(vi) = i holds for any i ∈ [n]. An
elementary (n−1)-simplex ∆∗ = conv(x∗

1, . . . ,x
∗
n) ∈ T

is said to be fully-colored under a coloring function L if
each of its n vertices is assigned a distinct color by L, that
is, L(x∗

σ(i)) = i for any i ∈ [n], for some permutation
σ : [n]→ [n].

Theorem 3.1 (Sperner’s Lemma Sperner [1928]). Let T
be a triangulation of an (n− 1)-simplex ∆, where n ≥ 2,
and let L be a special coloring function of T . Then, there
exists a fully-colored elementary (n−1)-simplex ∆∗ ∈ T

under L; moreover, the number of such simplices is odd.

See Figure 1(a) in Appendix G for an example of the
application of Sperner’s Lemma with n = 3.

Below, we also consider a generalized version of
Sperner’s Lemma, as presented by Bapat [1989]. In this
generalized form, there are n special coloring functions
L1, . . . , Ln, and we seek an elementary (n − 1)-simplex
that is fully-colored according to a broader definition,
which holds simultaneously for all of the coloring func-
tions. Let T be a triangulation of an (n− 1)-simplex, and
let L1, . . . , Ln be the coloring functions on T . An elemen-
tary (n− 1)-simplex ∆∗ = conv(x∗

1,x
∗
2, . . . ,x

∗
n) ∈ T is

jointly fully-colored under L1, . . . , Ln if there exist two
permutations σ, τ : [n] → [n] such that Li(x

∗
σ(i)) = τ(i)

for any i ∈ [n], i.e., each vertex of ∆∗ receives a distinct
color under a distinct coloring function.

Theorem 3.2 (Generalized Sperner’s Lemma Bapat
[1989]). Let T be a triangulation of an (n − 1)-simplex
∆, and let L1, . . . , Ln be special coloring functions of
T . Then, there exists a jointly-fully-colored elementary
(n− 1)-simplex ∆∗ ∈ T under L1, . . . , Ln.

EQ1Pc
g Allocations

Given a path-constrained allocation instance with non-
negative valuations, we construct a suitable triangulation
T of an n-simplex ∆ and define a special coloring L for
T . Each elementary (n−1)-simplex ∆∗ ∈ T that is fully-
colored under L corresponds to an EQ1Pc

g allocation for
I . By Sperner’s Lemma (Theorem 3.1), the existence of
such fully-colored simplices is guaranteed, which in turn
ensures the existence of an EQ1Pc

g allocation. We also de-
sign a polynomial-time algorithm, based on dynamic pro-
gramming, that efficiently computes such an EQ1Pc

g allo-
cation.

Triangulation. Consider the (n − 1)-simplex ∆ =
{x = (x1, . . . , xn−1) ∈ Rn−1 : 0 ≤ x1 ≤
x2 ≤ . . . ≤ xn−1 ≤ m}, which is the convex
hull conv(v1,v2, . . . ,vn) of the points v1, . . . ,vn, with

vi := (

i−1︷ ︸︸ ︷
0, 0, . . . , 0,

n−i︷ ︸︸ ︷
m,m, . . . ,m) for any i ∈ [n]. We ob-

serve that each of the n (n− 2)-faces of ∆ can be defined
as Fi := {x = (x1, . . . , xn−1) ∈ ∆ : xi−1 = xi}, where

6

we set x0 := 0 and xn := m. We construct a triangulation
T of ∆ whose set of vertices is V (T) = {x ∈ ∆ : xi ∈
{0, 1

3 ,
2
3 , 1,

4
3 ,

5
3 , 2,

7
3 , . . . ,m−1,m− 2

3 ,m−
1
2 ,m} ∀i ∈

[n − 1]} and whose simplicial structure is defined be-
low. Each coordinate xi of vertices x ∈ V (T) can be
either integral, or 1-fractional or 2-fractional, where inte-
gral (resp. 1-fractional, 2-fractional) means xi ∈ Z (resp.
xi − 1

3 ∈ Z, xi − 2
3 ∈ Z); we write xi ≡ 0 (resp.

xi ≡ 1, xi ≡ 2) if xi is integral (resp. 1-fractional,
2-fractional). By leveraging Kuhn’s triangulation Kuhn
[1960], Scarf [1982], Deng et al. [2012], we construct
the triangulation T such that each elementary (n − 1)-
simplex ∆′ = conv(x1,x2, . . . ,xn) ∈ T can be gener-
ated by fixing the first vertex x1 ∈ V (T) and a permuta-
tion π : [n−1]→ [n−1], and then iteratively determining
the remaining vertices as follows: xi+1 = xi+

1
3e

π(i) for

each i ∈ [n − 1], where ei = (

i−1︷ ︸︸ ︷
0, . . . , 0, 1,

n−i−1︷ ︸︸ ︷
0, . . . , 0) is

the i-th vector of the canonical basis of Rn−1. Figure 1(b)
in Appendix G describes Kuhn’s triangulation for n = 3.

Each vertex x ∈ V (T) can be understood as a vec-
tor representing the positions of n − 1 knives that divide
the interval [0,m] into n connected segments having ex-
tremes in a, b ∈ [0,m]∩{x3 |x ∈ Z}. Following this inter-
pretation, the n vertices of any elementary (n−1)-simplex
in T are derived by starting with an initial configuration of
n− 1 cuts (i.e., vertex x1) and sequentially shifting each
knife one position to the right (by a length of 1/3) ac-
cording to a specific ordering defined by a permutation π.
Refer to Figure 2 in Appendix G to visualize the process
of deriving the sequence of fractional allocations from the
n vertices of an (n− 1)-dimensional simplex within a tri-
angulation T , which is constructed from an allocation in-
stance with n = 3 agents.

Coloring Function. We now construct the color-
ing function L : V (T) → [n]. Given a ver-
tex x = (x1, . . . , xn−1) ∈ V (T), let Ã(x) =
(Ã1(x), . . . , Ãn(x)) be the fractional connected alloca-
tion obtained from the partition of [0,m] in n fractional
connected bundles, defined as Ãi(x) = [xi−1, xi] for any
i ∈ [n], with x0 := 0 and xn := m; furthermore, each
bundle Ãi(x) is assigned by default to agent i, for any
i ∈ [n] (i.e., bundles are assigned from left to right fol-
lowing the agents order).

Given a ∈ R≥0, let a− := ⌊a⌋ and a+ := min{⌊a⌋ +
1,m}. Let ṽi denote the virtual valuation of agent
i, which applies to fractional connected bundles [a, b]
(where a, b ∈ [0,m] ∩ {x3 |x ∈ Z} and a ≤ b) and
returns an integer value ṽi([a, b]) that is defined as fol-
lows: left-value (LV): if a ≡ 0, ṽi([a, b]) := vi(Ja−, b−K);
borderline-value (BV): if a ≡ 1, ṽi([a, b]) is set equal to
the middle value among vi(Ja−, b−K), vi(Ja+, b−K) and
vi(Ja+, b+K); right-value (RV): if a ≡ 2, ṽi([a, b]) :=
vi(Ja+, b−K). Since the original valuations vis are non-
negative, the resulting virtual valuations ṽis are also non-
negative. Let L be the coloring function that assigns each
vertex x the agent/index i that maximizes the virtual val-
uation ṽi(Ãi(x)) applied to the fractional connected bun-
dle Ãi(x), where ties are broken in favor of agents receiv-
ing a non-empty bundle and, in case of further ties, arbi-
trarily. We observe that L is a special coloring function.
Indeed, for any i ∈ [n], the (n − 2)-face Fi of ∆, which
does not contain vi, is such that the fractional allocations
Ã(x) corresponding to vertices x ∈ V (T) located on Fi

have their i-th bundle empty (Ãi(x) = ∅). Due to the
non-negativity of the virtual valuations, any empty bun-
dle always has the lowest virtual value, regardless of the
agent or allocation being considered. Therefore, by the
construction of L, we have L(x) ̸= i for any i ∈ [n]
and any vertex x ∈ V (T) located on the (n− 2)-face Fi.
Thus, L is a special coloring function. Figure 1(b) of Ap-
pendix G shows an example of special coloring function
L derived from an arbitrary non-negative virtual valuation
function.

From the Fully-colored Simplex to the EQ1Pc
g Allo-

cation. According to Sperner’s Lemma (Theorem 3.1),
there exists at least one fully-colored elementary (n− 1)-
simplex ∆∗ = conv(x∗

1, . . . ,x
∗
n) ∈ T under the coloring

L, where L(x∗
σ(i)) = i for all i ∈ [n], for some per-

mutation σ : [n] → [n]. Equivalently, each i ∈ [n] is
among those agents j who maximize the virtual valua-
tion ṽj(Ãj(x

∗
σ(i))) in the fractional connected allocation

Ã(x∗
σ(i)) associated with the σ(i)-th vertex x∗

σ(i) of ∆∗,

where the sequence of allocations Ã(x∗
1), . . . , Ã(x∗

n) is
obtained by moving each knife one at a time from left
to right in a specific order, starting from the position of
knives determined by Ã(x∗

1). See Figure 2 of Appendix
G for an example.

7

Denote by Ã the first allocation Ã(x∗
1), and refer to it

as the main allocation of ∆∗. For a bundle Ãj = [aj , bj]

in the main allocation, say that Ãj is left-first (resp., right-
first) in ∆∗ if the first allocation Ã(x∗

h) associated with
∆∗, for which the bundle Ãj(x

∗
h) = [a′j , b

′
j] differs from

Ãj , satisfies a′j = aj + 1/3 and b′j = bj (resp., aj = a′j
and b′j = bj + 1/3). Equivalently, Ãj is left-first (resp.,
right-first) in ∆∗ if, among the two knives determining
the endpoints of the j-th bundle across all allocations as-
sociated with ∆∗, the first to move from left to right is the
left (resp., right) one; for an example of right-first bundle,
see Figure 2 of Appendix G. By appropriately rounding
the fractional bundles of Ã, we will obtain the desired
(integral) allocation A that satisfies the EQ1Pc

g guaran-
tee. The rounding procedure processes all fractional bun-
dles Ãjs of the main allocation Ã from j = n down
to j = 1, and for each bundle Ãj , it returns the inte-
gral bundle Aj that will form the final (integral) alloca-
tion A = (A1, . . . , An). Specifically, once the bundles
Aj+1, . . . , An have been determined, the bundle Aj is ob-
tained by rounding the fractional bundle Ãj = [aj , bj]
based on the three possible fractionality levels of the two
endpoints, aj and bj , and, if necessary, on whether Ãj

is left-first or right-first. This rounding process involves
considering 9 = 3 × 3 possible cases (corresponding to
the three fractionality levels for each endpoint) and addi-
tional sub-cases, and it is formally described in Figure 3
of Appendix G. The rounding procedure that returns A
is carefully designed so that the statements of the follow-
ing two lemmas hold. Their proofs, strongly based on the
rounding procedure, are deferred to Appendix B.

Lemma 3.1. A is a connected (integral) allocation.

Given i ∈ N and a connected (integral) bundle S =
Js, tK ⊆ [m], let v+i (S) = max{Js, tK, Js + 1, tK, Js, t −
1K} and v−i (S) = min{Js, tK, Js+1, tK, Js, t−1K}; v+i (S)
and v−i (S) represent, respectively, the maximum and the
minimum valuation that agent i can obtain from bundle S,
after possibly removing one of its endpoint items.

Lemma 3.2. For any h, i, j ∈ [n], the connected (in-
tegral) allocation A satisfies v−i (Aj) ≤ ṽi(Ãj(x

∗
h)) ≤

v+i (Aj).

Using these lemmas, we can show that the allocationA
returned by the rounding procedure is EQ1Pc

g .

Theorem 3.3. A is an EQ1Pc
g allocation, if valuations

are non-negative.

Proof. First, A is a connected allocation by Lemma 3.1.
Next, we show the EQ1Pc

g guarantee. As observed above,
the full coloring of simplex ∆∗ implies that each i ∈ [n]
is one of the indices j ∈ [n] that maximize ṽj(Ãj(x

∗
σ(i)))

(i.e., agent i has the highest virtual valuation in allocation
Ã(x∗

σ(i))). Thus, for any i, j ∈ N , we have v+i (Ai) ≥
ṽi(Ãi(x

∗
σ(i))) ≥ ṽj(Ãj(x

∗
σ(i))) ≥ v−j (Aj), where the

second inequality follows from the above observation,
and the first and last inequalities follow from Lemma 3.2.
Since v+i (Ai) ≥ v−j (Aj) for any i, j ∈ N , we conclude
that A satisfies the EQ1Pc

g guarantee (i.e., equitability is
obtained by removing at most one good from the board
of Ai and one chore from the board of Aj), and thus the
claim holds.

Efficient Computation. The EQ1Pc
g allocation guaran-

teed by Theorem 3.3 can be computed by a polynomial-
time algorithm based on dynamic programming. The al-
gorithm first computes the set Cv of the valuations vi(S)
that each agent i has for any bundle S (in O(nm2) time)
and then, by dynamic programming, determines for each
c ∈ Cv if there exists an allocationA such that v+i (Ai) ≥
c ≥ v−i (Ai) for any i ∈ [n] (in O(nm2) time), where
v+i (S) and v−i (S) denote the maximum and the minimum
valuation that i can obtain from a bundle S by deleting at
most one item from its board; again, we restrict ourselves
to allocations where the i-th leftmost bundle is assigned
to agent i. We show that finding such a value c ∈ Cv

satisfying the above condition is equivalent to finding an
EQ1Pc

g allocation, whose existence is guaranteed by The-
orem 3.3. Then, we get the following theorem (full details
are deferred to Appendix B):

Theorem 3.4. If valuations are non-negative, an EQ1Pc
g

allocation can be found in time O(n2m4).

EF1Pc
g allocations

To show the existence of EF1Pc
g allocations, we employ

the same framework as in the approximate equitability
case, with minor modifications. We use the same triangu-
lation T as in the previous case but equip it with n distinct

8

coloring functions L1, . . . , Ln, instead of the single col-
oring function L used earlier. Here, each Li colors any
vertex in V (T) with the index j of the bundle that agent
i prefers under virtual valuation ṽi (defined as in the pre-
vious case); we note that each Li is special, as the empty
bundle is the least valuable.

By applying the Generalized Sperner’s Lemma (Theo-
rem 3.2), we show the existence of a jointly fully-colored
elementary (n− 1)-simplex ∆∗. As in the previous case,
this simplex corresponds to a sequence of n connected
fractional partitions, but now the bundles are initially un-
allocated, and there exist two permutations σ and τ such
that, in the σ(i)-th allocation, agent i ∈ [n] does not envy
any other agent if i receives the τ(i)-th bundle. Then, by
applying the same rounding procedure and proof tech-
niques used for the case of EQ1Pc

g allocations, the first
fractional partition of ∆∗ is transformed into an (integral)
EF1Pc

g allocation, where each agent i receives the τ(i)-
th bundle. This leads to the following theorem (see Ap-
pendix C for the full details).

Theorem 3.5. Under non-negative valuations, an EF1Pc
g

allocation always exists.

We conjecture that the computation of an EF1Pc
g allo-

cation is a PPAD-complete problem (similarly to the re-
sults show in Deng et al. [2012]). We also note that, even
without path constraints, the complexity of finding EF1
or EF1cg still remains an open problem. It is worth noting
that, in the subclass of monotone non-decreasing valua-
tions, there are goods only. Thus, in this case, Theorems
3.3-3.5 extend to the stronger notions of EF1 and EQ1
under path-constraints, thereby recovering the findings of
Bilò et al. [2022], Igarashi [2023], Misra et al. [2021],
Suksompong [2019].

4 Non-positive Valuations

To address the case of non-positive valuations under
path-connectivity constraints, we resort to a novel multi-
coloring variant of Sperner’s Lemma, where the underly-
ing coloring functions assign, to each vertex x ∈ V (T),
a set of colors (rather than a single color), including the
indices i of the (n − 2)-dimensional faces Fi to which x
belongs.

Multi-coloring Sperner’s Lemma.

Let T be a fixed triangulation of an (n − 1)-simplex
∆ = conv(v1, . . . ,vn). A multi-coloring function of T
is a mapping L : V (T) → 2[n] \ {∅} that assigns a
non-empty subset of colors L(x) ⊆ [n] to each vertex of
x ∈ V (T). We recall that Fi is the (n − 2)-dimensional
face of ∆ opposite to vertex vi. A multi-coloring func-
tion L is called special if, for any vertex x ∈ V (T),
L(x) ⊇ {i ∈ [n] : x ∈ Fi} holds (i.e., if x is a bound-
ary vertex, the set of colors L(x) contains the indices as-
sociated with all (n − 2)-faces of ∆ on which x is lo-
cated). We observe that, if L is a special multi-coloring
function and F is a (k − 1)-face of ∆ spanned by ver-
tices vi1 , . . . ,vik , it holds that L(x) ⊇ [n] \ {i1, . . . , ik}
for any vertex x ∈ V (T) located on F . An elementary
(n − 1)-simplex ∆∗ = conv(x∗

1, . . . ,x
∗
n) ∈ T is said to

be fully-colored under a multi-coloring function L if there
exists a permutation σ : [n]→ [n] such that i ∈ L(x∗

σ(i))

for any i ∈ [n] (that is, a distinct color i appears in the
set L(x∗

σ(i)) associated with a distinct vertex x∗
σ(i)). An

example of a special multi-coloring function L applied to
the triangulation T of a 2-simplex is provided in Figure 4
of Appendix G.

Theorem 4.1 (Multi-coloring Sperner’s Lemma). Let T
be a triangulation of an (n− 1)-simplex ∆, where n ≥ 2,
and let L be a special multi-coloring function of T . Then,
there exists a fully-colored elementary (n − 1)-simplex
∆∗ ∈ T under multi-coloring function L.

The Multi-coloring Sperner’s Lemma can be viewed
as a dual to the standard Sperner’s Lemma. In the clas-
sical version, color i is “prohibited” from appearing at
any vertex x located on the face Fi opposite to the ver-
tex vi. In contrast, the multi-coloring version requires
that color i “must appear” in the set of assigned col-
ors L(x) at each vertex x ∈ Fi. To show the Multi-
coloring Sperner’s Lemma, we first assume, w.l.o.g., that
L(x) = {i ∈ [n] : x ∈ Fi} holds for any vertex x located
on the boundary of ∆, and that |L(x)| = 1 for any internal
vertex x not located on the boundary. Then, we define the
minimal restriction of L as the standard coloring function
that assigns the color L(x) = min{i ∈ L(x)} to each
vertex x. We show by induction on n ≥ 2 that the number
of fully-colored simplices with respect to the minimal re-
striction L is odd, which implies the existence of at least

9

one such simplex (full details are deferred to Appendix
D). Finally, we note that each fully-colored simplex with
respect to L is also fully-colored with respect to the orig-
inal multi-coloring function L, thereby proving the claim
of the theorem. The full proof is deferred to Appendix
D. It is worth noting that, unlike the standard Sperner’s
Lemma, the structure of our multi-coloring functions re-
quired additional intermediate steps and ad hoc topologi-
cal transformations of the simplicial structure in order to
carry out the inductive argument on n.

EQ1Pc
g and EF1Pc

g Allocations
To show the existence of an EQ1Pc

g allocation, we employ
the same framework as in the case of non-negative valu-
ations, with minor modifications. We use the same trian-
gulation T as in that case, but we equip T with the multi-
coloring function L that assign to each vertex x ∈ V (T)
the set L(x) of indices j which maximize ṽj(Ãj(x)),
where ṽj is the virtual valuation defined as in Section 3.
Differently from the case of non-negative valuations, un-
der non-positive valuations the empty bundle is always
the best one for each agent. Thus, L is a special multi-
coloring function and, by the Multi-coloring Sperner’s
lemma (Theorem 4.1), there exists an elementary (n−1)-
simplex ∆∗ = conv(x∗

1, . . . ,x
∗
n) that is fully-colored un-

der the multi-coloring function L. As in the case of non-
negative valuations, this means that there exists a per-
mutation σ such that each agent i ∈ [n] is the happiest
(among all others) in the allocationA(x∗

σ(i)) (where each
agent j receives the j-th bundle). From this point onward,
we can apply the same approach used for non-negative
valuations to transform ∆∗ into an EQ1Pc

g allocation (full
details are deferred to Appendix D).

Theorem 4.2. Under non-positive valuations, an EQ1Pc
g

allocation always exists and can be computed in polyno-
mial time.

As in the case of non-negative valuations, to show the
existence of EF1Pc

g allocations, we consider a general-
ization of the multi-coloring Sperner’s Lemma that deals
with n distinct multi-coloring functions, each one mod-
elling the virtual valuation of each agent i. We then obtain
a jointly fully-colored simplex ∆∗, in which each vertex
corresponds to an allocation where a distinct agent prefers
a distinct bundle. Then, by resorting to the usual rounding

procedure we obtain the desired EF1Pc
g allocation (full de-

tails are deferred to Appendix D):

Theorem 4.3. Under non-positive valuations, an EF1Pc
g

allocation always exists.

The following corollary holds since, in the case of
monotone non-increasing valuations, there are chores
only.

Corollary 4.1. Under non-increasing valuations, EQ1
and EF1 allocations always exist, even under path con-
straints, with the former being computable in polynomial
time.

5 Conclusions
As the main contribution of this work, we established the
existence of allocations that are (approximate) equitable
(EQ1c

g) or envy-free (EF1cg) up to the removal of one good
or chore from each bundle, even for non-positive valu-
ations and under path constraints. Furthermore, efficient
computation can be achieved under the approximate equi-
tability guarantee. With these results, we made significant
progress on the general problem of establishing the exis-
tence and computation of allocations that are fair “up to
some items” for general non-monotone valuations. How-
ever, the existence of allocations satisfying the stronger
EQ1 and EF1 guarantees remains open, as does the case
of more general non-monotone valuations beyond the set-
tings of the non-negative or non-positive valuations. It
would be interesting to explore whether our techniques
can be extended to address these cases.

Additionally, the time complexity of finding approxi-
mately fair allocations for general non-negative or non-
positive valuations remains an open question, even in
cases where existence has been established. Indeed, un-
der path constraints, we conjecture that finding EF1Pc

g

allocations is PPAD-complete for both non-negative and
non-positive valuations. Furthermore, we conjecture that
PPAD-completeness also holds for finding EF1 alloca-
tions under monotone non-decreasing or non-increasing
valuations.

Finally, the existence of EQX allocations for objective
valuations remains an open problem, even in the addi-
tive case. Furthermore, moving to the approximate envy-

10

freeness guarantee, we note that the existence of EFX al-
locations is a major open question in fair division, even
for additive non-negative valuations.

AI Use Declaration

ChatGPT (OpenAI) was used solely for language polish-
ing and figure layout formatting. All scientific content and
data were prepared by the authors.

References
Georgios Amanatidis, Haris Aziz, Georgios Birmpas,

Aris Filos-Ratsikas, Bo Li, Hervé Moulin, Alexan-
dros A. Voudouris, and Xiaowei Wu. Fair division of
indivisible goods: Recent progress and open questions.
Artif. Intell., 322:103965, 2023.

Yonatan Aumann and Yair Dombb. The efficiency of fair
division with connected pieces. ACM Transactions on
Economics and Computation, 3(4):1–16, 2015.

Haris Aziz and Simon Rey. Almost group envy-free allo-
cation of indivisible goods and chores. In Proceedings
of the Twenty-Ninth International Joint Conference on
Artificial Intelligence, IJCAI 2020, pages 39–45, 2020.

Haris Aziz, Ioannis Caragiannis, Ayumi Igarashi, and
Toby Walsh. Fair allocation of indivisible goods and
chores. Auton. Agents Multi Agent Syst., 36(1):3, 2022.

R. B. Bapat. A constructive proof of a permutation-based
generalization of Sperner’s lemma. Mathematical Pro-
gramming, 44(1):113–120, 1989.

Siddharth Barman, Vishnu V. Narayan, and Paritosh
Verma. Fair chore division under binary supermodular
costs. In Proceedings of the 2023 International Con-
ference on Autonomous Agents and Multiagent Systems
AAMAS, pages 2863–2865. ACM, 2023.

Siddharth Barman, Umang Bhaskar, Yeshwant Pandit,
and Soumyajit Pyne. Nearly equitable allocations be-
yond additivity and monotonicity. In 38th AAAI Con-
ference on Artificial Intelligence, AAAI 2024, pages
9494–9501. AAAI Press, 2024.

Kristóf Bérczi, Erika R. Bérczi-Kovács, Endre Boros,
Fekadu Tolessa Gedefa, Naoyuki Kamiyama,
Telikepalli Kavitha, Yusuke Kobayashi, and Kazuhisa
Makino. Envy-free relaxations for goods, chores, and
mixed items. Theor. Comput. Sci., 1002:114596, 2024.

Umang Bhaskar, A. R. Sricharan, and Rohit Vaish. On
approximate envy-freeness for indivisible chores and
mixed resources. In Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Tech-
niques, APPROX/RANDOM, volume 207 of LIPIcs,
pages 1:1–1:23. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2021.

Umang Bhaskar, A. R. Sricharan, and Rohit Vaish. Con-
nected equitable cake division via sperner’s lemma. Inf.
Process. Lett., 189:106554, 2025.

Vittorio Bilò, Ioannis Caragiannis, Michele Flammini,
Ayumi Igarashi, Gianpiero Monaco, Dominik Peters,
Cosimo Vinci, and William S. Zwicker. Almost envy-
free allocations with connected bundles. Games Econ.
Behav., 131:197–221, 2022.

Sylvain Bouveret, Katarı́na Cechlárová, Edith Elkind,
Ayumi Igarashi, and Dominik Peters. Fair division of a
graph. In Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI 2017,
pages 135–141, 2017.

Sylvain Bouveret, Katarı́na Cechlárová, and Julien Lesca.
Chore division on a graph. Auton. Agents Multi Agent
Syst., 33(5):540–563, 2019.

Eric Budish. The combinatorial assignment problem:
Approximate competitive equilibrium from equal in-
comes. Journal of Political Economy, 119(6):1061–
1103, 2011.

Ioannis Caragiannis, David Kurokawa, Hervé Moulin,
Ariel D. Procaccia, Nisarg Shah, and Junxing Wang.
The unreasonable fairness of maximum nash welfare.
ACM Transactions on Economics and Computation, 7
(3):12:1–12:32, 2019.

Katarı́na Cechlárová, Jozef Doboš, and Eva Pillárová. On
the existence of equitable cake divisions. Information
Sciences, 228:239–245, 2013.

11

Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and
Sergei Vassilvitskii. Fair clustering through fairlets.
In Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Process-
ing Systems 2017, pages 5029–5037, 2017.

Guillaume Chèze. Existence of a simple and equitable fair
division: A short proof. Mathematical Social Sciences,
87:92–93, 2017.

X. Deng, Q. Qi, and A. Saberi. Algorithmic solutions
for envy-free cake cutting. Operations Research, 60
(6):1461–1476, 2012.

Michael Dinitz, Aravind Srinivasan, Leonidas
Tsepenekas, and Anil Vullikanti. Fair disaster
containment via graph-cut problems. In International
Conference on Artificial Intelligence and Statistics,
AISTATS 2022, 28-30 March 2022, Virtual Event,
volume 151 of Proceedings of Machine Learning
Research, pages 6321–6333. PMLR, 2022.

Lester E. Dubins and Edwin H. Spanier. How to cut a
cake fairly. American Mathematical Monthly, 68(1P1):
1–17, 1961.

H. Graham Flegg. From Geometry to Topology. Crane,
Russak & Co., 1974.

Duncan K. Foley. Resource allocation and the public sec-
tor. Yale University, 1966.

Rupert Freeman, Sujoy Sikdar, Rohit Vaish, and Lirong
Xia. Equitable allocations of indivisible goods. In
28th International Joint Conference on Artificial Intel-
ligence, IJCAI 2019, pages 280–286, 2019.

Rupert Freeman, Sujoy Sikdar, Rohit Vaish, and Lirong
Xia. Equitable allocations of indivisible chores. In
19th International Conference on Autonomous Agents
and MultiAgent Systems, AAMAS 2020, pages 384–
392, 2020.

Jugal Garg and Aniket Murhekar. Computing pareto-
optimal and almost envy-free allocations of indivisible
goods. J. Artif. Intell. Res., 80:1–25, 2024.

Laurent Gourvès, Jérôme Monnot, and Lydia Tlilane.
Near fairness in matroids. In 21st European Conference

on Artificial Intelligence, ECAI 2014, pages 393–398,
2014.

Hadi Hosseini and Aditi Sethia. Equitable allocations of
mixtures of goods and chores. CoRR, abs/2501.06799,
2025.

Hadi Hosseini, Sujoy Sikdar, Rohit Vaish, and Lirong
Xia. Fairly dividing mixtures of goods and chores un-
der lexicographic preferences. In Proceedings of the
2023 International Conference on Autonomous Agents
and Multiagent Systems, AAMAS 2023, pages 152–160.
ACM, 2023.

Ayumi Igarashi. How to cut a discrete cake fairly. In
Thirty-Seventh AAAI Conference on Artificial Intelli-
gence, AAAI, pages 5681–5688. AAAI Press, 2023.

H. W. Kuhn. Some combinatorial lemmas in topology.
IBM Journal of Research and Development, 4(5):518–
524, 1960.

Richard J Lipton, Evangelos Markakis, Elchanan Mossel,
and Amin Saberi. On approximately fair allocations
of indivisible goods. In Proceedings of the 5th ACM
Conference on Electronic Commerce EC 2004, pages
125–131, 2004.

Shengxin Liu, Xinhang Lu, Mashbat Suzuki, and Toby
Walsh. Mixed fair division: A survey. J. Artif. Intell.
Res., 80:1373–1406, 2024.

Neeldhara Misra, Chinmay Sonar, P. R. Vaidyanathan,
and Rohit Vaish. Equitable division of a path. CoRR,
abs/2101.09794, 2021.

Benjamin Plaut and Tim Roughgarden. Almost envy-
freeness with general valuations. SIAM Journal on Dis-
crete Mathematics, 34(2):1039–1068, 2020.

H. E. Scarf. The computation of equilibrium prices: an
exposition. Handbook of Mathematical Economics, 2:
1007–1061, 1982.

Roy Schwartz and Roded Zats. Fair correlation cluster-
ing in general graphs. In Approximation, Randomiza-
tion, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2022, volume 245 of
LIPIcs, pages 37:1–37:19, 2022.

12

Emanuel Sperner. Neuer beweis für die invarianz der di-
mensionszahl und des gebietes. Abhandlungen aus dem
Mathematischen Seminar der Universität Hamburg, 6:
265–272, 1928.

Hugo Steinhaus. The problem of fair division. Economet-
rica, 16(1):101–104, 1948.

Walter Stromquist. How to cut a cake fairly. American
Mathematical Monthly, 87(8):640–644, 1980.

Francis Edward Su. Rental harmony: Sperner’s lemma
in fair division. American Mathematical Monthly, 106
(10):936–942, 1999.

Warut Suksompong. Fairly allocating contiguous blocks
of indivisible items. Discret. Appl. Math., 260:227–
236, 2019.

Douglas Robert Woodall. Dividing a cake fairly. Journal
of Mathematical Analysis and Applications, 78(1):233–
247, 1980.

13

Supplementary Material of Paper
”Approximately Envy-free and Equi-
table Allocations of Indivisible Items
for Non-monotone Valuations” and
Reproducibility Checklist
The supplementary material is organized in seven distinct
appendices (A-H). For a better organization, each distinct
appendix starts in a new page. The reproducibility check-
list is provided at the end of the document.

A Explicit Description of the Ap-
proximate Equitability Notions
(from Section 2)

An allocation A = (A1, . . . , An) is:

• equitable (EQ): if, for any i, j ∈ N , vi(Ai) ≥
vj(Aj).

• equitable-up-to-any-item (EQX): if, for any i, j ∈ N
such that vi(Ai) < vj(Aj), all the following condi-
tions hold: (i) vi(Ai) ≥ vj(Aj \ {g}) for any good
g for j w.r.t. Aj ; (ii) vi(Ai \ {c}) ≥ vj(Aj) for any
chore c for i w.r.t. Ai; (iii) either there exists a good
g for j w.r.t. Aj , or there exists a chore c for i w.r.t.
Ai.

• equitable-up-to-one-item (EQ1): if, for any i, j ∈ N
such that vi(Ai) < vj(Aj), there exists x ∈ Ai ∪Aj

such that vi(Ai \ {x}) ≥ vj(Aj \ {x}).

• envy-free-up-to-one-good-and-one-chore (EQ1cg): if,
for any i, j ∈ N such that vi(Ai) < vj(Aj), there
exists a subset X ⊆ M with |Ai ∩ X| ≤ 1 and
|Aj ∩X| ≤ 1, such that vi(Ai \X) ≥ vj(Aj \X).

14

B Missing Proofs from Section 3:
part on equitability

Proof of Lemma 3.1

The rounding procedure described in Figure 3 of Ap-
pendix G verifies the following properties: (i) the right
endpoint tn of bundle An = Jsn, tnK is m; (ii) for any
j ∈ [n− 1], the right endpoint tj of bundle Aj = Jsj , tjK
and the left endpoint sj+1 of bundle Aj+1 satisfy tj =
sj+1−1; (iii) the left endpoint s1 of bundle A1 is 1. Based
on these observations, all the connected bundles Aj are
disjoint and their union covers all items in M .

Proof of Lemma 3.2

For the rounding procedure, refer to Figure 3 in Appendix
G. Fix h, i, j ∈ [n] and let Ã′ denote allocation Ã(x∗

h).
Let Ãj(L,L) := [aj , bj], Ãj(L,R) := [aj ,min{bj +

1/3,m}], Ãj(R,L) := [min{aj + 1/3, bj}, bj], and
Ãj(R,R) := [min{aj + 1/3, bj},min{bj + 1/3,m}].
Equivalently: Ãj(L,L) represents the j-th fractional bun-
dle Ãj of the allocation Ã = Ã(x∗) associated with the
first vertex of ∆∗; Ãj(L,R) is the fractional bundle ob-
tained from Ãj by moving the right knife one position
(i.e., 1/3 of the size of an item) to the right, ensuring
it remains before the last possible position; Ãj(R,L) is
the fractional bundle obtained by moving the left knife
one position to the right (while keeping it before the
right knife); Ãj(R,R) is the fractional bundle obtained
by moving both knives one position to the right, ensur-
ing the left knife remains before the right knife. We ob-
serve that each possible configuration of the j-th bundle
in Ã must be one of Ãj(L,L), Ãj(L,R), Ãj(R,L), and
Ãj(R,R). Thus, to obtain the claim, it is sufficient to
show that v−i (Aj) ≤ ṽi(Ãj(Y,Z)) ≤ v+i (Aj) for any
Y,Z ∈ {L,R}.

At this point, the remainder of the proof is straight-
forward but tedious, as it requires verifying the claim by
systematically analyzing all nine cases and their respec-
tive sub-cases in the rounding procedure. In particular,
for each of the nine cases, one must verify that inequal-
ity v−i (Aj) ≤ ṽi(Ãj(Y, Z)) ≤ v+i (Aj) holds for any
Y,Z ∈ {L,R}.

As an example, we describe the analysis of cases 2(i),
2(ii), 6(i) and 6(ii), since the other cases are less complex
and can be automatically verified by following analogous
and simpler arguments.

We recall that the virtual value ṽi([a, b]) of a fractional
bundle [a, b] corresponds to one of the following three
cases:

• left-value (LV): if a ≡ 0, ṽi([a, b]) := vi(Ja−, b−K);

• borderline-value (BV): if a ≡ 1, ṽi([a, b]) is set
equal to the middle value among vi(Ja−, b−K),
vi(Ja+, b−K) and vi(Ja+, b+K);

• right-value (RV): if a ≡ 2, ṽi([a, b]) :=
vi(Ja+, b−K).

Furthermore, we recall that the j-th bundle Ãj of the main
allocation Ã is left-first (resp., right-first) in ∆∗ if, among
the two knives determining the endpoints of the j-th bun-
dle across all allocations associated with ∆∗, the first to
move from left to right is the left (resp., right) one.

In the following, we proceed with the analysis of Cases
2(i), 2(ii), 6(i) and 6(ii):

• Case 2(i): In this case, we have bj ∈ Aj+1 and we
set Aj ← Ja−j , b

−
j K.

First, let us focus on fractional bundle Ãj(L,Z) for
any Z ∈ {L,R}; we observe that the virtual val-
uation applied to Ãj(L,Z) is left-value (LV), that
is, ṽi(Ãj(L,Z)) is equal to vi(Ja−j , b

−
j K). Thus, we

have v−i (Aj) ≤ vi(Ja−j , b
−
j K) = ṽi(Ãj(L,Z)) =

vi(Ja−j , b
−
j K) ≤ v+i (Aj), where the first (resp., the

last) inequality holds since v−i (Aj) (resp., v+i (Aj))
is the highest (resp., lowest) valuation obtainable by
removing at most one boundary item, or none at all,
from Aj .

Now, we consider a fractional bundle of type
Ãj(R,Z) with Z ∈ {L,R}; the virtual val-
uation applied to Ãj(R,Z) is borderline-
value (BV), that is, ṽi(Ãj(R,Z)) is equal
to the middle value among vi(Ja−j , b

−
j K),

vi(Ja+j , b
−
j K) and vi(Ja+j , b

+
j K). Thus, we have

v−i (Aj) ≤ min{vi(Ja−j , b
−
j K), vi(Ja+j , b

−
j K)} ≤

ṽi(Ãj(R,Z)) ≤ max{vi(Ja−j , b
−
j K), vi(Ja+j , b

−
j K)} ≤

15

v+i (Aj), where: the first (resp., the last) inequality
holds again since v−i (Aj) (resp., v+i (Aj)) is the
highest (resp., lowest) valuation obtainable by
removing at most one boundary item, or none at all,
from Aj ; the second (resp., third) inequality holds
since the minimum (resp., maximum) among the two
values vi((a

−
j , b

−
j)) and vi((a

+
j , b

−
j)) must be less

than or equal to (resp., greater than or equal to) the
middle value among the three values vi((a

−
j , b

−
j)),

vi((a
+
j , b

−
j)) and vi((a

+
j , b

+
j)).

We conclude that v−i (Aj) ≤ ṽi(Ãj(Y,Z)) ≤
v+i (Aj) holds for any Y,Z ∈ {L,R}, and this shows
the claim in case 2(i).

• Case 2(ii): In this case, we have bj /∈ Aj+1 and we
set Aj = Ja−j , b

+
j K.

First, let us focus on fractional bundle
Ãj(L,Z) for any Z ∈ {L,R}; we observe
that the virtual valuation applied to Ãj(L,Z)

is left-value (LV), that is, ṽi(Ãj(L,Z))
is equal to vi(Ja−j , b

−
j K). Thus, we have

v−i (Aj) ≤ min{vi(Ja−j , b
+
j K), vi(Ja−j , b

−
j K)} ≤

ṽi(Ãj(L,Z)) ≤ max{vi(Ja−j , b
+
j K), vi(Ja−j , b

−
j K)} ≤

v+i (Aj), where the first and the last inequality holds
for the usual reasons, while the second and third in-
equalities hold since ṽi(Ãj(L,Z)) = vi(Ja−j , b

−
j K).

Now, we consider each fractional bundle
Ãj(R,Z) with Z ∈ {L,R}; the virtual val-
uation applied to Ãj(R,Z) is borderline-
value (BV), that is, ṽi(Ãj(R,Z)) is equal
to the middle value among vi(Ja−j , b

−
j K),

vi(Ja+j , b
−
j K) and vi(Ja+j , b

+
j K). Thus, we have

v−i (Aj) ≤ min{vi(Ja−j , b
−
j K), vi(Ja+j , b

+
j K)} ≤

ṽi(Ãj(R,Z)) ≤ max{vi(Ja−j , b
−
j K), vi(Ja+j , b

+
j K)} ≤

v+i (Aj), where the first and the last inequality holds
for the usual reasons, while, similarly to case 2(i),
the second (resp., third) inequality holds since the
minimum (resp., maximum) among the two values
vi((a

−
j , b

−
j)) and vi((a

+
j , b

+
j)) must be less than

or equal to (resp., greater than or equal to) the
middle value among the three values vi((a

−
j , b

−
j)),

vi((a
+
j , b

−
j)) and vi((a

+
j , b

+
j)).

We conclude that v−i (Aj) ≤ ṽi(Ãj(Y,Z)) ≤

v+i (Aj) holds for any Y,Z ∈ {L,R}, and this shows
the claim in case 2(ii).

• Case 6(i): In this case, we have Aj = Ja+j , b
+
j K.

As the fractional bundle [aj , bj] is left-first in ∆∗,
the j-th bundle will never be equal to Ãj(L,R)
over all allocations associated with vertices in ∆∗.
Thus, it is sufficient showing that v−i (Aj) ≤
ṽi(Ãj(Y,Z)) ≤ v+i (Aj) holds for any (Y,Z) ∈
{(L,L), (R,L), (R,R)}.
First, let us focus on fractional bundle Ãj(L,L); the
virtual valuation applied to Ãj(L,L) is borderline-
value (BV), that is, ṽi(Ãj(L,L)) is equal to the
middle value among vi(Ja−j , b

−
j K), vi(Ja+j , b

−
j K) and

vi(Ja+j , b
+
j K). Thus, for the usual reasons, we have

v−i (Aj) ≤ min{vi(Ja+j , b
−
j K), vi(Ja+j , b

+
j K)} ≤

ṽi(Ãj(L,L)) ≤ max{vi(Ja+j , b
−
j K), vi(Ja+j , b

+
j K)} ≤

v+i (Aj).

Now, we consider bundle Ãj(R,L); the
virtual valuation applied to Ãj(R,L) is
right-value (RV), that is, ṽi(Ãj(R,Z))
is equal to vi(Ja+j , b

−
j K). Thus, we have

v−i (Aj) ≤ min{vi(Ja+j , b
−
j K), vi(Ja+j , b

+
j K)} ≤

ṽi(Ãj(R,Z)) ≤ max{vi(Ja+j , b
−
j K), vi(Ja+j , b

+
j K)} ≤

v+i (Aj), where the first and the second inequalities
hold for the usual reasons, and the other inequalities
hold since ṽi(Ãj(R,Z)) = vi(Ja+j , b

−
j K).

Finally, we consider bundle Ãj(R,R); the virtual
valuation applied to Ãj(R,R) is again right-value
(RV), but now the right knife has position b+, and
then ṽi(Ãj(R,R)) = vi(Ja+j , b

+
j K). Thus, for the

usual reasons, we have v−i (Aj) ≤ vi(Ja+j , b
+
j K) =

ṽi(Ãj(R,R)) = vi(Ja+j , b
+
j K) ≤ v+i (Aj).

We conclude that v−i (Aj) ≤ ṽi(Ãj(Y,Z)) ≤
v+i (Aj) holds for any (Y, Z) ∈
{(L,L), (R,L), (R,R)}, and this shows the
claim in case 6(i).

• Case 6(ii): In this case, we have Aj = Ja−j , b
+
j K.

As the fractional bundle [aj , bj] is right-first in ∆∗,
the j-th bundle will never be equal to Ãj(R,L)
over all allocations associated with vertices in ∆∗.
Thus, it is sufficient showing that v−i (Aj) ≤

16

ṽi(Ãj(Y,Z)) ≤ v+i (Aj) holds for any (Y,Z) ∈
{(L,L), (L,R), (R,R)}.
First, let us focus on fractional bundle Ãj(L,L); the
virtual valuation applied to Ãj(L,L) is borderline-
value (BV), that is, ṽi(Ãj(L,L)) is equal to the
middle value among vi(Ja−j , b

−
j K), vi(Ja+j , b

−
j K) and

vi(Ja+j , b
+
j K). Thus, for the usual reasons, we have

v−i (Aj) ≤ min{vi(Ja−j , b
−
j K), vi(Ja+j , b

+
j K)} ≤

ṽi(Ãj(L,L)) ≤ max{vi(Ja−j , b
−
j K), vi(Ja+j , b

+
j K)} ≤

v+i (Aj).

Now, we consider bundle Ãj(L,R); the vir-
tual valuation applied to Ãj(R,L) is again
borderline-value (BV), but the right knife is now
placed in position b+, that is, ṽi(Ãj(L,R)) is
equal to the middle value among vi(Ja−j , b

+
j K),

vi(Ja+j , b
+
j K) and vi(Ja+j , (bj + 1)+K).

Thus, for the usual reasons, we have
v−i (Aj) ≤ min{vi(Ja−j , b

+
j K), vi(Ja+j , b

+
j K)} ≤

ṽi(Ãj(L,L)) ≤ max{vi(Ja−j , b
+
j K), vi(Ja+j , b

+
j K)} ≤

v+i (Aj).

Finally, we consider bundle Ãj(R,R); the vir-
tual valuation applied to Ãj(R,L) is right-value
(RV) and the right knife is again in position
b+, that is, ṽi(Ãj(R,R)) = vi(Ja+j , b

+
j K).

Thus, for the usual reasons, we have
v−i (Aj) ≤ min{vi(Ja−j , b

+
j K), vi(Ja+j , b

+
j K)} ≤

ṽi(Ãj(R,R)) ≤ max{vi(Ja−j , b
+
j K), vi(Ja+j , b

+
j K)} ≤

v+i (Aj).

We conclude that v−i (Aj) ≤ ṽi(Ãj(Y,Z)) ≤
v+i (Aj) holds for any (Y, Z) ∈
{(L,L), (L,R), (R,R)}, and this shows the
claim in case 6(ii).

Full Details on Efficient Computation of
EQ1Pc

g Allocations (Theorem B.1).
Full details on design, correctness and complexity of the
dynamic programming algorithm introduced in Section 3
are provided in the proof of Theorem B.1 below (for the
pseudocode, see Algorithm 1 of Appendix H).

We say that a connected allocation A is well-ordered
if the i-th leftmost bundle is assigned to agent i, for any

i ∈ [n]; we note the allocation A constructed in Theo-
rem 3.3 to show the existence of EQ1Pc

g allocations was
well-ordered. In this section, we again restrict our atten-
tion to well-ordered allocations, and this assumption is
without loss of generality (see Remark B.1). Let Cv be
the set of the valuations vi(S) that each agent i has for
any bundle S, and, given c ∈ Cv , we say that an alloca-
tion A = (A1, . . . , An) is c-feasible if, for each i ∈ [n],
v+i (Ai(c)) ≥ c ≥ v−i (Aj(c)) holds.

Lemma B.1. A is a well-ordered c-feasible allocation for
some c ∈ Cv ⇔A is a well-ordered EQ1Pc

g allocation.

Proof. ⇒): Let A be a c-feasible well-ordered allocation
for some c ∈ Cv . Then, v+i (Ai) ≥ c ≥ v−j (Aj) holds for
any i, j ∈ N , that is, A is EQ1Pc

g .
⇐): Given an EQ1Pc

g well-ordered allocation A, let
c+ := minj∈N v+j (Aj) and c− := maxj∈N v−j (Aj).
Then, we have that v+i (Ai) ≥ c+ ≥ c− ≥ v−i (Ai)
holds for any i ∈ N , where the intermediate inequality
follows from the EQ1Pc

g guarantee. Let j be the index
minimizing v+j (Aj), that is, c+ = v+j (Aj). We observe
that v+j (Aj) = vj(S), for some bundle S obtained from
Aj by possibly removing one item from the board of Aj .
Thus, by setting c := c+, we have c ∈ Cv . Then, by the
previous inequalities, we have v+i (Ai) ≥ c ≥ v−i (Ai) for
any i ∈ [n], that is, A is a well-ordered c-feasible alloca-
tion with c ∈ Cv .

Then, we obtain Theorem 3.4, that is restated and
proven below:

Theorem B.1 (Claim of Theorem 3.4). Under non-
negative valuations, an EQ1Pc

g allocation can be found
in polynomial time O(n2m4).

Proof. By Lemma B.1, to find an EQ1Pc
g allocation A, it

is sufficient to check, for each c ∈ Cv , whether there ex-
ists a well-ordered c-feasible allocation. Furthermore, the
existence of a well-ordered EQ1Pc

g allocation was guar-
anteed by Theorem 3.3 (whose proof, indeed, yielded a
well-ordered allocation), so it is certain that such a c ∈ Cv

can be found.
For any c ∈ Cv , the problem of determining whether

there exists a well-ordered c-feasible allocation and, if so,
finding such an allocation can be solved using a dynamic
programming algorithm in polynomial time O(nm2). In-
deed, one can iteratively solve the sub-problem Bc[i][j]

17

which determines whether there exists a partial well-
ordered c-feasible allocation that allocates the first j items
to the first i agents.

Specifically, for any i ∈ [n] and j ∈ [m] ∪ {0}, let
Bc[i][j] be the boolean value that is TRUE (resp. FALSE)
if there exists a (resp. if there is no) partial c-feasible
well-ordered allocation A of the first j items to the first
i agents. The solution to the original problem is then ob-
tained by evaluating Bc[n][m]. The values Bc[i][j] satisfy
the following recurrence relation:

• Base Case (i = 1, j ∈ [m] ∪ {0}): Bc[1][j] =
TRUE if the bundle J1, jK satisfies v+1 (J1, jK) ≥ c ≥
v−1 (J1, jK); otherwise, Bc[1][j] = FALSE.

• Recursive Step (i ∈ [n] \ {1}, j ∈ [m] ∪ {0}):
Bc[i][j] = TRUE if there exists ℓ ∈ [j + 1] such
that the bundle Jℓ, jK satisfies both v+i (Jℓ, jK) ≥ c ≥
v−i (Jℓ, jK and Bc[i − 1][ℓ − 1] = TRUE; otherwise,
Bc[i][j] = FALSE.

The above recurrence relation for Bc[i][j] can be ex-
ploited by a dynamic-programming algorithm to compute
all the values Bc[i][j], for i ∈ [n] and j ∈ [m] ∪ {0}, in
O(nm2) time (i.e., O(m) to compute each cell Bc[i][j],
multiplied by the total number of cells, O(mn))1. Thus,
the overall execution of this dynamic-programming ap-
proach for all c ∈ Cv requires O((nm2) · (nm2)) =
O(n2m4) steps.

A pseudo-code of the procedure outlined above is given
in Algorithm 1 of Appendix H.

We observe that, under identical valuations, the car-
dinality of the set Cv is O(m2), as the value of each
connected bundle does not depend on the agent evaluat-
ing it. In this case, the complexity of the algorithm out-
lined in the proof of Theorem 3.4 decreases by a factor of
n. Moreover, since all the considered approximate envy-
freeness and equitability guarantees coincide under iden-
tical valuations, we obtain the following corollary as a di-
rect consequence of Theorems 3.3 and B.1 (restated above
as Theorem B.1).

1For i = n, it is sufficient to find the value Bc[n][j] for j = m
only, since the bundle assigned to agent n in the complete allocation is
either empty or must include the last item m. Nonetheless, for the sake
of simplicity, we compute all values Bc[n][j], as this does not impact
the asymptotic time complexity.

Corollary B.1. Under identical non-negative valuations,
EQ1Pc

g (or, equivalently, EF1Pc
g) allocations always ex-

ist and can be efficiently computed in polynomial time
O(n2m3).

Remark B.1. We observe that the EQ1Pc
g allocations A

considered in Theorem 3.4 (as well as that of Theorem
3.3) is well-ordered, that is, it assigns the left-most bun-
dle to agent 1, the second left-most bundle to agent 2,
and so forth. Anyway, the existence and computation of
EQ1Pc

g allocations can be easily generalized to accom-
modate any fixed ordering of the agents, that is, we can
decide in advance which agent is assigned the i-th left-
most bundle. Indeed, by Theorem 3.4, for any fixed order-
ing ρ : [n]→ [n] of the agents, we can compute in polyno-
mial time another EQ1Pc

g allocation that is well-ordered
w.r.t. the new agents order, that is, it assigns the left-most
bundle to agent ρ(1), the second left-most bundle to agent
ρ(2), and so forth.

18

C Missing Proofs from Section 3:
part on envy-freeness

Full details on the proof of Theorem 3.5
To show the existence of an EF1Pc

g allocation, we em-
ploy the same framework as in the approximate equitabil-
ity case, with minor modifications. Specifically, we use
the same triangulation T as in the previous case but equip
it with n distinct coloring functions L1, . . . , Ln, instead
of the single coloring function L used earlier.

Here, each vertex x ∈ V (T) corresponds to a partition
S̃(x) = (S̃1(x), . . . , S̃n(x)) of the interval [0,m], re-
ferred to as a fractional connected partition. This partition
divides the interval into n connected sub-intervals (frac-
tional connected bundles), arranged sequentially from the
left-most to the right-most. Each fractional bundle is tem-
porarily unassigned to any agent, unlike in the equitability
case (where the i-th left-most fractional bundle was auto-
matically assigned to agent i).

Let ṽi be the virtual valuation defined as in the equi-
tability case. For any i ∈ [n], consider a distinct coloring
function Li that assigns to each vertex x ∈ V (T) the in-
dex j of the bundle S̃j(x) in S̃(x) that maximizes the
virtual valuation ṽi(S̃j(x)) of agent i, with ties broken in
favor of non-empty bundles and, in case of further ties,
arbitrarily. Also in this case, each Li is a special coloring
function (since the empty bundle is the least valuable for
any agent).

By the Generalized Sperner’s Lemma (Theorem 3.2),
there exists at least one jointly fully-colored elementary
(n − 1)-simplex ∆∗ = conv(x∗

1, . . . ,x
∗
n) ∈ T under the

coloring functions L1, . . . , Ln. Consequently, by exploit-
ing the construction of these coloring functions, for any
i ∈ [n] and for some permutations σ, τ : [n]→ [n] (inde-
pendent on i), the fractional bundle indexed by τ(i) is the
most valuable bundle for agent i in the fractional partition
S̃(x∗

σ(i)) derived from the σ(i)-th vertex x∗
σ(i) of ∆∗, un-

der virtual valuation ṽi. Starting from the fractional parti-
tion S̃ := S̃(x∗

1) associated with the first vertex x∗
1 of ∆∗,

we use the same rounding procedure as in the equitabil-
ity case, to obtain a partition S = (S1, . . . , Sn) of [m]
made of integral connected bundles, referred to as con-
nected integral partition. The claims of Lemma 3.1 and
3.2 obviously apply to S̃, and can be restated as follows:

Lemma C.1. S is a connected integral partition.

Lemma C.2. For any h, i, j ∈ [n], the connected (in-
tegral) partition S satisfies v−i (Sj) ≤ ṽi(S̃j(x

∗
h)) ≤

v+i (Sj).

Now, we can determine the final connected (integral)
allocation A = (A1, . . . , An) by assigning, for each i ∈
[n], the bundle Sτ(i) from the connected partition S to
agent i (i.e., Ai := Sτ(i)). We can then prove Theorem
3.5, restated below for completeness:

Theorem C.1 (Statement of Theorem 3.5). Under non-
negative valuations, A is an EF1Pc

g allocation.

Proof. First of all, A is a connected allocation by
Lemma C.1, as it is obtained by permuting the bun-
dles of S trough permutation τ (Ai = Sτ(i) for any
i ∈ [n]). Now, we show the EF1Pc

g guarantee. By the
construction of the jointly fully-colored simplex ∆∗ =
conv(x∗

1, . . . ,x
∗
n) and the coloring functions L1, . . . , Ln,

we have that τ(i) is one of the indices j that maximize
the valuation ṽi(S̃j(x

∗
σ(i))), for any i ∈ [n] (i.e., the

τ(i)-th bundle of partition S̃(x∗
σ(i)) maximizes the val-

uation of agent i among all bundles of that partition).
Thus, for any i, j ∈ N , we have v+i (Ai) = v+i (Sτ(i)) ≥
ṽi(S̃τ(i)(x

∗
σ(i))) ≥ ṽi(S̃τ(j)(x

∗
σ(i))) ≥ v−i (Sτ(j)) =

v−i (Aj), where the second inequality follows from the
above observation, and the first and last inequalities fol-
low from Lemma 3.2. Since v+i (Ai) ≥ v−i (Aj) for any
i, j ∈ N , we conclude that A satisfies the EF1Pc

g condi-
tion, and thus the claim holds.

Remark C.1. As noted in Remark B.1, in the case of eq-
uitability one can decide in advance which agent is as-
signed the i-th leftmost bundle. However, unlike in that
case, for EF1Pc

g allocations this assignment cannot be
predetermined, since the ordering of agents to whom the
bundles are assigned from left to right is determined by
the jointly fully-colored simplex returned by the General-
ized Sperner’s Lemma in the proof of Theorem 3.5. This
constitutes the main obstacle preventing the extension of
the dynamic programming approach used for equitabil-
ity in Theorem 3.4 to compute EF1Pc

g allocations. Indeed,
such an approach would first require knowing the order-
ing of agents to whom the bundles are assigned from left

19

to right in the future EF1Pc
g allocation, and then apply-

ing a similar computational method as in Theorem 3.4 to
obtain such an EF1Pc

g allocation. With this respect, we
point out that, differently from the case of equitability, it
is not guaranteed that, for any agents ordering to whom
the bundles are assigned from left to right, there exists an
EF1Pc

g allocation consistent with that assignment.

20

D Missing Proofs from Section 4

Proof of Theorem 4.1 (Multi-coloring
Sperner’s Lemma)

We first assume, without loss of generality, that for any
vertex x located on the boundary of ∆, the condition
L(x) = {i ∈ [n] : x ∈ Fi} holds, and that |L(x)| = 1 for
any internal vertex x not located on the boundary. Indeed,
if the claim holds under this restriction, it also holds in the
more general case where L(x) ⊇ {i ∈ [n] : x ∈ Fi} for
boundary vertices x and |L(x)| ≥ 1 for the other vertices.

Let L be the standard coloring function associated with
the multi-coloring one L, that assigns to each vertex x ∈
V (T) the color L(x) = min{i ∈ L(x)}; we refer to L as
the minimal restriction of L. We will show, by induction
on n ≥ 2, that the number of fully-colored simplices with
respect to the minimal restriction L is odd, which implies
the existence of at least one such simplex. By the con-
struction of L, any fully-colored simplex with respect to
L is also fully-colored with respect to the original multi-
coloring function L, thereby proving the claim of the the-
orem.

Base Case (n = 2): In this case, ∆ is the 1-simplex
[v1,v2], whose 0-dimensional faces are the two endpoint
vertices v1 and v2. The triangulation T can be viewed as a
path consisting of vertices V (T), connected by edges that
correspond to the (contiguous) elementary 1-simplices
[x,y] of T . We have L(x) ∈ [2] for every x ∈ V (T).
Moreover, since L is special, and v1 (resp., v2) repre-
sents the (n − 2)-face opposite to v2 (resp., v1), it fol-
lows that L(v1) = 2 (resp., L(v2) = 1). Thus, since L
assigns colors in {1, 2} and the colors assigned by L to
the endpoints v1 and v2 are different, we immediately
have that the number of elementary 1-simplices [x,y]
with L(x) ̸= L(y) (i.e., those which are fully-colored
w.r.t. L) must be odd.

Inductive Step: Assume that the claim holds for k =
n− 1, and let us show it for k = n. Let F ′ =

⋃
i∈[n−1] Fi

be the union of all the (n − 2)-faces of ∆, except for the
n-th face. The remainder of the proof proceeds with the
following two sub-steps:

• Sub-step 1 (Recovering the inductive hypothesis):
We have that the triangulation T ′ induced on F ′ by T

is topologically equivalent2 to the triangulation of an
(n−2)-simplex (∆′ = conv(v′

1, . . . ,v
′
n−1). This is

established via a homeomprphism f that maps each
vertex vi to v′

i for i ∈ [n − 1], sends the vertex vn

into the interior of ∆′, and maps each (n − 3)-face
Fi ∩ Fn to an (n− 3)-face of ∆′. In particular, such
a homeomorphism f can be obtained by projecting
each point located on F ′ onto the hyperplane con-
taining the face Fn, parallely to the axis connecting
vertex vn to the barycenter v′

n of Fn. See Figure
5 for a visualization of the projection f in the case
n = 4.

Thus, we can topologically regard F ′ as an (n− 2)-
simplex ∆′ and interpret T ′ as its associated triangu-
lation.

Let L′ : V (T ′)→ 2[n−1] \{∅} be the multi-coloring
function that assigns to each vertex x ∈ V (T ′) the
set L(x) \ {n}, that is, the restriction of L to the
first n − 1 colors. By relying on the fact that L
is a special multi-coloring function for T , we have
that L′ is also a special multi-coloring function for
T ′, and its minimal restriction L′ coincides with the
minimal restriction L of L, when restricted to ver-
tices in V (T ′) (i.e., located on F ′). Thus, we can ap-
ply the inductive hypothesis to the triangulation T ′

and the multi-coloring function L′ on V (T ′), since
dim(∆′) = n − 1. This allows us to conclude that
the number of fully-colored elementary (n − 2)-
simplices in T ′ with respect to the coloring function
L′ and using colors from [n−1] is odd. Equivalently,
we have that the number of fully-colored elementary
(n− 2)-simplices in F ′, with respect to the coloring
function L and using colors from [n− 1], is odd.

• Sub-step 2 (From dimension n− 2 to n − 1 through
a parity argument on graphs): Let G be the undi-
rected graph whose nodes represent the elemen-
tary (n − 1)-simplices of ∆, with edges connecting
pairs of (n − 1)-simplices that share an (n − 2)-

2Given two topological spaces X,Y , a homeomorphism f : X → Y
is a bijective continuous function whose inverse is also continuous.
Two triangulations TX and TY of topological spaces X and Y , re-
spectively, are topologically equivalent if there exists a homeomorphism
f : X → Y that maps each simplex of TX to a simplex of TY , pre-
serving the adjacency relation, i.e., f(∆1 ∩ ∆2) = f(∆1) ∩ f(∆2)
for any simplices ∆1,∆2 ∈ TX .

21

dimensional face that is fully-colored with respect to
L using colors from [n − 1]. By leveraging the con-
struction of the edges, we see that no node in G has
a degree greater than 2. This means that G consists
of a union of undirected paths or cycles (excluding
isolated nodes). Consequently, the number of nodes
with degree 1 in G must be even. Moreover, we ob-
serve that a node has degree 1 in G if and only if it
corresponds to an elementary (n−1)-simplex of one
of the following types: (i) an almost fully-colored
(n − 1)-simplex on the boundary, where each color
i ∈ [n − 1] appears exactly once, except for one
color that appears twice, and that has a face touching
F ′; (ii) a fully-colored elementary (n − 1)-simplex
(where each color i ∈ [n] appears exactly once). The
simplices of type (i) are bijectively associated with
the elementary (n−2)-simplices established in Sub-
step 1, and thus they appear in an odd number. Since
the total number of nodes of degree 1 in G is even,
it follows that the number of nodes of type (ii), i.e.,
the desired fully-colored (n− 1)-simplices, must be
odd, and this concludes the proof of the theorem.

The Multi-coloring Sperner’s lemma, applied to an in-
stance with n = 3, along with part of its proof (in partic-
ular, Sub-step 2), is illustrated in Figure 4 of Appendix G.

Full Details on Existence of EQ1Pc
g alloca-

tions.
To show the existence of an EQ1Pc

g allocation, we employ
the same framework as in the case of non-negative valu-
ations, with minor modifications. We use the same trian-
gulation T as in that case, but we equip T with the multi-
coloring function L that assign to each vertex x ∈ V (T)
the set L(x) of indices j which maximize ṽj(Ãj(x)),
where ṽj is the virtual valuation defined as in Section 3.

Differently from the case of non-negative valuations,
under non-positive valuations the empty bundle is always
the best one for each agent. Thus, given i ∈ [n], since
each vertex x located on the (n − 2)-face Fi opposite
to vi corresponds to an allocation having its i-th bundle
empty, we have that i ∈ L(x). Then, L is a special multi-
coloring function and, by the Multi-coloring Sperner’s
lemma (Theorem 4.1), there exists an elementary (n−1)-
simplex ∆∗ = conv(x∗

1, . . . ,x
∗
n) that is fully-colored un-

der the multi-coloring function L. This means there ex-
ists a permutation σ : [n] → [n] such that i ∈ L(x∗

σ(i))

for each i ∈ [n]. Let Ã(x∗
1), . . . , Ã(x∗

n) be the sequence
of n fractional allocations determined from ∆∗ as in the
case of non-negative valuations (see Section 3). By lever-
aging the construction of L and the above sequence of
fractional allocations, we have that for each i ∈ [n], i is
one of the indices j that maximize ṽj(Ãj(x

∗
σ(i))) (that

is, the i-th bundle of allocation Ã(x∗
σ(i)) maximizes the

virtual valuation ṽj among all bundles Ãj(x
∗
σ(i)) of that

allocation). Thus, by exploiting the same reasoning as in
Theorem 3.3, we have that the integral connected alloca-
tion A obtained by rounding the first fractional allocation
Ã(x∗

1) as in Section 3, satisfies the desired approximate
equitability guarantees.

Theorem D.1. A is an EQ1Pc
g connected allocation, if

the agents’ valuations are non-positive.

Furthermore, by exploiting the same algorithmic
framework as in Theorem 3.4, we also obtain the follow-
ing computational result.

Theorem D.2. An EQ1Pc
g allocation for instances with

non-positive valuations can be found in polynomial time
O(n2m4).

If valuations are monotone non-increasing, there are
chores only. Thus, the EQ1Pc

g guarantee is equivalent
to the stronger equitability-up-to-one-chore-over-paths
(EQ1P), where each agent i can remove at most one outer
chore c from her own bundle Ai to obtain a valuation at
least as large as that achieved by each other agent. Then,
we obtain the following corollary of Theorem D.2:

Corollary D.1. An EQ1P allocation for instances with
monotone non-increasing valuations always exists and
can be found in polynomial time.

This existential and computational result complement
the result of Misra et al. [2021], that holds for monotone
non-decreasing valuations only.

Finally, analougsly to the case of non-negative valua-
tions, we have the following corollary of Theorem D.2
and a similar remark to Remark B.1.

22

Corollary D.2. Under identical non-positive valuations,
EQ1Pc

g (or, equivalently, EF1Pc
g) allocations always ex-

ist and can be efficiently computed in polynomial time
O(n2m3).

Remark D.1. Under non-positive valuations, for any
fixed ordering ρ : [n] → [n] of the agents, we can com-
pute in polynomial time another EQ1Pc

g allocation that is
well-ordered w.r.t. the new agents order, that is, it assigns
the left-most bundle to agent ρ(1), the second left-most
bundle to agent ρ(2), and so forth.

Full Details on Existence of EF1Pc
g alloca-

tions.

Before showing the existence of EF1Pc
g allocations, we

first provide another multi-coloring variant of Sperner’s
lemma, instantiated for the specific Kuhn’s triangulation,
but applied to n multi-coloring functions, as in the Gener-
alized Sperner’s Lemma (Theorem 3.2). Specifically, let
∆ = {x = (x1, . . . , xn−1) ∈ Rn−1 : 0 ≤ x1 ≤
x2 ≤ . . . ≤ xn−1 ≤ m} be the (n − 1)-simplex and
T be the related Kuhn’s triangulation as defined in Sec-
tion 3. Furthermore, let L1, . . . ,Ln be n special multi-
coloring functions of V (T), as defined in the previous
analysis of the EQ1Pc

g guarantee. An elementary (n− 1)-
simplex ∆∗ = conv(x∗

1, . . . ,x
∗
n) ∈ T is jointly fully-

colored under L1, . . . ,Ln if there exist two permutations
σ, τ : [n] → [n] such that τ(i) ∈ Li(x

∗
σ(i)) for any

i ∈ [n].

Theorem D.3 (Generalized Multi-coloring Sperner’s
Lemma). Let L1, . . . ,Ln be n special multi-coloring
functions of the Kuhn’s triangulation T of the (n − 1)-
simplex ∆. Then, there exists a jointly-fully-colored ele-
mentary (n − 1)-simplex ∆∗ ∈ T under multi-coloring
functions L1, . . . ,Ln.

Proof. Given two vertices x and y, a simple path P from
x to y in T is a sequence of adjacent elementary 1-
simplices of T connecting x and y, and its length is given
by the number of such simplices. Let Φ : V (T)→ [n] be
an auxiliary standard coloring function such that Φ(x) =
1 + (d(x, 0n−1) mod n), where d(x, y) is the length of
the shortest path connecting x and y, 0n−1 = (0, . . . , 0)
is the origin vertex, and “mod n” denote the remainder

operator modulo n. Let L be a new aggregated multi-
coloring function that assigns color L(x) := LΦ(x)(x)
to each vertex x ∈ V (T), where L1, . . . ,Ln are the input
special multi-coloring functions. We observe that, since
each Li is special, then L is special, too. Then, by rely-
ing on the standard Multi-coloring Sperner’s lemma (The-
orem 4.1), there exists an elementary (n − 1)-simplex
∆∗ = conv(x∗

1, . . . ,x
∗
n) ∈ T that is fully-colored un-

der L, i.e., there exists a permutation π : [n] → [n] such
that j ∈ L(x∗

π(j)) for any j ∈ [n].

It remains to show that L refers to a distinct multi-
coloring function Li at each distinct vertex x∗

σ(i), for
some permutation σ : [n] → [n]. Together with the fact
that ∆∗ is fully-colored w.r.t. L, this will imply that ∆∗

is jointly fully-colored w.r.t. the multi-coloring functions
L1, . . . ,Ln.

By construction of Φ, we have that Φ assigns a dis-
tinct color in [n] to each vertex of ∆∗. Indeed, for any
vertices x, y ∈ V (T), the distance d(x, y) between x
and y (used to describe Φ) can be equivalently defined as
the scaled Manhattan distance3 3

∑n−1
h=1 |xh − yh|. Fur-

thermore, by exploiting the structure of the elementary
(n − 1)-simplices in the Kuhn’s triangulation T and the
definition of Manhattan distance, we have that, given an
elementary (n− 1)-simplex of T , after an appropriate re-
ordering of its vertices, each vertex is at distance 1 from
the previous one according to the above scaled Manhattan
distance, and the i-th-vertex in this ordering is at distance
i− 1 from the first vertex. Thus, Φ attains distinct values
in [n] at each of the n vertices of ∆∗, then allowing to de-
fine a permutation σ : [n] → [n] such that Φ(x∗

σ(i)) = i

for any i ∈ [n− 1].
We recall that j ∈ L(x∗

π(j)) = LΦ(x∗
π(j)

)(x
∗
π(j)) holds

for any j ∈ [n]. Let τ := π−1 ◦ σ, where σ is the per-
mutation such that Φ(x∗

σ(i)) = i for any i ∈ [n − 1].
By using τ(i) in place of j in the above membership rela-
tion involvingL, we have τ(i) ∈ LΦ(x∗

π(τ(j))
)(x

∗
π(τ(i))) =

LΦ(x∗
σ(i)

)(x
∗
σ(i)) = Li(x

∗
σ(i)) for any i ∈ [n], where the

first equality holds by τ = π−1 ◦ σ and the last one holds
by Φ(x∗

σ(i)) = i. We conclude that ∆∗ is jointly fully-
colored under L1, . . . ,Ln.

3Given two vectors (x1, . . . , xk), (y1, . . . , yk) ∈ Rk , the Manhat-
tan distance between x and y is given by

∑k
h=1 |xh − yh|.

23

To establish the existence of an EF1Pc
g allocation, we

adopt the same framework as in the approximate equi-
tability case, with minor modifications. Specifically, we
use the same triangulation T as before but equip it with n
distinct multi-coloring functions, L1, . . . ,Ln (defined be-
low), instead of the single multi-coloring function L used
earlier.

As in the case of the approximate envy-freeness guar-
antee for non-negative valuations, each vertex x ∈
V (T) now corresponds to a fractional connected parti-
tion S̃(x) = (S̃1(x), . . . , S̃n(x)) of the interval [0,m],
where each fractional bundle is initially unassigned to any
agent (unlike in the equitability case). For any i ∈ [n],
we consider a distinct multi-coloring function Li that as-
signs to each vertex x ∈ V (T) the set Li(x) of indices
j corresponding to the bundles S̃j(x) that maximize the
valuation ṽi(S̃j(x)) of agent i, where ṽi is the virtual
valuation considered above. As in the case of equitabil-
ity for non-positive valuations, each Li is again a spe-
cial multi-coloring function, since the empty bundle is the
most valuable for any agent.

By Theorem D.3 (Generalized Multi-coloring
Sperner’s lemma), there exists at least one
jointly fully-colored elementary (n − 1)-simplex
∆∗ = conv(x∗

1, . . . ,x
∗
n) ∈ T under the coloring

functions L1, . . . ,Ln. Consequently, by exploiting
the construction of these coloring functions, for some
permutations σ, τ : [n] → [n] and for any i ∈ [n],
we have that τ(i) is one of the indices j maximizing
ṽi(S̃j(x

∗
σ(i))) (that is, the fractional bundle indexed by

τ(i) is the most valuable bundle for agent i in allocation
S̃(x∗

σ(i)), under virtual valuation ṽi). Then, we can
apply the same rounding procedure as in the case of
non-negative valuations (Section 3) to the partition S̃ to
obtain a connected integral allocation A = (A1, . . . , An)
of [m], obtained by assigning, for each i ∈ [n], the bundle
Sτ(i) from the connected partition S to agent i (i.e.,
Ai := Sτ(i)). Then, we obtain the following theorem,
analogous to Theorem 3.5:

Theorem D.4. Under non-positive valuations, A is an
EF1Pc

g allocation.

If valuations are monotone non-increasing, the EF1Pc
g

guarantee is equivalent to the stronger envy-freeness-up-
to-one-chore-over-paths (EF1P), where each agent i can

remove at most one outer chore c from her own bundle Ai

to obtain a valuation at least as large as that achieved for
the other bundles. Then, we obtain the following corol-
lary:

Corollary D.3. An EF1P allocation for instances with
monotone non-increasing valuations always exists.

This result complements the findings of Bilò et al.
[2022], Igarashi [2023], that hold for monotone non-
decreasing valuations only.

24

E Objective Valuations
We recall that, under objective valuations, any item x is
either a good or a chore (independently on the considered
agents and bundles); in such a case, we can partition M
into a set of goods G and a set of chores C, and we choose
arbitrarily how to classify dummy items that qualify as
both.

For the remainder of this section, we assume w.l.o.g.
that m ≥ n − 1. Indeed, the following remark explains
how to handle the case m < n− 1.

Remark E.1. If the initial instance I had n − 1 > m,
we could remove n − m − 1 arbitrary players, thereby
obtaining a new instance I ′ with n′ := m + 1 > 0 play-
ers. Let A′ be an allocation in I ′ that satisfies one of the
considered approximate equitability criteria.4 We observe
that the allocationA obtained fromA′ by assigning empty
bundles to all n −m − 1 excluded players also satisfies
the same criterion. Since I ′ has m items and m+ 1 play-
ers, at least one player i in A′ necessarily receives the
empty bundle. Therefore, when extending A′ to A, the
fairness guarantees established in A′ are preserved, as
the excluded players also receive empty bundles and can
be treated analogously to player i.

In light of this observation, any polynomial or pseudo-
polynomial algorithm for computing approximately equi-
table allocations in instances with m ≥ n − 1 can be
adapted to instances I with n − 1 > m by applying it to
the reduced instance I ′ with n′ = O(m) players. Conse-
quently, in this case, the dependence of the running time
on n can be replaced by a dependence on m = O(n).

In Algorithm 2 of Appendix H, we present a local-
search algorithm that returns an EQXc

g allocation in
pseudo-polynomial time under objective valuations; this
algorithm is a variant of the local-search framework of
Barman et al. [2024]. Algorithm 2 starts from an alloca-
tion assigning all items to the first agent. Then, it executes
either the while-loop at lines 4–7 if v1(M) > 0, or the
while-loop at lines 12–15 if v1(M) < 0, and simply re-
turns the initial allocation otherwise (i.e., if v1(M) = 0).
The former while-loop, referred to as good-moving, re-
peatedly moves goods from the bundle of some envied

4We note that these arguments do not, in general, apply under exact
or approximate envy-freeness.

agent (in terms of inequity) to the least valuable bundle.
The latter, referred to as chore-moving, repeatedly moves
chores from the bundle of some envious agent to the bun-
dle of the most envied one. Both loops terminate when the
EQXc

g condition is satisfied5.

Theorem E.1. Given an allocation instance I =
(N,M = G ∪ C, (vi)i∈N) with objective valuations,
the local-search algorithm returns an EQXc

g allocation in
pseudo-polynomial time O(Vmax · n ·m2), with Vmax :=
maxi∈N max{vi(G), |vi(C)|}.

Sketch of the proof. The full proof of the theorem is de-
ferred to Appendix F; here, we provide the main intuitions
only. If v1(M) = 0, the allocation returned by the al-
gorithm is trivially EQ, and then EQXc

g . If v1(M) > 0
or v1(M) < 0, one can first show that the violation of
the while-condition of each while-loop in the local-search
algorithm is equivalent to finding an EQXc

g allocation
(Lemma F.3 of Appendix F). By this observation, to prove
that the algorithm returns an EQXc

g allocation, it suffices
to show that the executed while-loop (good-moving or
chore-moving) terminates. To establish termination, we
use a potential function argument. Specifically, we define
two ad-hoc potential functions, one for each while-loop.
Each potential function depends only on the current allo-
cation, returns a triplet of values, and increases in every
iteration (refer to Lemma F.4 and F.5 of Appendix F), ac-
cording to a lexicographic order ≻ of the triplet values
(i.e., T1 ≻ T2 if and only if the first differing component
between triplets T1 = (x1, y1, z1) and T2 = (x2, y2, z2)
has a higher value in T1). Since each potential function is

5In the full proof, for completeness, we analyze both the cases
v1(M) > 0 and v1(M) < 0, corresponding to the execution of
the good-moving while-loop and the chore-moving while-loop, respec-
tively. Anyway, to handle the case v1(M) < 0, one could directly
appeal to a mirroring argument with respect to the case v1(M) > 0.
Indeed, consider a fair allocation instance with valuations v′i obtained
by multiplying the original valuations vi by −1. We observe that:
the case v′1(M) > 0 corresponds to v1(M) < 0; executing the
good-moving while-loop with respect to v′i is equivalent to executing
the chore-moving while-loop with respect to the original valuations vi
(since inequalities reverse, indices i, j are exchanged, and goods become
chores); and property (i) of EQXc

g under v′i is equivalent to property (ii)
of EQXc

g under vi. Thus, when v1(M) < 0, the ability of the good-
moving while-loop to compute allocations satisfying property (i) of the
EQXc

g guarantee under valuations v′i can be directly translated into the
ability of the chore-moving while-loop to compute allocations satisfying
property (ii) of the EQXc

g guarantee under the original valuations vi.

25

necessarily bounded (e.g., by the maximal triplet achiev-
able across all possible allocations), it follows that each
while-loop must terminate. For the good-moving while-
loop (i.e., case v1(M) > 0), we consider the potential
function Φ that assigns, to each allocation A, the triplet
(x(A), y(A), z(A)), such that x(A) is the minimum val-
uation in A, y(A) is minus the number of agents ob-
taining the minimum valuation, and z(A) is the number
of items allocated to such agents. For the chore-moving
while loop (i.e., case v1(M) < 0), we consider the po-
tential function Ξ that assigns, to each allocation A, the
triplet (x′(A), y′(A), z′(A)), such that x′(A) is minus the
maximum valuation in A, y′(A) is minus the number of
agents obtaining the maximum valuation, and z′(A) is the
number of items allocated to such agents.

To estimate the time complexity of the algorithm, we
observe that it is equal to the time required for each iter-
ation of the while-loops, multiplied by the total number
of iterations. The while-condition can be checked in time
O(m + n) = O(m), as it requires to check all bundles,
and all items for each bundle6.

To bound the number of iterations, we first observe that
the potential function increases at each iteration. Conse-
quently, the number of iterations is bounded by the max-
imum value of the potential functions Φ and Ξ, that is
O(Vmax · n · m) (as established in Lemma F.6 in Ap-
pendix F).

Thus, the overall time complexity is O(Vmax · n · m2)

By observing that, under monotone non-decreasing
(resp. non-increasing) valuations, property (i) (resp. (ii))
of the EQXc

g guarantee is equivalent to the stronger EQX
notion, we obtain the following corollary of Theorem E.1.

Corollary E.1. The local-search algorithm returns an
EQX allocation in pseudo-polynomial time, under mono-
tone (non-decreasing and non-increasing) valuations.

In the following, we present a greedy algorithm that
returns in polynomial time an EQ1 allocation under ob-
jective valuations (for the pseudo-code, see Algorithm 3
in Appendix F). This algorithm can be seen as a straight-
forward generalization of the greedy approach introduced

6O(m + n) = O(m) holds since we assumed w.l.o.g. that n =
O(m) (by Remark E.1 of Appendix E).

by Hosseini and Sethia [2025], which was specifically de-
signed for the case of objective additive valuations.

Starting from the empty allocation, the algorithm first
processes all goods, and repeatedly assigns each good (in
an arbitrary order) to the least valuable bundle of the cur-
rent iteration. Then, it processes all chores, and repeat-
edly assigns each chore to the most valuable bundle of the
current iteration. We observe that the initial local-search
algorithm clearly returns an EQ1 allocation but operates
in pseudo-polynomial time, whereas the greedy algorithm
typically runs faster, operating in polynomial time.

Theorem E.2. Given an allocation instance I =
(N,M = G ∪ C, (vi)i∈N) with objective valuations, the
greedy algorithm returns an EQ1 allocation in polyno-
mial time O(m log n).

Sketch of the proof. It can be shown by induction that the
partial allocation At obtained after assigning the first t
items is EQ1, and consequently, the final allocation A =
At is also EQ1. Full details are deferred to Appendix F.

Regarding the time complexity, the algorithm performs
at most O(m) item insertions. For each insertion, it iden-
tifies and updates either the least or the most valuable bun-
dle among n, which can be done in O(log n) time using a
heap-tree data structure. Therefore, the overall time com-
plexity is O(m log n).

Finally, we consider a variant of the above greedy al-
gorithm, called strongly-greedy algorithm, that is special-
ized for objective valuations that are also additive (for
the pseudo-code, refer to Algorithm 4 in Appendix F).
This algorithm operates like the standard greedy algo-
rithm, but in each iteration, when a good (or a chore) is
assigned to an agent, it selects the one that maximizes (or
minimizes) that agent’s valuation. Under objective addi-
tive valuations, the strongly-greedy algorithm returns an
EQXc

g allocation, ensuring stronger equity than the EQ1
guarantee provided by Hosseini and Sethia [2025] or the
standard greedy algorithm (Algorithm 3 in Appendix H).

Theorem E.3. Given an allocation instance I =
(N,M = G ∪ C, (vi)i∈N) with additive objective val-
uations, the strongly-greedy algorithm returns an EQXc

g

allocation in polynomial time O(mn logm).

Theorem E.3 can be shown in a manner similar to The-
orem E.2, with a sketch of the proof provided in Ap-
pendix F.

26

F Missing Proofs from Appendix E

Full Proof of Theorem E.1 - Correctness
We first show the correctness of the algorithm. By relying
on the two technical lemmas provided below (Lemmas F.1
and F.2), we will first show that the violation of the while-
condition of each while-loop is equivalent to finding an
EQXc

g allocation (Lemma F.3).

Lemma F.1. Under objective valuations, for any i ∈ N
and non-empty bundle S ⊆M such that S contains goods
(resp. chores) only, we have vi(S) ≥ 0 (resp. vi(S) ≤ 0).
Equivalently, if i and S satisfy vi(S) > 0 (resp. vi(S) <
0), then there exists at least one good (resp. one chore) in
S.

The proof of Lemma F.1 is straightforward and directly
follows from the definition of goods and chores.

Lemma F.2. Assume that v1(M) > 0 (resp. v1(M) < 0),
and let At = (At

1, . . . , A
t
n) denote the allocation ob-

tained after each iteration t ≥ 1 of the good-moving (resp.
chore-moving) while-loop, withA0 denoting the initial al-
location. Then, for any t ≥ 0, we have that At

1 contains at
least one good (resp. chore) and each non-empty bundle
At

h with h ̸= 1 contains only goods (resp. chores).

Proof of Lemma F.2. We first show the claim in the case
v1(M) > 0, and we proceed by induction on t ≥ 0. We
start with t = 0 (base case). We have v1(A0

1) = v1(M) >
0, since A0

1 = M and we are in the case v1(M) > 0.
Thus, by Lemma F.1, we have that A0

1 contains at least one
good. Since A0

h = ∅ for any h ̸= 1, the above property is
sufficient to establish the claim for t = 0.

Now, assume that the claim holds for an arbitrary t (in-
ductive hypothesis), and let us show it for t + 1 (induc-
tive step). For all agents h such that At

h = At+1
h (i.e.,

whose bundle remains unchanged in iteration t + 1) the
claim trivially holds by the inductive hypothesis. Next,
we focus on agents who either receive or lose one good
in each iteration t + 1. Let h be any such an agent. If
h ̸= 1, by the inductive hypothesis, we have that At

h

contains goods only. So, if h receives a good, then At+1
h

still contains good only; if h loses a good, then At+1
h , if

not empty, also contains goods only. Now, assume that
h = 1. By the inductive hypothesis, we have that At

1 con-
tains at least one good. If agent 1 receives a good in iter-
ation t + 1, we then have that At+1

1 contains at least one

good as well. If agent 1 loses a good in iteration t + 1,
by lines 4 and 5 of Algorithm 2, there exist an agent i
and a good g ∈ At

1 such that v1(At
1 \ {g}) > vi(A

t
i).

We derive v1(A
t+1
1) = v1(A

t
1 \ {g}) > vi(A

t
i) ≥ 0,

where the last inequality holds since At
i contains goods

only (by Lemma F.1 and the inductive hypothesis). Then,
since v1(A

t+1
1) > 0, Lemma F.1 implies that At+1

1 con-
tains at least one good. We conclude that the inductive
step holds for any agent h, and the claim follows in the
case v1(M) ≥ 0.

For the case v1(M) < 0, the claim can be shown by
using an argument symmetric to that of the previous case.
Let v′i be the valuation obtained by multiplying the value
of vi by minus one, that is, v′i(S) = −vi(S) for any i ∈ N
and S ⊆ M . We observe that v′1(M) = −v1(M) > 0.
Thus, under the valuations v′i, the previous analysis im-
plies that, for any t ≥ 0, the bundle At

1 contains at least
one good, while each non-empty bundle At

h with h ̸= 1
contains only goods. Returning to the original valuations
vi, this implies that, for any t ≥ 0, At

1 contains at least
one chore, while each non-empty bundle At

h with h ̸= 1
contains only chores.

Lemma F.3. Assume that v1(M) > 0 (resp. v1(M) <
0). If A is an allocation found by the good-moving (resp.
chore-moving) while-loop that violates the corresponding
while-condition, then A is EQXc

g .

Proof of Lemma F.3. We first assume that v1(M) > 0.
We will show that, if the while-condition is violated, prop-
erty (i) of the EQXc

g guarantee is satisfied for any i ∈ N
(that is, the inequity an agent i feels toward the bundle as-
signed to another agent j can be eliminated by removing
any good from j’s bundle). To establish this, it suffices to
show that every non-empty bundle in A = (A1, . . . , An)
contains at least one good, as the remaining part of prop-
erty (i) of the EQXc

g guarantee is ensured by the violation
of the while-condition. This fact is immediately guaran-
teed by Lemma F.2, and thus the claim follows.

To show the claim when v1(M) < 0, we use an ar-
gument symmetric to the previous case. Specifically, we
will show that, if the while-condition is violated, prop-
erty (ii) of the EQXc

g guarantee is satisfied for any i ∈ N
(that is, the inequity an agent i feels toward the bundle as-
signed to another agent j can be eliminated by removing
any chore from i’s bundle). To establish this, it suffices to

27

show that every non-empty bundle in A = (A1, . . . , An)
contains at least one chore, as the remaining part of prop-
erty (ii) of the EQXc

g guarantee is ensured by the violation
of the while-condition. Again, this fact is guaranteed by
Lemma F.2, thus proving the claim.

We now move to the main part of the proof. If v1(M) =
0, the allocation returned by the algorithm assigns all
items to the first agent. Such an allocation is trivially EQ,
and therefore EQXc

g , as each agent receives zero value.
Thus, in the remainder of the proof we focus on the cases
v1(M) > 0 and v1(M) < 0. By Lemma F.3, to prove that
Algorithm 2 returns an EQXc

g allocation in these cases,
it suffices to show that the executed while-loop (good-
moving or chore-moving) terminates. To establish termi-
nation, we use a potential function argument. Specifically,
we define two ad-hoc potential functions, one for each
while-loop. Each potential function depends only on the
current allocation, returns a triplet of values, and increases
in every iteration, following a lexicographic order of the
triplet values. Since each potential function is necessarily
bounded (e.g., by the maximal triplet achievable across all
possible allocations), it follows that the while-loop must
terminate. We treat separately the cases v1(M) > 0 and
v1(M) < 0, each corresponding to a distinct potential
function, though the proof arguments are analogous.

Case v1(M) > 0: We first consider the case v1(M) >
0. Let Φ be the potential function that assigns, to each al-
locationA, the triplet (x(A), y(A), z(A)), where x(A) =
mini∈N vi(Ai), y(A) = −|{i ∈ N : vi(Ai) = x(A)}|
and z(A) =

∑
i∈N :vi(Ai)=x(A) |Ai|. Specifically, x(A)

is the minimum valuation in A, −y(A) is the number
of agents obtaining the minimum valuation, and z(A) is
the number of items allocated to such agents. We con-
sider the total order over triplets such that (x1, y1, z1) ≻
(x2, y2, z2) iff (x1, y1, z1) is lexicographically higher
than (x2, y2, z2), i.e., if x1 > x2 ∨ (x1 = x2 ∧ y1 >
y2)∨ (x1 = x2 ∧ y1 = y2 ∧ z1 > z2). Assume by contra-
diction that the good-moving while-loop never terminates.
LetAt denote the allocation computed after each iteration
t ≥ 0, where A0 denotes the initial allocation, and t = 0
denotes the state prior to the first iteration. We have the
following lemma:

Lemma F.4. Assume that v1(M) > 0 and let t ≥ 0 be
an iteration of the good-moving while-loop such that the
allocation At obtained at the end of the iteration satis-
fies again the while-condition. Then, we have Φ(At+1) ≻
Φ(At).

Proof of Lemma F.4. Let t ≥ 0 be the iteration satisfying
the hypothesis of the lemma. Then, there exist two agents
i, j ∈ N and a good g ∈ Aj such that i has the least
valuable bundle in At, vj(At

j \ {g}) > vi(A
t
i), At+1 is

obtained from At by moving good g from the bundle of j
to the bundle of i, and the other bundles do not vary. One
of the following three cases can occur:

• (i) vi(A
t+1
i) = vi(A

t
i): By vj(A

t+1
j) = vj(A

t
j \

{g}) > vi(A
t
i) = vi(A

t+1
i), the bundle of i (resp.

j) is (resp. is not) the least valuable bundle in both
At and At+1. Thus, the value of the least valuable
bundle does not vary, i.e., x(At+1) = x(At), the
number of least valuable bundles remains the same,
i.e., −y(At+1) = −y(At), but the overall cardinal-
ity of the least valuable bundles increases by one,
i.e., z(At+1) = z(At) + 1 > z(At) (since |At+1

i | =
1+|At

i|, and the other eventual least valuable bundles
do not change). We conclude that Φ(At+1) ≻ Φ(At)
holds in case (i).

• (ii) vi(A
t+1
i) > vi(A

t
i) and −y(At) > 1: Given

an arbitrary agent h ̸= i possessing one of the least
valuable bundles inAt, we have vi(At

i) = vh(A
t
h) =

vh(A
t+1
h), where the last equality holds since the

bundle of h does not vary in iteration t + 1; further-
more, such an agent h ̸= i exists, since the number
of least valuable bundles in At is −y(A) > 1. Then,
by vj(A

t+1
j) = vj(A

t
j \ {g}) > vi(A

t
i) = vh(A

t+1
h)

and vi(A
t+1
i) > vi(A

t
i) = vh(A

t+1
h), the follow-

ing facts hold: the bundle of j is not the least valu-
able bundle in both At and At+1; the bundle of i
is the least valuable bundle in At but not in At+1;
the bundle of h is the least valuable bundle in both
At and At+1. By the arbitrariness of the choice of
agent h ̸= i possessing one of the least valuable
bundles in At, we conclude that the minimum value
x(At+1) among all bundles in At+1 continues to
be equal to x(At) = vi(A

t
i), and is achieved by

all agents h obtaining such value in At but i, i.e.,
−y(At+1) = −y(At) − 1 ≥ 1. We conclude that

28

x(At+1) = x(At) and y(At+1) = y(At) + 1 >
y(At), that is, Φ(At+1) ≻ Φ(At) holds in case (ii).

• (iii) vi(At+1
i) > vi(A

t
i) and −y(At) = 1: Since the

number of least valuable bundles inAt is −y(At) =
1, we have that At

i is the unique bundle minimizing
the valuation inAt. Then, by vi(A

t+1
i) > vi(A

t
i) and

vj(A
t+1
j) = vj(A

t
j \ {g}) > vi(A

t
i), we necessar-

ily have that that the minimum valuation x(At+1) in
At+1 is strictly higher than the minimum valuation
x(At) = vi(A

t
i) in At, that is, Φ(At+1) ≻ Φ(At)

holds in case (iii).

In any case, we have Φ(At+1) ≻ Φ(At), thus showing
the claim.

Under the hypothesis of non-termination of the good-
moving while-loop, there exists at least one allocation that
is visited twice. In other words, there are at least two it-
erations t, t′ ≥ 0 with t < t′ such that At = At′ , and
hence Φ(At) = Φ(At′). Thus, by this observation and
Lemma F.4, we have Φ(At) = Φ(At′) ≻ Φ(At′−1) ≻
. . . ≻ Φ(At+1) ≻ Φ(At), that leads to the contra-
diction Φ(At) ≻ Φ(At). We conclude that the good-
moving while-loop necessarily terminates, and then, by
Lemma F.3, it returns an EQXc

g allocation if v1(M) > 0.

Case v1(M) < 0: Now, let us consider the case
v1(M) < 0. Let Ξ be the potential function that assigns,
to each allocation A, the triplet (x′(A), y′(A), z′(A)),
where x′(A) = −maxi∈N vi(Ai), y′(A) =
−|{i ∈ N : vi(Ai) = −x′(A)}| and z′(A) =∑

i∈N :vi(Ai)=−x′(A) |Ai|. Specifically, −x′(A) is the
maximum valuation in A, −y′(A) is the number of
agents obtaining the maximum valuation, and z′(A)
is the number of items allocated to such agents. Let
≻ be the lexicographic order among triplets defined
above. Assume by contradiction that the chore-moving
while-loop never terminates. Let At denote the allocation
computed after each iteration t ≥ 0, where A0 denotes
the initial allocation, and t = 0 denotes the state prior
to the first iteration. We have the following lemma (the
proof has an argument symmetric to that of Lemma F.4):

Lemma F.5. Assume that v1(M) < 0 and let t ≥ 0 be
an iteration of the chore-moving while-loop such that the

allocation At obtained at the end of the iteration satis-
fies again the while-condition. Then, we have Ξ(At+1) ≻
Ξ(At).

Proof of Lemma F.5. Let t ≥ 0 be the iteration satisfying
the hypothesis of the lemma. Then, there exist two agents
i, j ∈ N and a chore c ∈ Ai such that j has the most
valuable bundle in At, vi(At

i \ {c}) < vj(A
t
j), At+1 is

obtained from At by moving chore c from the bundle of i
to the bundle of j, and the other bundles do not vary. One
of the following three cases can occur:

• (i) vj(A
t+1
j) = vj(A

t
j): By vi(A

t+1
i) = vi(A

t
i \

{c}) < vj(A
t
j) = vj(A

t+1
j), the bundle of j (resp.

i) is (resp. is not) the most valuable bundle in both
At and At+1. Thus, the value of the most valu-
able bundle does not vary, i.e., x′(At+1) = x′(At),
the number of most valuable bundles remains the
same, i.e., −y′(At+1) = −y′(At), but the overall
cardinality of the most valuable bundles increases
by one, i.e., z′(At+1) = z′(At) + 1 > z′(At)
(since |At+1

j | = |At
j | + 1, and the other eventual

most valuable bundles do not vary). We conclude
that Ξ(At+1) ≻ Ξ(At) holds in case (i).

• (ii) vj(A
t+1
j) < vj(A

t
j) and −y′(At) > 1: Given

an arbitrary agent h ̸= j possessing one of the
most valuable bundles in At, we have vj(A

t
j) =

vh(A
t
h) = vh(A

t+1
h), where the last equality holds

since the bundle of h does not vary in iteration t+1;
furthermore, such an agent h ̸= j exists, since the
number of most valuable bundles inAt is−y′(A) >
1. Then, by vi(A

t+1
i) = vi(A

t
i \ {c}) < vj(A

t
j) =

vh(A
t+1
h) and vj(A

t+1
j) < vj(A

t
j) = vh(A

t+1
h), the

following facts hold: the bundle of i is not the most
valuable bundle in both At and At+1; the bundle of
j is the most valuable bundle in At but not in At+1;
the bundle of h is the most valuable bundle in both
At and At+1. By the arbitrariness of the choice of
agent h ̸= j possessing one of the most valuable
bundles in At, we conclude that the maximum value
−x′(At+1) among all bundles in At+1 continues to
be equal to −x′(At) = vj(A

t
j), and is achieved by

all agents h obtaining such value in At but j, i.e.,
−y′(At+1) = −y′(At) − 1 ≥ 1. We conclude that
x′(At+1) = x′(At) and y′(At+1) = y′(At) + 1 >
y′(At), that is, Ξ(At+1) ≻ Ξ(At) holds in case (ii).

29

• (iii) vj(A
t+1
j) < vj(A

t
j) and −y′(At) = 1:

Since the number of most valuable bundles in At

is −y′(At) = 1, we have that At
j is the unique

bundle maximizing the valuation in At. Then, by
vj(A

t+1
j) < vj(A

t
j) and vi(A

t+1
i) = vi(A

t
i \ {c}) <

vj(A
t
j), we necessarily have that that the maximum

valuation −x′(At+1) in At+1 is strictly lower than
the maximum valuation −x′(At) = vj(A

t
j) in At,

that is, Ξ(At+1) ≻ Ξ(At) holds in case (iii).

In any case, we have Ξ(At+1) ≻ Ξ(At), thus showing the
claim.

Under the hypothesis of non-termination of the chore-
moving while-loop, there are two iterations t, t′ ≥ 0 with
t < t′ such that At = At′ , that is, Ξ(At) = Ξ(At′).
Thus, as in the previous case, we have Ξ(At) = Ξ(At′) ≻
Ξ(At′−1) ≻ . . . ≻ Ξ(At+1) ≻ Ξ(At), that leads to
the contradiction Ξ(At) ≻ Ξ(At). We conclude that
the chore-moving while-loop necessarily terminates, and
then, by Lemma F.3, it returns an EQXc

g allocation in case
v1(M) < 0, too.

Full Proof of Theorem E.1 - Complexity

The complexity of Algorithm 2 is proportional to the max-
imum number of iterations performed by the while-loops,
multiplied by the number of steps required to check the
while-condition.

The while-condition can be checked in time O(m +
n) = O(m), as it requires to check all bundles, and all
items for each bundle.

The number of iterations of the while-loops is bounded
by the maximum number of increases that the potential
functions in Lemmas F.4 and F.5 can undergo, which is
O(Vmax · n ·m), by the following lemma:

Lemma F.6. The number of iterations of each while-loop
(good-moving and chore-moving) is at most O(Vmax · n ·
m).

Proof of Lemma F.6. by Lemma F.4, the potential func-
tion Φ lexicographically increases after each iteration.
Thus, as Φ returns a triplet in the set [0,maxi∈N vi(G)]×
{−n, . . . ,−1} × [m], we have that after at most
maxi∈N vi(G) · n · m ≤ Vmax · n · m iterations the

good-moving while loop necessarily terminates. Regard-
ing the chore-moving while-loop, Lemma F.5 implies that
the potential function Ξ lexicographically increases af-
ter each iteration. Again, as Ξ returns a triplet in the set
[0,maxi∈N |vi(C)|]×{−n, . . . ,−1}× [m], we have that
after at most maxi∈N |vi(C)| · n · m ≤ Vmax · n · m
iterations the chore-moving while loop necessarily termi-
nates.

We conclude that the complexity of Algorithm 2 is
O(Vmax · n ·m2).

Full Proof of Theorem E.2

We first focus on the correctness of the algorithm. Let
At denote the partial allocation obtained after assigning
t items. By exploiting the greedy choice of the algorithm,
it can be shown by induction on t ≥ 0 that each partial
allocation At is EQ1.

For t = 0 the claim trivially holds. Assume that the
claim holds for iteration t, and let us show it for t + 1
(inductive step). To prove the EQ1 guarantee, it is suffi-
cient showing that, given i, j ∈ N such that vi(At+1

i) <
vj(A

t+1
j), vi(At+1

i \ {x}) ≥ vj(A
t+1
j \ {x}) holds for

some item x ∈ Ai ∪ Aj . Let i, j be two distinct agents
such that vi(At+1

i) < vj(A
t+1
j). If the item assigned at

step t + 1 is a good, denoted by g, it is assigned to the
agent h having the lowest valuation in At. If h = j, we
have that vi(At+1

i) = vi(A
t
i) ≥ vh(A

t
h) = vj(A

t
j) =

vj(A
t+1
j \ {g}), where the inequality holds by the min-

imality of vh(A
t
h). If h ̸= j, the bundle assigned to j

remains unchanged after iteration t + 1 and the bundle
assigned to i either remains unchanged (case h /∈ {i, j})
or receives an additional good g (case h = i). By the in-
ductive hypothesis, there exists x ∈ At

i ∪ At
j such that

vi(A
t
i \ {x}) ≥ vj(A

t
j \ {x}). Thus, by the previous ob-

servations, we have vi(A
t+1
i \ x) ≥ vi(A

t+1
i \ {x, g}) =

vi(A
t
i \ {x}) ≥ vj(A

t
j \x) = vj(A

t+1
j \x), and therefore

the EQ1 guarantee continues to hold in At+1.
Now, assume that the item assigned in iteration t+1 is

a chore, denoted by c. In such a case, c is assigned to the
agent h having the highest value in the current iteration. If
h = i, we have that vi(At+1

i \{c}) = vi(A
t
i) = vh(A

t
h) ≥

vj(A
t
j) = vj(A

t+1
j), where the inequality holds by the

maximality of vh(At
h). If h ̸= i, the bundle assigned to

30

i remains unchanged after iteration t + 1 and the bundle
assigned to j either remains unchanged (case h /∈ {i, j})
or receives an additional chore c (case h = j). By the in-
ductive hypothesis, there exists x ∈ At

i ∪ At
j such that

vi(A
t
i \ {x}) ≥ vj(A

t
j \ {x}). Thus, by the previous ob-

servations, we have vi(A
t+1
i \ {x}) = vi(A

t
i \ {x}) ≥

vj(A
t
j \ {x}) = vj(A

t+1
j \ {x, c}) ≥ vj(A

t+1
j \ {x}).

In any case, At+1 is EQ1, and this shows the inductive
step. We conclude that each allocation At, and a fortiori
the final allocation A = Am obtained after all items have
been assigned, satisfies EQ1.

Regarding the time complexity, we observe that the al-
gorithm performs at most O(m) item insertions. During
each insertion, it identifies and updates either the least or
the most valuable bundle among n. This operation can be
executed in O(log n) time using a heap-tree data struc-
ture, that can be preliminary constructed in time O(n).
Thus, the overall running time is O(m logn + n) =
O(m log n)7.

Proof of Theorem E.3
We first show the correctness of the algorithm. LetAt de-
note the partial allocation obtained after the assignment
of t items. Mimicking the proof of Theorem E.2, one can
easily show by induction on t ≥ 0 that At satisfies the
following approximate equity guarantee: for any i, j ∈ N
such that vi(A

t
i) < vj(A

t
j), we have vi(A

t
i \ {x}) ≥

vj(A
t
j \ {x}), where x is the last chore assigned to At

i

if At
i contains at least one chore, and x is the last good

assigned to At
j otherwise. By the greedy selection of each

agent and the imposed ordering of items, if bundle At
j

(resp. At
i) contains at least one good (resp. chore), the

last good (resp. chore) assigned to the bundle is the least
(resp. most) valuable good (resp. chore) within the bun-
dle. This fact, combined with above approximate equity
guarantee, implies the following: for any i, j ∈ N such
that vi(At

i) < vj(A
t
j), we have vi(A

t
i \ {x}) ≥ vj(A

t
j)

for any chore x ∈ At
i if At

i contains at least one chore, and
vi(A

t
i) ≥ vj(A

t
j \ {x}) for any good x ∈ At

j otherwise.
This final approximate equity guarantee ensures that ev-
ery allocationAt is EQXc

g , and, in particular, that the final
allocation A := Am also satisfies the EQXc

g guarantee.

7O(m logn + n) = O(m logn) holds since we assumed w.l.o.g.
that m ≥ n− 1.

Regarding the complexity, the algorithm can be imple-
mented by creating two heap-tree data structures that keep
track of the agent with the minimum and maximum valu-
ation (this can be done in time O(n)), and, for each agent
i ∈ [n], two heap-tree data structures that keep track of
the best good and the worst chore (this can be done in time
O(mn)). Excluding the above initialization, the execution
time of the algorithm is proportional to the number of iter-
ations, i.e., m, multiplied by the complexity of each itera-
tion. To execute each iteration, the algorithm must find the
agent i having the minimum or maximum valuation, and
determine the best available good or the worst available
chore for i. Using the aforementioned heap-trees, these
operations can be executed in time O(logn+n logm) per
iteration: O(log n) to find the agent maximizing or min-
imizing the valuation, O(logm) to extract the best good
or worst chore and O(n logm) to update the n heap-trees
associated with the agents (in particular, to ensure that
items already extracted in other heaps are treated as un-
usable in each heap). Therefore, the overall running time
is O(n+mn+m(logn+ n logm)) = O(mn logm).

31

G Missing Figures

Figure 1

(a)

v2 v3

v1

(b)

x1

x2

v3

v1v2

Figure 1: The figure on the left (a) illustrates an application of Sperner’s
Lemma to a triangulation T of a 2-simplex ∆ = conv(v1,v2,v3). The
coloring function assigns a color from set {1 (Red), 2 (Green), 3 (Blue)}
to each vertex x ∈ V (T), and it is special. Specifically, for each i ∈ [3],
the color i does not appear on the 1-face of ∆ that does not contain vi

(i.e., on the edge opposite to vertex vi). Sperner’s Lemma guarantees
the existence of an odd number of fully-colored simplices. In this case,
there are three such simplices (that is, there exists at least one such sim-
plex), and they are highlighted in gray. On the right (b), we show Kuhn’s
triangulation of the 2-simplex {(x1, x2) : 0 ≤ x1 ≤ x2 ≤ 3}, which
is based on an allocation instance with n = 3 agents and m = 3 items.
The colors are assigned to vertices based on the special coloring L de-
rived from an arbitrary non-negative virtual valuation functions. One of
the fully-colored elementary (n−1)-simplices in T , whose existence is
guaranteed by Sperner’s Lemma, is highlighted in gray.

Figure 2

2

1

3 ← Ã(x∗
1) = Ã(x∗

σ(3))

← Ã(x∗
2) = Ã(x∗

σ(1))

← Ã(x∗
3) = Ã(x∗

σ(2))

Figure 2: The figure represents the fractional allocations
Ã(x∗

1), Ã(x∗
2), Ã(x∗

3) associated with the vertices x∗
1,x

∗
2,x

∗
3

of the fully-colored simplex ∆∗ in Figure 1(b) (highlighted in gray),
which are colored blue (label 3), red (label 1), and green (label 2)
according to the coloring function L; the permutation σ : [3] → [3]

such that L(xσ(i)) = i is defined by (1, 2, 3)
σ−→ (2, 3, 1). The

integral items are represented by ellipses, the fractionality levels of
each item (integral, 1-fractional, 2-fractional) are determined by the
gray vertical lines, that cut each item in three parts, and the knives
that determine the fractional allocations are represented by the black
triangles. In such example, as indicated by the vertex colors, the virtual
valuation determining L is maximized by the third (resp. first, resp.
second) fractional bundle from the left, of the allocation associated with
the blue (resp. red, resp. green) vertex of ∆∗, i.e., x∗

1 (resp. x∗
2 , resp.

x∗
3). Finally, as an illustrative example of left-first or right-first bundles,

we observe that the central bundle is right-first in ∆∗.

32

Figure 3

1:
2(i): 2(ii):

3:

4:
5(i): 5(ii):

6(i): 6(ii):

7:
8(i): 8(ii):

9:

aj ≡ 0 (LV)

aj ≡ 1 (BV)

aj ≡ 2 (RV)

Figure 3: Given j ∈ [n], we describe how the fractional bundle Ãj =
[aj , bj] of the main allocation of ∆∗ can be rounded to obtain the in-
tegral bundle Aj in each of the following nine cases, assuming that
Aj+1, . . . , An have already been determined:
1: aj ≡ 0, bj ≡ 0: Aj ← Ja−j , b−j K;

2: aj ≡ 0, bj ≡ 1: (i) Aj ← Ja−j , b−j K if b+j ∈ Aj+1, and (ii)

Aj ← Ja−j , b+j K if b+j ̸∈ Aj+1;

3: aj ≡ 0, bj ≡ 2: Aj ← Ja−j , b+j K;

4: aj ≡ 1, bj ≡ 0: Aj ← Ja−j , b−j K;

5: aj ≡ 1, bj ≡ 1: (i) Aj ← Ja−j , b−j K if b+j ∈ Aj+1, and (ii)

Aj ← Ja+j , b+j K if b+j ̸∈ Aj+1;

6: aj ≡ 1, bj ≡ 2: (i) Aj ← Ja+j , b+j K if Aj is left-first, and (ii)

Aj ← Ja−j , b+j K if Aj is right-first;

7: aj ≡ 2, bj ≡ 0: Aj ← Ja+j , b−j K;

8: aj ≡ 2, bj ≡ 1: (i) Aj ← Ja+j , b−j K if b+j ∈ Aj+1, (ii)

Aj ← Ja+j , b+j K if b+j ̸∈ Aj+1;

9: aj ≡ 2, bj ≡ 2: Aj ← Ja+j , b+j K.
The figure illustrates each of the nine cases as follows: each item and its
three associated fractionality levels are represented by an ellipse divided
into three parts (similarly to Figure 2 in Appendix G); the two black tri-
angles in each case represent the positions (aj and bj) of the two knives
that determine the j-th fractional bundle Ãj = [aj , bj] (by possibly
cutting the two board items of the considered bundle); the red rectangle
encloses all items that are fully included in the j-th bundle Aj of the
rounded (integral) allocationA; the right-hand item, when marked with
crossed lines, indicates that it was included in bundle Aj+1 during the
previous step of the rounding procedure; the blue circle on the left (resp.
right) knife indicates that bundle [aj , bj] is left-first (resp. right-first) in
∆∗.

Figure 4

v2 v3

v1

(a)
v′
2 v′

3 v′
1

(b)

Figure 4: The figure on the left (a) illustrates an application of the
Multi-coloring Sperner’s lemma to a triangulation T of a 2-simplex
∆ = conv(v1,v2,v3). The multi-coloring function L assigns a non-
empty subset from {1 (Red), 2 (Green), 3 (Blue)} to each vertex
x ∈ V (T), and it is special; furthermore, in this specific case, L sat-
isfies the assumption done w.l.o.g. in the proof of Theorem 4.1, that
is: L(x) = {i ∈ [3] : x ∈ Fi} holds for any vertex x located on
the boundary of ∆, and |L(x)| = 1 holds for any internal vertex x
not located on the boundary. The four gray triangles represent the fully-
colored simplices in T (w.r.t. the multi-coloring functionL); we observe
that, differently from the standard Sperner’s lemma, their number is not
necessarily odd.
The minimal restriction L : V (T) → [3] of L, as defined in the proof
of Theorem 4.1, assigns the same color as L when that color is unique,
and assigns an internal color when it is not (i.e., Green for v1, and Red
for v2 and v3).
The figure on the right (b) illustrates the 1-simplex ∆′ obtained from
the instance of figure (a), following the steps outlined in the proof
of Theorem 4.1. ∆′ is homeomorphic to the topological space F ′ =
[v2,v3] ∪ [v2,v3] obtained by the union of the 1-dimensional faces
[v2,v3] and [v3,v1] of ∆. The figure also illustrates the triangulation
(equivalent to) T ′ and the vertices of V (T ′) are colored following the
minimal restriction L of L.
Finally, the two yellow paths connecting some elementary 2-simplices in
the left figure (a) form the graph G = (V,E) used in the proof of The-
orem 4.1 to establish the existence of an odd number of fully-colored
2-simplices under the minimal restriction L, namely, the three gray tri-
angles filled with black lines. These triangles are also fully colored with
respect to the multi-coloring function L; we observe that, in this case,
there are four such triangles, which are shown in gray.

33

Figure 5

v3 v2

v1

v4

f

v′
4

v′
3 v′

2

v′
1

v′
4f

Figure 5: The figure illustrates the projection f , where ∆ is a 3-simplex.
The left image shows the original simplex ∆, along with the topolog-
ical space of F ′ = F1 ∪ F2 ∪ F3. Specifically, the 2-face F4 =
conv(v1,v2,v3) opposite to v4 is represented with a yellow filling,
while the other 2-faces F1, F2, F3 (i.e., those constituting F ′) are filled
with light gray. The right image depicts the 2-simplex ∆′, which is ob-
tained by applying the projection f of F ′ onto F4. The red arrow on the
left indicates the axis and orientation associated with the projection.

34

H Pseudo-code of the Algorithms

Algorithm 1: Dynamic Programming Algorithm (for
Non-negative Valuations).
Input: An allocation instance I = (N,M, (vi)i∈N) with
non-negative valuations.
Output: An EQ1Pc

g allocation.
1: Initialize a set of integers Cv ← {0};
2: for i = 1, . . . , n do
3: for l = 1, . . . ,m do
4: for j = 1, . . . , a do
5: c← vi(Jl, jK) and add c to Cv;
6: end for
7: end for
8: end for
9: for c ∈ Cv do

10: Initialize a {1, . . . , n}×{0, . . . ,m} boolean matrix
B, setting all entries to FALSE;

11: for j = 0, . . . ,m do
12: if v+1 (J1, jK) ≥ c ≥ v−1 (J1, jK) then
13: B[1][j]←TRUE;
14: end if
15: end for
16: for i = 2, . . . , n do
17: for j = 0, . . . ,m do
18: for ℓ = 1, . . . , j + 1 do
19: if v+i (Jℓ, jK) ≥ c ≥ v−i (Jℓ, jK) and

B[i− 1][ℓ− 1] == TRUE then
20: B[i][j]←TRUE;
21: break;
22: end if
23: end for
24: end for
25: end for
26: if B[n][m] ==TRUE then
27: break;
28: end if
29: end for
30: Initialize A = (A1, . . . , An) arbitrarily;
31: j ← m;
32: for i = n, . . . , 2 do
33: for ℓ = 1, . . . , j + 1 do
34: if v+i (Jℓ, jK) ≥ c ≥ v−i (Jℓ, jK) and

B[i− 1][ℓ− 1] == TRUE then
35: Ai ← Jℓ, jK;
36: j ← ℓ− 1
37: break;
38: end if
39: end for
40: end for
41: A1 ← J1, jK
42: return A;

Algorithm 2: Local-search Alg. (for objective valuations).
Input: An allocation instance I = (N,M = G ∪
C, (vi)i∈N) with objective valuations.
Output: An EQXc

g allocation.
1: InitializeA = (A1, . . . , An) by setting A1 ←M and

Ai ← ∅ for any i ∈ N \ {1};
2: if v1(A1) > 0 then
3: i← n;
4: while there exist j ∈ N and a good g ∈ Aj ∩ G

such that vi(Ai) < vj(Aj \ {g}) do
5: Ai ← Ai ∪ {g} and Aj ← Aj \ {g};
6: i← argmini∈N vi(Ai);
7: end while
8: return A;
9: end if

10: if v1(A1) < 0 then
11: j ← n;
12: while there exist i ∈ N and a chore c ∈ Ai ∩ C

such that vi(Ai \ {c}) < vj(Aj) do
13: Ai ← Ai \ {c} and Aj ← Aj ∪ {c};
14: j ← argmaxj∈N vj(Aj);
15: end while
16: end if
17: return A;

Algorithm 3: Greedy Algorithm (for Objective Valua-
tions).
Input: An allocation instance I = (N,M = G ∪
C, (vi)i∈N) with objective valuations.
Output: An EQ1 allocation.

1: Initialize the partial allocation A = (A1, . . . , An) by
setting Ai ← ∅ for any i ∈ N ;

2: for any good g ∈ G do
3: let h ∈ argminh∈N vh(Ah);
4: Ah ← Ah ∪ {g};
5: end for
6: for any chore c ∈ C do
7: let h ∈ argmaxh∈N vh(Ah);
8: Ah ← Ah ∪ {c};
9: end for

10: return A;

35

Algorithm 4: Strongly-greedy Algorithm (for Objective
Additive Valuations)
Input: An allocation instance I = (N,M = G ∪
C, (vi)i∈N) with additive objective valuations.
Output: An EQXc

g allocation.
1: Initialize the partial allocation A = (A1, . . . , An) by

setting Ai ← ∅ for any i ∈ N ;
2: initialize G′ ← G and C ′ ← C;
3: while G′ ̸= ∅ do
4: let h ∈ argminh∈N vh(Ah);
5: let g ∈ argmaxg∈G′ vh({g});
6: Ah ← Ah ∪ {g}; G′ ← G′ \ {g};
7: end while
8: while C ′ ̸= ∅ do
9: let h ∈ argmaxh∈N vh(Ah);

10: let c ∈ argminc∈C′ vh({c});
11: Ah ← Ah ∪ {c}; C ′ ← C ′ \ {c};
12: end while
13: return A;

36

	Introduction
	Our Contribution.

	Model and Definitions
	Non-negative Valuations
	Fairness under Path Constraints
	Sperner's Lemma.

	EQ1Pgc Allocations
	EF1Pgc allocations

	Non-positive Valuations
	Multi-coloring Sperner's Lemma.
	EQ1Pgc and EF1Pgc Allocations

	Conclusions
	Explicit Description of the Approximate Equitability Notions (from Section 2)
	Missing Proofs from Section 3:part on equitability
	Proof of Lemma 3.1
	Proof of Lemma 3.2
	Full Details on Efficient Computation of EQ1Pgc Allocations (Theorem B.1).

	Missing Proofs from Section 3:part on envy-freeness
	Full details on the proof of Theorem 3.5

	Missing Proofs from Section 4
	Proof of Theorem 4.1 (Multi-coloring Sperner's Lemma)
	Full Details on Existence of EQ1Pgc allocations.
	Full Details on Existence of EF1Pgc allocations.

	Objective Valuations
	Missing Proofs from Appendix E
	Full Proof of Theorem E.1 - Correctness
	Full Proof of Theorem E.1 - Complexity
	Full Proof of Theorem E.2
	Proof of Theorem E.3

	Missing Figures
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5

	Pseudo-code of the Algorithms

