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Abstract. A progress in complexity lower bounds might be achieved by studying problems
where a very precise complexity is conjectured. In this note we propose one such problem:
Given a planar graph on n vertices with edge-weights from {−1, 0, 1} and disjoint pairs of its
edges p1, . . . , pg, perfect matching M is Rainbow Even Matching (REM) if |M ∩ pi| is even
for each i = 1, . . . , g. A straightforward algorithm finds a max REM in 2g × poly(n) steps.
We conjecture that no deterministic or randomised algorithm has complexity asymptotically
smaller than 2g . Our motivation is also to pinpoint the curse of dimensionality of the Max-

Cut problem for graphs embedded into orientable surfaces: a basic problem of statistical
physics. We show that an algorithm finding a max REM and beating the 2g complexity lower
bound implies that in the class of graphs where the crossing number is equal to the genus, the
complexity of the Max-Cut problem is smaller than the additive determinantal complexity
of cuts enumeration. At present, no natural class of embedded graphs with this property is
known.

1. Introduction

Given a graph G = (V,E), a set of edges M ⊆ E is called perfect matching if the graph (V,M)
has degree one at each vertex. In this paper we introduce and study the following matching
problems which, as far as we know, were not studied before:

Decision Rainbow Even Matching problem (DREM): Given a planar graph G on n vertices
and disjoint pairs of edges p1, . . . , pg, decide if there is a REM.

Enumeration Rainbow Even Matching problem (EREM): Given a planar graph G on n

vertices and disjoint pairs of edges p1, . . . , pg, calculate the number of REMs.
If an integer weight function is given on the edge-set of the graph G then DREM has a

natural weighted version, denoted by OptDREM and EREM is turned into the problem denoted
by GenREM to find the generating function of weighted REMs.

There is a straightforward algorithm of complexity 2gpoly(n) to solve DREM: For each S ⊂
{1, . . . , g} we test if the set ∪i∈Spi can be extended into a perfect matching by edges of E\∪i6gpi.
The perfect matching algorithm does it.

There is also a straightforward algorithm of complexity 2gpoly(n) to solve EREM: For each
S ⊂ {1, . . . , g} we calculate the number of REMs which contain all edges of ∪i∈Spi and no
edge of ∪i/∈Spi. This can be done by the method of Kasteleyn orientations. We note that these
algorithms apply also to the weighted problems OptDREM and GenREM.

We propose that the above simple algorithms are in fact optimal. The Frustration Conjecture 1
below states that up to a polynomial factor the precise complexity of OptDREM with edge-weight
in {−1, 0, 1} is 2g. This is more tight complexity specification than the Strong Exponential Time
Hypothesis.
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1.1. The Exponential Time Hypothesis. The Exponential Time Hypothesis (ETH) is an
unproven computational hardness assumption that was formulated by Impagliazzo and Paturi
[7]. For each k let sk be the infimum of reals s for which there exists an algorithm solving k−SAT
in time O(2sn, where n is the number of variables. We note that s2 = 0 since 2−SAT can be
solved in polynomial time. ETH states that for each k > 2, sk > 0.

This was strenghthened by Impagliazzo, Paturi and Zane [8] to the Strong Exponential Time
Hypothesis (SETH): For all d < 1 there is a k such that k-SAT cannot be solved in O(2dn) time.
The ETH and SETH have a very natural role: they are used to argue that known algorithms are
probably optimal.

Conjecture 1 (Frustration Conjecture). No algorithm can solve OptDREM with the edge-
weights from {−1, 0, 1} in asymptotically less than 2g steps.

1.2. Justification for the Frustration Conjecture. An exponential lower bound for DREM
is simply implied by ETH, see Corollary 1.1.

Next, we show in Theorem 2 that an algorithm for OptDREM with edge-weight in {−1, 0, 1}
beating the 2g complexity lower bound implies that in the class of graphs where the crossing
number is equal to the genus, the complexity of the Max-Cut problem is smaller than the
additive determinantal complexity of cuts enumeration. At present, no natural class of embedded
graphs with this property is known; this phenomenon is known as the curse of dimensionality in
the statistical physics.

A well-established way to approach matching problems is to determine whether some specific
coefficient of the generating function of the perfect matchings (with suitable substitutions) is non-
zero. This can be achieved because of the Isolation Lemma [14] by calculating a single Pfaffian
of a matrix where the entries are monomials in perhaps more than one variable. The Pfaffian is
a determinant type expression which can be determined with essentially the same complexity as
that of the determinant (of the same matrix). The complexity of calculating the determinant of
matrices with polynomial entries essentially depends on the number of the variables.

After many failed attempts to use this machinery to disprove the Frustration Conjecture I
am convinced that this approach will not beat the 2g lower bound. However, I do not have at
present a general theorem of this nature, only some partial results.

We can reduce, in a simple way suggested by Bruno Loff, (1 in 3)-SAT to DREM showing
DREM is NP-complete.

Theorem 1. DREM is an NP-complete problem.

Proof. The reduction of (1 in 3)-SAT to DREM is best explained by an example. If the input
of (1 in 3)-SAT is (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x1 ∨ x4) where the first clause is denoted by C1 and
the second clause by C2 then the input graph for the corresonding DREM is depicted in Figure
1, with g = 2 and p1 = {e11, e

1
2}, p2 = {e21, e

2
2}. In general, if the input of (1 in 3)-SAT has n

variables and m clases then g = 3m− n.
�

The proof above provides an exponential lower bound for DREM, assuming ETH.

Corollary 1.1. Let D be the infimum of reals d for which there exists an algorithm solving
DREM in time O(2dg), where g is the number of the input pairs of edges. Then D > 0.

Proof. We first note that 3-SAT with n variables and m clauses can be reduced to (1 in 3)-SAT
with n+ 6m variables and 5m clases by a construction of Schaefer [15]. After this reduction we
use the construction of the proof of Theorem 1.

�
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Figure 1.

1.3. Optimization by enumeration. The motivation of this paper is a curious phenomenon:
There is a strongly polynomial algorithm to solve the Max-Cut problem in the planar graphs
based on a reduction to the weighted perfect matching problem, see e.g. [10].

For the graphs of fixed genus g > 1 the situation is different: There is a weakly polynomial
algorithm by Galluccio and Loebl ([4]; see also [5], [6]); it was implemented several times and
applied in extensive statistical physics calculations (see [13] ). Recently other related algorithms
based on the Valiant’s theory [17] of holographic algorithms appeared (see [1], [3]). All presently
known approaches are of enumeration nature even for the class of the toroidal square grids.

The seminal technical proposition was formulated by Kasteleyn [9] and proved by Galluccio,
Loebl [4] and independently by Tesler [16]: The generating function of perfect matchings of a
graph of genus g can be efficiently written as a linear combination of 22g Pfaffians. Pfaffians
are determinant type expressions that can be calculated efficiently by a variant of the Gaussian
elimination. Cimasoni and Reshetikhin [2] provided a beautiful interpretation of the formula
which then became known as the Arf invariant formula.

1.4. Additive determinantal complexity. As mentioned above, the weakly polynomial algo-
rithm solving the Max-Cut problem for the graphs of genus g by Galluccio and Loebl consists
in calculating 22g Pfaffians and produces the complete generating function of the edge-cuts of
the embedded graph. A recent result of Loebl and Masbaum [11] indicates that this might be
optimum for the cuts enumeration. It is shown by Loebl and Masbaum in [11] that, if we want to
enumerate the edge-cuts of each possible size of an input graph G of genus g, then in a strongly
restricted setting called additive determinantal complexity the number of the Pfaffian calculations
cannot be smaller than 22g.

This leads to a question: Is there an algorithm for solving the Max-Cut problem in (a natural
subclass of) the embedded graphs, whose complexity beats the additive determinantal complexity
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of the cuts enumeration? At present no such algorithm for a natural subclass of embedded graphs
is known.

I believe that the answer to this question is NO, and formulating the Frustration Conjecture
is an attempt to pinpoint this. In Theorem 2 below we present a partial result. We show that the
Frustration Conjecture implies that for the class of embedded graphs where the crossing number
is equal to the genus, there is no algorithm to solve the Max-Cut problem whose complexity
beats the additive determinantal complexity bound. The proof of Theorem 2 is included in
Section 2.

Theorem 2. Let G be a graph with n vertices and embedded to the plane with g crossings. One
can efficiently construct planar graph G′ with edge-weights in {−1, 0, 1} and a set of 2g disjoint
pairs of edges of G′ so that finding the maximum size of an edge-cut in G is polynomial time
reducible to determining the maximum weight of a REM.

Concluding Remark. I believe the Frustration Conjecture to hold in a stronger form when
optDREM is replaced by DREM. I find it very interesting to investigate how far one can go on
in strengthening. Is there a natural subclass of the planar graphs where the 2g lower bound can
be beaten? What about the complexity on random inputs?

Acknowledgement. This project initially started as a joint work with Marcos Kiwi. I would
like to thank to Marcos for many helpful discussions.

2. Edge-Cuts in Embedded Graphs

Let G = (V,E) be a graph. A set of edges E′ ⊆ E is called even if each degree of the graph
(V,E′) is even. A set of edges C ⊆ E is called an edge-cut of G, if there is a V ′ ⊆ V so that
C = {e ∈ E : |e ∩ V ′| = 1}. The Max-Cut problem, one of the basic optimization problems,
asks for the maximum size of an edge-cut in the input graph G, or, if weights on the edges are
given, for the maximum total weight of an edge-cut.

2.1. Surfaces. We recall the following standard description of a genus g surface Sg with one
boundary component (see [10]). (We reserve the notation Σg for a closed surface of genus g.)

Definition 2.1. A 1-highway (see Figure 2) is a surface S̄g which consists of a base polygon R0

and bridges R1, . . . , R2g, where

• R0 is a convex 4g-gon with vertices a1, . . . , a4g numbered clockwise.
• Each R2i−1 is a rectangle with vertices x(i, 1), . . . , x(i, 4) numbered clockwise and glued

to R0. Edges [x(i, 1), x(i, 2)] and [x(i, 3), x(i, 4)] of R2i−1 are identified with edges
[a4(i−1)+1, a4(i−1)+2] and [a4(i−1)+3, a4(i−1)+4] of R0, respectively.

• Each R2i is a rectangle with vertices y(i, 1), . . . , y(i, 4) numbered clockwise and glued
to R0. Edges [y(i, 1), y(i, 2)] and [y(i, 3), y(i, 4)] of R2i−1 are identified with edges
[a4(i−1)+2, a4(i−1)+3] and [a4(i−1)+4, a4(i−1)+5] of R0, respectively. (Here, indices are
considered modulo 4g.)

Before proceeding, we point out a simple fact that we will soon exploit: the boundary of a
1-highway is isotopic to the boundary of a disk. Next, follows the standard description of a genus
g surface Sg with more than one boundary component.

Definition 2.2. A highway surface Sg is obtained from a 2-sphere Z with h disjoint polygons
R1

0, . . . , R
h
0 specified, and h disjoint 1-highway surfaces S̄1

g1 , . . . , S̄
h
gh

, where g = g1 + . . .+ gh, by

first identifying the base polygon of each S̄i
gi with the polygon Ri

0, and then by cutting out the

interiors of these polygons Ri
0 (i = 1, . . . , h).



PRECISE COMPLEXITY OF RAINBOW EVEN MATCHINGS 5

a3

a4

a5

a6

a7

a8

a1

a2

R0

R1

R2

R4

R3

Figure 2. A 1-highway.

Now assume the graph G is embedded into a closed orientable surface Σg of genus g. We
think of Σg as Sg union h additional disks δi (i = 1, . . . , h), glued to the boundaries of Sg. By an
isotopy of the embedding, we may assume that G does not meet the disks δi’s and that, moreover,
no vertex of G lies in a bridge. We may also assume that the intersection of G with any of the
rectangular bridges Rj

i consists of disjoint straight lines connecting the two sides of Rj
i which are

glued to the base sphere Z.

2.2. Local non-planarity. We note that each embedding of a graph G into Σg defines its
geometric dual, usually denoted by G∗, much in the same way as an embedding of a graph in
the plane determines its dual graph. We consider simultaneous embeddings of the graph and its
geometric dual into Σg.

Definition 2.3. Let G = (V,E) be a graph. A simultaneous embedding of G into Σg consists of
(1) an embedding N of graph G, and (2) an embedding N∗ of the geometric dual G∗ = (V ∗, E∗)
of N . In addition, we require that (a) G is the geometric dual of N∗, (b) each vertex of G∗ (of G
respectively) is embedded in the face of N (N∗ respectively) it represents, (c) each pair of dual
edges e, e∗ intersects exactly once, and N,N∗ have no other intersections, and (d) both N,N∗

are embeddings into Sg ⊆ Σg.
For a collection of edges S ⊆ E we denote by S∗ ⊆ E∗ the collection of dual edges e∗ such

that e ∈ S.

Since a simultaneous embedding of G into Σg is by definition an embedding into Sg ⊆ Σg, we
will also call it simultaneous embedding into Sg.

Definition 2.4. A simultaneous embedding of G into Sg is called even if it holds that C ⊆ E is
an edge-cut of G if and only if C∗ ⊆ E∗ is an even set of G∗ which crosses each bridge of Sg an
even number of times. We will call such even sets admissible.
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A basic example of an even simultaneous embedding is a toroidal square grid and its geometric
dual.

Definition 2.5. We say that a simultaneous even embedding of a graph G into some Sg is
restricted if every bridge contains at most 2 segments of edges of E∗.

Definition 2.6. We say that graph G belongs to class Cg if G is drawn to the plane with exactly
g edge-crossings and for each crossing there is a planar disc where the drawing looks as depicted
in Figure 3.

u

w

vt

Figure 3.

v

u

w

t

Figure 4. Simultaneous embedding of graph G ∈ Cg near a crossing. There is
one pair of bridges; the boundaries of the vertical bridge are depicted by dotted
lines and the boundaries of the horizontal bridge are not depicted to simplify the
presentation. The edges of G are depicted by normal lines and the dual edges
are depicted by thick lines.

Theorem 3. If G ∈ Cg, then G admits a restricted simultaneous even embedding into Sg.
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Proof. We consider the simultaneous local embedding of the graph G as described in Figure 4.
The embedding is clearly restricted. We need to show that the embedding is even.

We first observe that the set δ(v) of the edges of G incident with any vertex v of G satisfies
that δ∗(v) intersects each bridge in an even number of segments. Since each edge-cut of G is the
symmetric difference of some sets δ(v), we get: If C is an edge-cut of G, then C∗ is admissible.

In order to prove that the embedding is even we need to show that each admissible set C∗

of dual edges is a symmetric difference of faces of G∗; this implies that C is an edge-cut of G.
We can assume that C∗ has empty intersection with the bridges (depicted in Figure 4) since
there is a face of G∗ with exactly 2 edges on the vertical bridge and no edge on the horizontal
bridge, and also a face of G∗ where the role of the two bridges is exchanged. If C∗ has no edge
intersecting a bridge, then C∗ is an even subset of an embedded planar subgraph of G∗. We are
done if we show that each face F of this planar subgraph is a symmetric difference of the faces of
G∗; indeed, such F is either a face of G∗ itself, or it looks like the square of Figure 4 comprised
of edges depicted as thick lines, which is the symmetric difference of the dual faces encircling the
three unlabelled vertices of G of Figure 4. �

2.3. Proof of Theorem 2. We show that for a graph G = (V,E) with n vertices and embedded
to the plane with g edge crossings one can efficiently construct a planar graph H = (W,E′) with
edge-weights in {−1, 0, 1} and with 2g specified disjoint pairs of its edges so that the maximum
size of an edge-cut in G is equal to the maximum weight of a REM in H . The construction goes
as follows:

Step 1. We subdivide each edge of G near to each crossing; if e ∈ E got subdivided into
edges e1, . . . , ek which form the path (e1, . . . , ek) then we let the weight of e1 equal to 1 and the
weight of e2, . . . , ek equal to −1. he resulting weighted graph will be denoted by G1. We note
that the Max-Cut problem in H is reduced to the Max-Cut problem in G1.

Step 2. We add, for each edge crossing of G1, the four edges of weight zero forming a 4−cycle
( denoted by uvwt in Figure 4) and further one new vertex which we connect by four edges of
weight zero to the two vertices near to this crossing added in Step 1 so that the resulting graph,
which we denote by G2, is in Cg. We note that G2 is uniquely determined and the Max-Cut

problem in G1 is reduced to the Max-Cut problem in G2.
Step 3. We use Theorem 3. Let G∗

2 be the dual from the restricted simultaneous even
embedding of G2 into S2g. This specifies 2g pairs p1, . . . , p2g of edges of G∗

2: each pair consists
of the two edges embedded on one of the 2g bridges of S2g (see Figure 4). We note that the
Max-Cut problem for G2 is reduced to the problem of finding maximum even set of G∗

2 which
contains an even number of elements of each pair pi, i = 1, . . . , 2g. Finally we note that G∗

2 is
planar.

Step 4: Fisher’s construction. We transform G∗

2 into H by the Fisher’s construction (see
e.g. book [10]) described next.

Definition 2.7. Let G be a graph. Let σ = (σv)v∈V (G) be a choice, for every vertex v, of a
linear ordering of the edges incident to v. The blow-up, or ∆-extension, of (G, σ) is the graph
Gσ obtained by performing the following operation one by one for each vertex v. Let e1, . . . , ed
be the linear ordering σv and let ei = vui, i = 1, . . . , d. We delete the vertex v and replace it
with a path consisting of 6d new vertices v1, . . . , v6d and edges vivi+1, i = 1, . . . , 6d− 1. To this
path, we add edges v3j−2v3j , j = 1, . . . , 2d. Finally, we add edges v6i−4ui corresponding to the
original edges e1, . . . , ed.

The subgraph of Gσ spanned by the 6d vertices v1, . . . , vd that replaced a vertex v of the
original graph will be called a gadget and denoted by Γv. The edges of Gσ which do not belong
to a gadget are in natural bijection with the edges of G. By abuse of notation, we will identify
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Figure 5. For a node v with the neighborhood illustrated in (5)(a) the associ-
ated gadget Γv is depicted in (5)(b).

an edge of G with the corresponding edge of Gσ. Thus E(Gσ) is the disjoint union of E(G) and
the various E(Γv) (v ∈ V (G)).

It is important to note that different choices of linear orderings σv at the vertices of G may
lead to non-isomorphic graphs Gσ. Nevertheless, one always has the following:

Lemma 2.8. There is a natural bijection between the set of even subsets of G and the set of
perfect matchings of Gσ. More precisely, every even set E′ ⊆ E(G) uniquely extends to a perfect
matching M ⊂ E(Gσ), and every perfect matching of Gσ arises (exactly once) in this way.

It follows that if we set the weights of the edges of the gadgets of (G∗

2)
σ equal to zero, we get

that the value of the Max-Cut problem for G is equal to the max REM of H = (G∗

2)
σ. This

finishes the proof of Theorem 2.
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