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Distribution crises occur when there is a signi�cant mismatch between the demand and supply of essential
resources over an extended period. Without market regulations, these resources can be easily monopolized by
the more a�uent members of society, leaving the needs of the rest unful�lled. While centralized planning
can lead to fairer distribution, it also comes with economic and time-related ine�ciencies. In this paper,
we propose to model the crises as multi-round trading environments that balance fair allocation of buying
rights with a market-based approach, taking advantage of the bene�ts of both via rationing. We examine
two implementations of its single-round markets. The �rst market is a variation of the Arrow-Debreu model
that incorporates buying rights, and we approximate its market-clearing solution through a polynomial-time
auction algorithm. The second market involves non-myopic traders who optimize over multiple trading rounds.
We determine the second market’s equilibrium and demonstrate that it is coalition-proof. To assess the entire
environment’s equity, we use the concept of frustration, de�ned as the scaled di�erence between the amount
of goods a buyer is entitled to according to their buying rights and the amount they can acquire through
trading. We also introduce a concept of “Price of Anarchy” that serves as an analogy to the original de�nition
in the context of frustration. Our main results show that with both markets, the inclusion of buying rights
reduces the Price of Anarchy by at least half.

Under review.
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1 INTRODUCTION
Crises of distribution are situations where the availability of a vital resource is so limited that
individuals or organizations are unable to acquire the minimum amount necessary for functioning.
These types of crises can occur due to a variety of reasons such as natural disasters, wars, or eco-
nomic instabilities. From a distribution perspective, these situations possess two key characteristics
that are important to consider.

Firstly, the ethical fairness of the distribution of the scarce resource is crucial. During a crisis, the
distribution of resources is often not equitable, with some individuals or organizations receiving a
disproportionate amount of resources while others receive little to none. This is where the principle
of fairness comes in, as it aims to ensure that the distribution of resources is as equitable as possible.
According to the rules of fairness, which are declared in advance, it is possible to hypothetically
divide the resource fairly among di�erent entities. In other words, buyers have the right to acquire a
fair share of the commodity in question, and the total amount of rights to purchase the commodity
is equal to the total amount available in the market. A central authority can then distribute the good
in quantity equal to the right, which we consider an ideal benchmark allocation. This centralised
approach however comes with economic and time-related ine�ciencies [Moroney and Lovell, 1997].
On the other hand, markets, modeled as large single or double auctions with many sellers and

buyers on each side, have the potential to distribute goods in a �exible and reliable manner [Cripps
and Swinkels, 2006]. To improve the system’s e�cacy, the second important aspect of distribution
crises is hence the presence of a market for the vital resource. The downside of this approach is that
in the absence of stable supply, the scarcity of the resource leads to a signi�cant rise in prices, with
organizations attempting to acquire more than their fair share, always at the expense of others.
This can lead to a situation where the most powerful or well-connected individuals or organizations
are able to acquire the majority of resources, leaving the less fortunate with little to no access to the
vital resource. To prevent such scenarios, our goal is to increase the �ow of the resource to passive
buyers, rather than allowing the distribution of scarce resources to be concentrated among the
most active participants in the market. This can be achieved by creating a market for the resource,
where buyers can purchase the resource at a fair price by implementing a rationing system where
resources are traded based on pre-established rules of fairness.

In summary, distribution crises are extreme situations where the availability of a vital resource
is limited, and it is important to consider the ethical fairness of the distribution in the presence
of a market to ensure an equitable distribution of resources. Such approach may be thought of
as analogous to the basic strategy of [Dworczak et al., 2021] which, however, studies a di�erent
problem, namely maximizing the potential of the marketplace to serve a re-distributive purpose.

1.1 Structure of the system
For simplicity, we assume that there is only one commodity to be distributed. Our system consists
of a sequence of markets taking place sequentially over discrete time. Each market has two parts:
(1) Sellers announce their supply of the critical commodity, while buyers announce their demand

for it. Based on this information, the system assigns buying rights in accordance with pre-
agreed rules of fairness.

(2) In each market of the sequence, both the critical commodity and the buying rights are traded.
However, there is one restriction: at the end of each market, each buyer must hold at least as
many rights as they do of the commodity. Any uncoupled rights are eliminated at the end of
each market.

The proposed hybrid mechanism aims to widen the �ow of a critical commodity during a
distribution crisis by allowing active buyers to purchase rights from hesitant, passive buyers. These
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saved funds can then be used by passive buyers to acquire the commodity in subsequent markets,
as rights are recalculated and renewed before each market.
To improve the robustness of the system against strategic manipulation from the side of the

traders, we require that after each market of the sequence, for each buyer there is a check whether
their amount of the critical commodity is at most as large as their amount of right. We further
require that the distribution system is implemented in a certi�ed portal, where the history of
trading provides indirect mechanisms for (checking) truthful reporting of demand and supply, the
complete history of trading of right is known and archived, and the particular trading mechanisms
are agnostic to the trader’s identities.
In order to gauge the e�ectiveness of this mechanism, we introduce a measure of “frustration”

for individual buyers. Speci�cally, for a single market, frustration is de�ned as the ratio 0  0/A  1,
where A represents the amount of rights potentially assigned to a buyer 1, and 0 is the di�erence
between A and the actual amount of the good purchased by 1, assuming this di�erence is non-
negative. If the di�erence is negative, the frustration is de�ned as zero. It is worth noting that this
concept of frustration applies not only in times of crises, but also during normal market conditions
and in unrestricted free markets for the critical commodity. In normal times, assigned rights are
bigger or equal to demand, and buyers are able to purchase all of the goods they desire, thus their
frustration is zero. This notion of frustration is similar to the concept of “deprivation cost” discussed
in the work of Holguín-Veras et al.
Our ultimate goal is to demonstrate that, in a sequence of markets using this system, the

frustration of each buyer is smaller than it would be in a free market. This can be achieved by
increasing the “willingness to pay” of frustrated buyers through the trading of assigned rights. The
willingness to pay of a buyer 1 associates, with a positive G , maximum amountF1 (G) of money of
the same utility as amount G of the critical commodity.

1.2 Main contributions
Our primary contribution is the development of a formal system that clearly distinguishes the
allocation of buying rights and the trading of goods during the midst of a crisis characterized by
a relatively stable but limited supply and an excessive demand. Our main goal is to investigate
the impact of incorporating a fairness mechanism for allocating rights to purchase in a sequence
of over-demanded markets, in order to enhance social good by improving fairness of the free
market trading. Speci�cally, we formalize our hybrid trading environment, including the fairness
mechanisms and the measure of equity, de�ned as frustration, in Section 2.1. We then use this
frustration measure to analyze the evolution of the Price of Anarchy in this environment with
two di�erent implementations of the single-round markets. To the best of our knowledge, we are
the �rst to rigorously analyze a system explicitly combining a market mechanism with a fairness
mechanism allocating buying rights for more socially just redistribution of critical goods during
the times of need. It is important to note that our �ndings are independent of the speci�c fairness
mechanism used.
In Section 3, we delve into the analysis of solutions in systems where traders are myopic, in

the form of market-clearing prices with rights. We formulate an auction-based algorithm that can
approximate the solution in polynomial time while providing a guarantee on its quality.

T������ 3.3 (��������). There exists an algorithm with time complexity cubic in the number of
traders that approximates the maximum clearing solutions of the system with myopic traders such
that each trader receives a utility at least (1 � 2n)-times their optimum.

Using this result, we are able to bound the overall Price of Anarchy in the system.
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T������ 3.5 (��������). Consider a sequence of markets with solutions computed using the
algorithm from Theorem 3.3. Then up the �rst market, the Price of Anarchy is at most 1/2.

Section 4 then considers a more complex system with traders who optimize over the entire crisis.
We examine properties of the arising equilibrium and design an algorithm computing it e�ciently.

T������ 4.6 (��������). There exists an algorithm with time complexity linear in the number of
traders that computes a coalition-proof equilibrium of the system with non-myopic traders.

Further analysis of the equilibrium reveals the equilibrium o�ers a similar asymptotic upper
bound on the Price of Anarchy as in the system with myopic traders.

T������ 4.9 (��������). Consider a sequence of markets where traders follow the equilibrial
strategies from Theorem 4.6. Then the Price of Anarchy is at most 1/2 as the number of markets tends
to in�nity.

In the last part of the paper, we summarize the desired features of the trading system and provide
several potential future directions.

1.3 Related work
Allocations a set of resources to a set of individuals in a fair manner have been extensively studied
over the past decades. The objective of a fair distribution is to identify an allocation mechanism
that satis�es certain criteria generally referred to as fairness criteria. In the literature, there is no
clear de�nition of fairness, rather a wide variety of notions has been introduced; see for example
[Thomson, 2011] for a survey. Many recent works considered the question of whether it is possible
to simultaneously achieve fairness and e�ciency, and studied Pareto optimality and fair allocations
for various fairness notions. For example, [Caragiannis et al., 2019] presented inherent connection
between Envy Freeness, Pareto optimality, and the notion of maximum Nash welfare.
Our work contributes to the �eld of redistributive mechanisms, particularly those aimed at

reducing inequalities. A similar study in the literature examines a two-sided market trading goods
of homogeneous quality, with the goal of optimizing the total utility of traders [Dworczak et al.,
2021]. However, our approach di�ers in that we consider more general fairness measures, rather
than just the social welfare, and assume that utilities are common knowledge. This work has been
recently expanded to include a setting with heterogeneous quality of tradable objects, various
measures of allocation optimality, and imperfect observations of traders [Akbarpour et al., 2020].
Another related work examines multiple market and non-market mechanisms for allocating a
limited number of identical goods tomultiple buyers [Condorelli, 2013]. The author argues that when
buyers’ willingness to pay aligns with the designer’s allocation preferences, market mechanisms
are optimal, and vice versa. In crisis situations, it is reasonable to assume that critical resources
are highly valuable to all participants, yet some may lack the money to acquire them. Combined
with the fact that it is in society’s best interest to allocate goods fairly, these �ndings suggest that
relying solely on unregulated markets may not be the best approach in a distribution crisis.
Emissions allowances and tradable allowance markets present to a certain extent a similar

mechanism to our work. Historically, tradable property rights were allocated by regulators directly
to �rms. This led to a number of ine�ciencies, such as misallocation, regulatory distortions or
barriers to entry the markets. Contemporary market designs utilize auctions for the allocation of
tradable property rights. As presented in [Dormady, 2014], tradable allowance markets play an
invaluable role in ensuring the e�ciency of carbon markets and in the prevention of market power
by large and dominant agents. In [Wang et al., 2020], e�ciency of multi-round trading auctions for
allocation of carbon emission rights is studied.
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[Alkaabneh et al., 2021] develops a dynamic programming model for optimizing resource alloca-
tion by food banks among the agencies they serve. The framework measures e�ectiveness based
on the nutritional value of the allocation decisions, e�ciency as the utility of the agencies served,
and equity as fairness in the allocation of food among those agencies.

In ourwork, we di�er from the existing relatedworks by designing a trading-rationingmechanism
that introduces rights to purchase a fair amount of the scarce commodity, allocates them in a fair
manner and trades them together with the critical commodity in order to ensure that scarce
resources can be allocated among agents in a fairer manner than by the free market. To the extent
of our knowledge, this is the �rst work that introduces such hybrid trading-rationing mechanism,
and also analytically solves such a complex rationing scheme.

2 PROBLEM DEFINITION
Formally, we model a crisis as a multi-round trading environment, which we call Crisis. We have
one scarce resource, which we call Good. The other two commodities, representing funds and right
to purchase Good, will be referred to as Money and Right. Crisis consists of a sequence of T rounds
which we call Markets. The traders in this trading environment form two disjoint sets of sellers
and buyers, depending on whether they trade Good or Money. Each single-round Market of this
multi-round trading environment starts by the sellers declaring the amount of Good for sale and
the buyers declaring their Demands for Good. A central fairness mechanism then assigns buyers
with appropriate amount of Right. In the beginning of each Market, each seller and buyer also
receive an amount of Good and Money, respectively.
The traders then trade these initial endowments of Good, Right and Money with the restriction

that at the end of each Market, each buyer has at least as much Right as Good. This restriction forms
the core of our idea. We further require that Money obtained by selling Right cannot be used in the
current Market for buying Good (see Remark 1 for a justi�cation). We refer to the single-round
trading that happens after the Right is distributed as Trading. Hence, each Market consists of the
fairness mechanism and the Trading.
At the end of each Market, the sellers consume the obtained Money and the unsold Good and

the buyers consume all the obtained Right and Good up to their declared Demand. The buyers keep
the Money they obtained for the next Market. Hence, the Markets of the sequence forming a Crisis
are not interdependent.

R����� 1. There needs to be a protocol for maintaining Money obtained by selling Right. It is an
ethical requirement that such Money stays in the system and is used for buying Good or Right during
the current Crisis. We also require that obtained Money is used in a future, not the current Market, in
order to give an advantage to the active buyers, who are along with the sellers the “kings” of the Crisis.
The advantage consists in obtaining Good earlier than the passive buyers.
Another reason to have Money as a commodity is that the utility for Money di�ers among the

participants and we will use this fact for studying our multi-round trading environment. For similar
treatment of Money, see [Dworczak et al., 2021].

2.1 Trading environment
Market number g  T is de�ned asMg = Mg ((,⌫,⌧g ,+ g ,"g ,⇡g ,Dg ,qg ), where ( is a set of sellers
and ⌫ is a set of buyers. We denote ) = ( [ ⌫ the set of all traders and assume ( \ ⌫ = ;. The
⌧g = (⌧g

C |C 2 ) ) and"g = ("g
C |C 2 ⌫) denote the sets of Good and Money each trader and buyer

has at the beginning of a Market g , respectively. We let+ g  Õ
B2( ⌧

g
B be the o�ered volume of Good

in the marketMg . We also denote subsets of a set with a subscript, for example ⌧g
� = (⌧g

0 |0 2 �)
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for a set � ⇢ ) . The set of Demand ⇡g = (⇡g
1 |1 2 ⌫) give the amount of Good each buyer hopes to

acquire in the Market. The function DgC is the utility of trader C in MarketMg , de�ned as follows.

De�nition 2.1 (Utility function ofMg ). The utility function of trader C in marketMg isDgC : R2 ! R
whereDgC (G,~) = DgC (G, 0) +DgC (0,~) denotes the C ’s utility of amount G of Good and amount~ of Money.
We require that the utility function (1) is monotone in each coordinate. Moreover, for each trader C , (2)
DgC (0, G) depends linearly on G , (3) sellers have a positive utility only for Money, and (4) For each buyer
1, Dg1 (G, 0) + D

g
1 (~, 0) � D

g
1 (G + ~, 0).

Finally, qg is the fairness mechanism of MarketMg . It has the following form.

De�nition 2.2. A fairness mechanism is a function q : R+, |⌫ |+10 ! R+, |⌫ |0 which, given o�ered
volume of Good+ and Demand⇡ of buyers, assigns allocation of Right to the buyers which satis�es
8+ ,+ 0 2 R+0 ,⇡ 2 R

+, |⌫ |
0 ,81 2 ⌫,8g 2 N and all permutations of |⌫ | elements U

(1)
Õ

12⌫ q1 (+ ,⇡) = + ,
(2) ⇡1 = 0) q1 (+ ,⇡) = 0,
(3) ⇡1 � ⇡ 01 ) q1 (+ ,⇡) � q1 (+ ,⇡ 0),
(4) q1 (+ ,U (⇡)) = qU�1 (1) (+ ,⇡),
(5) + � + 0 ) q1 (+ ,⇡) � q1 (+ 0,⇡).
To work in the system as intended, the fairness mechanism has to distribute Right for all o�ered

Good, assign no Right to buyers without Demand for the scarce resource, be non-decreasing with
Demand of each buyer, and treat buyers with equal Demand equally. These conditions imply that
the fairness function has a special “distribution-induced” form

q1

 ’
B2(

EgB ,⇡

!
= U1 (⇡,+ )

’
B2(

EgB ,

where U is a distribution. Indeed, condition 1 implies
Õ

12⌫ U1 (⇡,+ ) = 1 and conditions 2 & 3
together imply 0  U1 (⇡,+ )  1. The last condition restricts functional dependence of U on the
Demand and + . Our results do not depend on a particular choice of a fairness mechanism. We
include two well known examples for illustration purpose only.

Example 2.3. One example of a fairness mechanism is the proportional fairness mechanism, which
allocates Right to 1 proportionally to his Demand

q1

 ’
B2(

EgB ,⇡

!
=
⇡1

Õ
B2( E

g
BÕ

12⌫ ⇡1
, Uq1 (⇡,+ ) =

⇡1Õ
12⌫ ⇡1

,

where the distribution is not dependant on the total volume distributed. Another example of a
fairness mechanism is the contested garment distribution [Aumann and Maschler, 1985].

Market number g ,Mg , consists of two steps. First, each buyer 1 is assigned q1 (+ g ,⇡g ) amount
of Right by the fairness mechanism q . In the second step, traders trade assigned Good, Right and
Money in the Trading. The Trading is a standard market with two restrictions: (1) the �nal basket
of each buyer has the amount of Right at least as big as the amount of Good and (2) money obtained
for selling Right cannot be used to buy Good in the current Trading.

De�nition 2.4 (Solution ofMg ). If - is a set containing amounts of Good, Right and Money then
we letM(- ) (G(- ),R(- ) respectively) denote the amount of Money (Good, Right respectively) in
- . A solution of Market Mg consists of (1) the price @g (?g respectively) per unit of Right (Good
respectively), and (2) a partition of a subset of the union of all the initial endowments into baskets
⌫C , C 2 ) . Given a solution, we say that the assigned basket ⌫C of a trader C is C-feasible if it satis�es,
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Fig. 1. An illustration of a Crisis consisting of a series of Markets. The fairness function q is followed by the
Trading phase, ) . The baskets obtained by traders are transferred to the next Market.

assuming the price of a unit of Money is 1, that the total price of ⌫C is at most the total price of C ’s
initial endowment, and further if C is a buyer then (1) R(⌫C ) � G(⌫C ) and (2) ⌫C contains the amount
of Money which C obtained from selling Right, i.e.,M(⌫C ) = "g

C �?gG(⌫C ) +@g (qgC (+ g ,⇡)�R(⌫C )).
A solution is feasible if for each trader C , ⌫C is C-feasible.

As remarked earlier, the subsequent Markets are not independent; a feasible solution of Mg

in�uences initial endowments of Money inMg+1. The cascaded Markets formally de�ne the Crisis as
a sequence C = C((,⌫,T ,⌧,",⇡,D,q,B) of T Markets and their feasible solutions, where (,⌫ have
the same meaning as in the previous subsection. Further, ⌧ = (⌧g : g  T ), " = ("g : g  T),
⇡ = (⇡g : g  T), D = (Dg : g  T) and q = (qg : g  T). Finally, B = (Bg : g  T ) where
each Bg = (@g , ?g , (⌫gC ; C 2 ) )) is a feasible solution of MarketMg ((,⌫,⌧g ,+ g ,"g ,⇡g ,Dg ,qg ). We
further require that for each g < T and C 2 ⌫, "g+1

C � M(⌫gC ) (see Remark 1). An illustration of
the structure of the Crisis is available in Figure 1.

2.2 Frustration and the Price of Anarchy
The Right can be thought of as the amount of Good a buyer is socially entitled to. In other words,
if the distributional crisis is managed fully by a central authority, the buyer would receive that
amount. A contrast between this “most fair" centralized solution, and whatever a buyer is able to
acquire is captured by his frustration.
Formally, the frustration of a buyer is normalized di�erence between the Right he would be

assigned and the amount of Good he acquired in a Market if that is at least zero, and zero otherwise.
We note that this de�nition allows to measure frustration also in the free market, where no Right
exists. However, a common notion of fair allocation may still exist.

De�nition 2.5. Let Mg ((,⌫,⌧g ,+ g ,"g ,⇡g ,Dg ,qg ) be a Market. Then the frustration of buyer
1 2 ⌫ of a non-zero demand in marketMg , denoted by 5 g1 , is

5 g1 = max
⇢
0,
qgC (+ g ,⇡) � G(⌫gC )

qgC (+ g ,⇡)

�
,

Consider now the point of view of the central authority, such as government of a country. As a
result of trading the Good, the �nal allocation di�ers from distributing it centrally. This di�erence
measures the ine�ciency of the trading to allocate Good fairly. This is conceptually similar to the
Price of Anarchy (PoA), which measures the price the system pays for autonomous behaviour of
the traders [Koutsoupias and Papadimitriou, 1999]. As such, we de�ne the Price of Anarchy in our
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system as a scaled sum of frustrations of the buyers, i.e.,

%>�g =

Õg
8=1

Õ
12⌫ 5

8
1

g |⌫ | .

Note that %>�g � 0 since 5 g1 � 0 and %>�g = 0) 5 81 = 0 81 2 ⌫,88 2 {1, . . . g}. In the latter case,
trading Good in the Market had the same social impact as distributing it centrally.
In this work, we aim to show that as a result of implementing Right, the Price of Anarchy

decreases compared to the free market. Note that for the latter the PoA can be arbitrarily close to
one if a buyer receives low amount of Money and has a high Demand. We consider two types of
Markets based on whether the traders are myopic or not. In each case we provide an upper bound
on the PoA therein. Due to space constraints, full versions of all proofs are in Appendix A.

3 MARKETWITH MYOPIC TRADERS
We begin by de�ning a concept of optimal solution of MarketMg , which we study in this section.

De�nition 3.1 (Optimal solution of Mg and C). A solution of the Market is optimal if for each
trader C , (1) ⌫C is C-feasible and (2) DC (G(⌫C ),M(⌫C )) is maximum among all DC (G(&),M(&)),
where & is a C-feasible subset of the union of all the initial endowments. We further say a solution
of a Crisis is optimal if for each g , Bg is an optimal solution ofMg .

R����� 2 (J������������ �� ��� ���������� �� ������� ��������). As mentioned in the
Introduction, we model the middle of multi-round distribution crises and thus we measure optimality
of the feasible solution of a multi-round trading environment by how optimal are the feasible solutions
of each round. In general, this does not need to maximize the sum of utilities of the T baskets of a
trader C since strategically it may be advantageous to sacri�ce optimality at time g to gain higher
individual utility at later times. We assume that in the middle of a distribution crisis such strategizing
does not take place.

3.1 Auction theoretic formulation
We introduce an e�cient auction-based algorithm for �nding an approximate optimal solution of
Market Mg . Since our discussion is valid for any Market, we will omit the upper index g in this
section to ease notation. We will assume in this section that Good (and thus also Right and Money)
are indivisible. This is more practical for distribution crises since commodities come in packages.
Analogous results with simpler proofs hold also for divisible commodities.

For the purpose of the algorithm, we introduce one more commodity of indivisible items called
Couple. Each item of Couple is a pair (G1, G2) where G1 is an item of Good and G2 is an item of Right.
For a trader C , we will assume their utility of G items of Couple is the same as of G items of Good,
i.e., equal to DC (G, 0). The algorithm auctions items of Couple. We will denote the current price of
one item of Good (Right, Couple respectively) by ? (@, 2 respectively). We assume that the price of
one item of Money is equal to 1. Finally, we recall that"C denotes the initial endowment of Money
of trader C and for ease of notation, we denote by 'C the initial endowment of Right of C .

The algorithm description. Let 0 < n < 1. The algorithm is divided into iterations. During each
iteration, some items of Couple are sold for 2 and some for (1 + n)2 , and analogously for Good and
Right. Each iteration is divided into rounds. An iteration ends when the price of Couple is raised
from 2 to (1 + n)2 . Initially, we let ? = @  1, 2  2 and each buyer gets the surplus cash covering
its initial endowment of Money and Right. Cash is a dummy commodity representing the �ow of
Money in the system.
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• Round: we �x an arbitrary order of buyers and consider them one by one in this order. Let
buyer 1 be considered. Let us denote by >1 the number of items of Couple 1 currently has,
and by >1+ the number of items of Couple 1 currently has of price (1 + n)2 .

• Let (1 be a set of items of Couple and of Money of max total utility which 1 can buy with its
current cash plus 2>1 . Let C(- ) denote the number of items of Couple in set - .

(1) If C((1) < >1 then 1 does nothing, the algorithm moves to the next buyer.
[if this happens then the current basket of 1 is optimal for the previous price 2/(1 + n) and
>1+ = 0.]

(2) If C((1) � >1 then 1 buys items of Couple via the Outbid.

OUTBID:
– We keep as the invariant of the algorithm that the cash of each buyer 1 is always at least
@('1 � C(⌫1)) where ⌫1 is 1’s current basket.

– The system buys by cash one by one and at most C((1) � >1+ items of Couple for price 2
and sells them to 1 for cash price (1 + n)2 per item, maintaining the invariant. First, it buys
from 1 itself.

– An alternative for buying the items of Couple is to buy separately items of Good and Right
and compose them into items of Couple. This happens when some items of Right and
(necessarily the same amount of items of) Good are not yet coupled in previous tradings.
We observe that this happens only if they are available for the initial price from the traders.
In this situation, the system again buys items of Right �rst from the buyer 1. However, the
system pays nothing if it buys items of Right from an initial endowment of a buyer for the
initial price since the payment is already in the surplus cash.

• If no more Couple is available at price 2 after the Outbid then the current round and iteration
terminate, ?  (1 + n)? , @  (1 + n)@ , 2  (1 + n)2 and the cash is updated: everybody
who had Good or Right in its initial endowment gets extra cash, n? per item of Good or n@
per item of Right.

• If a round went through all buyers, the algorithm proceeds with next round.
• When nobody wants to buy new items of Couple, the whole trading ends. The system takes
all items of Money from the buyers, sells them to the buyers and sellers for cash and keeps
whatever items remain.

• The OUTPUT of the algorithm consists of (1) the collection of the �nal baskets of each trader
and (2) the terminal prices ?,@, 2 .

We are able to analyze the algorithm only when initial endowments are feasible.

De�nition 3.2. Let 0 < n < 1. The initial endowments ("1,'1);1 2 ⌫ are feasible for n if they
satisfy, for each buyer 1 2 ⌫, the following properties: (1)"1 > max(2/n, 4'1), (2) for each G  '1 ,
D1 (G, 0) � 2D1 (0, G) and (3) for each G � max(⇡1 + 1, 1/2"1), D1 (0,"1) � D1 (0,"1 � G) +D1 (G, 0).

Moreover, the o�ered volume of Good is feasible if + g =
Õ

B2( ⌧
g
B .

The feasibility assumptions are not restrictive for applications where the buyers are institutions
(hospitals) which have practically unlimited amount of money and use their individual utility
function for deciding how to spend them.

The assumption that a buyer 1 has no utility from and thus does not buy more Good than is its
declared Demand in the current Market makes sense for 1 since not buying more Good than they
will currently consume makes sense for the middle of a distribution crisis and it is also favourable
for a central authority who can check this property since it knows everything about trading Right.

Finally, the feasibility of the o�ered volume of Good makes sense for myopic sellers.
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T������ 3.3. Let 0 < n < 1. Assuming initial endowments of buyers are feasible for n , the o�ered
volume of Good is also feasible and each act of a buyer in a round needs at most a constant-time |⌫ |
steps, the following holds.
(1) The time-complexity of the auction-based algorithm is at most |⌫ |3 (1 + log1+n<); hence, the

auction-based algorithm is polynomial in the input size.
(2) For each participant, its basket assigned by the algorithm is feasible and its price plus 1 is bigger

than the total price of its initial endowment.
(3) The terminal price of Right is equal to the terminal price of Good.
(4) Relative to terminating prices, each buyer or seller gets a basket of utility at least (1 � 2n) times

the utility of its optimal feasible basket.

P���� (S�����). We denote, only in this sketch, the total initial endowments of Money, Right
and Good by<, A ,6 and recall that A = 6. We �rst observe that at each stage of the algorithm, the
total surplus is at most 2< and that in the �rst iteration, all items of Good and Right are paired and
after the �rst iteration, a buyer owes to the system cash only for Money of their initial endowment.
(2) and (3) now follow directly from the description of the algorithm.

We further deduce that the number of rounds in an iteration is at most 2 + |⌫ | and that the total
number of iterations is at most 1 + log1+n<. This proves (1).
Finally we show in Lemma A.6 that relative to terminating prices, each buyer or seller gets a

basket of utility at least (1 � 2n) times the utility of its optimal feasible basket. This proves (4).
⇤

R����� 3 (C��������� ���������� �� T������ 3.3). All utility functions are known and
monotone, D1 (0, G) is linear and D1 (G, 0) is concave. Let - be the current basket of buyer 1. In the
algorithm, buyer 1 does not need to know (1 , it only needs to
(1) Find maximum : such that D1 (G(- ) + :, 0) � D1 (G(- ), 0) > D1 (0, 2:), thus needs to solve:

given a constant  , �nd max : such that D1 (G(- ) +:, 0) �D1 (G(- ), 0) >  : ; we assume that
this can be done in a constant time by buyers.

(2) Buy at most : items of Couple from buyers, satisfying the invariant of OUTBID.

3.2 Development of willingness to pay and frustration over trading rounds
The Markets happen subsequently in a sequence. In this paper we study only the regime when
the Markets happen deep in a distribution crisis. This enables us to assume from now on that the
individual utility of Good does not change in subsequent Markets.
What changes is the individual utility of Money: buyers who sell items of Right enter the

subsequent Market with more Money and the new items of Money can be used, by the rules, only
to buy items of Good or Right. Hence, the utility function of Money changes for these buyers. We
note that, since the individual utility of Good is unchanged, that the change of the individual utility
of Money can equivalently be described as a change of the willingness to pay.

De�nition 3.4 ((potential) willingness to pay). Let buyer 1 sell, in the current MarketMg , items
of the Right for the total price I1 . If 1 buys Right then we let I1 = 0. Their willingness to pay,
denoted byFg

1 associates, with a positive G , maximum amountF1 (G) of Money of the same utility
as amount x of Good, i.e.,F1 (G) satis�es Dg1 (G, 0) = D

g
1 (0,F1 (G)). Their potential willingness to pay,

denoted by lg+1
1 , is de�ned as lg+1

1 (G) := Fg
1 (G) + I1 , G arbitrary.

R����� 4. As de�ned, the potential willingness to pay of the hesitant traders increases in subsequent
rounds due to selling their Right, but why it does not decrease for the "active" buyers who have less
Money in subsequent rounds due to purchasing Good? The reasoning is analogous to comments after
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De�nition 3.2. If buyers are institutions (e.g., hospitals) which have practically unlimited amount of
money regularly supplied and their willingness to pay does not decrease in the middle of a crisis. We
note that with non-myopic traders we adopt di�erent assumptions and oscillations do occur.

T������ 3.5. Let us consider a Crisis satisfying (1) the total supply, the individual demand and
the individual utility of Good do not change in the sequence, (2) the Markets are implemented by the
auction-based algorithm and (3) after a Market of the sequence ends, the willingness to pay in the next
Market is equal to the potential willingness to pay for the next market. Then in all but possibly the
�rst Market, each individual frustration is at most 1/2.

P���� (S�����). Let Market Mg , g � 1 of the sequence ended and let us consider the next
MarketMg+1. By the assumptions of the theorem, the auction-based algorithm repeats the steps of
MarketMg . After the �nal step of the auction forMg , the willingness to pay of the buyers with
zero frustration inMg is saturated.
However, the buyers with positive frustration inMg (let us call them frustrated) remain active

since they acquired additional funds inMg . Let 1 be such a frustrated buyer. The willingness to
pay assures that 1 is willing to buy an additional number of items of Couple which is equal to
the number =1 of items of Right 1 currently sold, equivalently to the number of items of Right
1 sold inMg ). Let (1 be the set of =1 items of Couple containing the items of Right buyer 1 sold
so far inMg+1. Buyer 1 buys the Couple of (1 at an increased price which in turn frees funds of
non-frustrated buyers who may buy back. During this process the frustration of 1 can only go
down, and non-frustrated buyers stay with zero frustration. Hence, we only need to rule out the
case that the �nal frustration of 1 is strictly bigger than 1/2. ⇤

4 MARKETWITH NON-MYOPIC TRADERS
While the previous section considered market-clearing as an optimal solution of a system with
myopic traders, this section investigates solutions of multi-round trading systems with traders
capable of optimizing over a long horizon. We derive an explicit formulation of the solution in
a form of the interaction’s equilibrium, examine its robustness with respect to coalitions, and
formulate an upper bound on the arising Price of Anarchy.

4.1 Game theoretic formulation
Considering non-myopic traders substantially increases the complexity of the situation, making
the Crisis a sequential game. Let us �rst introduce a speci�c extension of the single-round Market
with such traders that we call the Market game.

Formally, the Market game is a tuple (Mg ,⇧, `), where Mg is a Market as de�ned previously,
with particular utilities for sellers and buyers. The sellers are motivated by pro�t, so their utility is
the amount of Money they acquired in a Market. We modify this simple model by subtracting the
amount of Good they are left with after the Market. This represents the cost of storing, as well as
the reputation damaged by not selling the scarce Good. Together,

DgB (G(⌫gB ),M(⌫gB )) = M(⌫gB ) + 2G(⌫gB ),

where 2 < 0 is a suitable constant. A buyer, on the other hand, wishes to keep a steady supply of
Good during the Crisis. Here, we assume each buyer makes use only for the Good they consume at
the end of the Market via

Dg1 (G(⌫g1),M(⌫g1)) = min
�
⇡1,G(⌫g1)

 
.
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Fig. 2. An illustration of the Sequence of Market games, see main text.

⇧ is a set of strategies of the traders. We assume each seller has access to the amount of Good
every seller has, as well as Money and Demand1 each buyer has. On the other hand, each buyer
has access only to the amount of Money and Good they already own, as well as their Demand. We
consider this assumption su�ciently realistic as the sellers may invest into some market research,
while availability of such information to the buyers remain rather limited. The strategy of each
seller is thus a function cB : R+,2 |⌫ |+ |( |0 ! R+,20 , denoted as

cB (⌧g
⌫,"

g
⌫,⌧

g
( ) = (EgB , ?gB ),

where EgB  ⌧g
B is the o�ered volume of Good at price ?gB by seller B in Market g . Based on the total

o�ered volume of Good + g =
Õ

B2( E
g
B and Demand of buyers, a fairness mechanism q allocates the

Right. When o�ering Right for sale, a buyer is given the o�ers of sellers and the amount of Good,
Money and Right they have. Their strategy for this task is hence a function ĉ1 : R+,2 |( |+30 ! R+,20 ,
denoted as

ĉ1 (Eg( , ?g( ,⌧g
1 ,"

g
1 ,'

g
1) = (Fg

1 ,@
g
1),

where Fg
1  '

g
1 is the o�ered volume of Right at price @g1 . When declaring acceptable price and

volume, a buyer is also given the o�ers of the other buyers. Summarising, the (complete) strategy
of a buyer 1 is a function c1 : R+,2 |( |+3+2( |⌫ |�1)0 ! R+,60 , written as

c1 (Eg( , ?g( ,⌧g
1 ,"

g
1 ,'

g
1,F

g
�1,@

g
�1) = (Fg

1 ,@
g
1, E

g
1, ?

g
1,F

g
1,@

g
1),

where ·g�1 = {·g10 |1
0 2 ⌫ \ {1}} and ·g1 denote acceptable amounts of the corresponding quantities

for buyer 1. We will denote c = c( ⇥ c⌫ the strategy pro�le of all traders. After all traders declare
their bids, the Trading begins, which is done via our particular market mechanism.

De�nition 4.1. The market mechanism is a function ` : ⇧ ⇥ R+,2 |) |+ |⌫ |
0 ! R+,2 |) |

0 , written as

` (Eg( , ?g( ,Fg
⌫,@

g
⌫, E

g
⌫, ?

g
⌫,F

g
⌫,@

g
⌫,⌧

g
) ,"

g
) ,'

g
⌫) = ⌫g) ,

where ⌫gC is basket containing the amount of Good and Money C gained during trading. The market
mechanism we consider has two stages. In the �rst stage, the buyers use the Right they were
assigned to buy as much Good as they desire. In the second stage, the buyers buy Good and Right
in equal volume, until they buy their desired volume of either, or they have no Money left. In both
stages, items o�ered at lower price are traded �rst. When more traders o�er Good or Right at the
same price, they are treated as a single trader until one runs out of items for sale. We describe
the process in more detail using the notion of a compatible buyer for each trade. In the �rst stage,
a buyer 1 is said to be compatible with o�ers of ( 0 ⇢ ( if ?g1 � ?gB0 , 'g1 > 0 and EgB0 > 0 8B 0 2 ( 0.
We denote the set of buyers compatible with o�ers of sellers in ( 0 during the �rst stage as ⇠1 (( 0).
1Since the fairness mechanism is assumed to be public knowledge, the traders also know (for some o�ered volume of Good)
the amount of Right each buyer will be assigned.
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ALGORITHM 1: Market mechanism
�⌧g

C ,�"
g
C  0 8C 2 )

6 sort(unique({?B |B 2 (})) // Sorted list of unique prices of Good
A  sort(unique({@1 |1 2 ⌫}))
/* First stage when buyers use their Right */
for ? in 6 do

( 0  {B |B 2 (, ?B = ?} // Set of sellers offering Good at a given price
while |⇠1 (( 0) | > 0 do

Eg  Õ
B2(0 EgB // Total offered volume at this price

Eg  |⇠1 (( 0) | min12⇠1 ((0) ("g
1
/?,'g

1
�Fg

1
, Eg1 ) // Total desired and affordable volume

+ g  min(Eg , Eg )
�⌧g

B  �⌧g
B �+ g/|( 0 |, 8B 2 ( 0

EgB  EgB �+ g/|( 0 |, 8B 2 ( 0
�⌧g

1
 �⌧g

1
++ g/|⇠1 (( 0) |, 8B 2 ( 0

'g
1
 'g

1
�+ g/|⇠1 (( 0) |, 81 2 ⇠1 (( 0)

"g
1
 "g

1
� ?+ g/|⇠1 (( 0) |, 81 2 ⇠1 (( 0)

Eg1  Eg1 �+
g/|⇠1 (( 0) |, 81 2 ⇠1 (( 0)

end
end
/* Second stage when buyers buy Right and Good in equal quantity */
for ? in ; do

for @ in A do
( 0  {B |B 2 (, ?B = ?}
⌫0  {1 |1 2 ⌫,@1 = @}
while |⇠2 (( 0,⌫0) | > 0 do

Eg  Õ
B2(0 EgB // Total offered volume of Good at this price

Fg  Õ
12⌫0 Fg

1
// Total offered volume of Right at this price

Eg  |⇠1 (( 0) | min12⇠1 ((0) ("g
1
/(? + @), Eg1 )

Fg  |⇠1 (( 0) | min12⇠1 ((0) ("g
1
/(? + @),Fg

1 )
+ g  min(Eg , Eg ,Fg ,Fg ) // Total volume to be traded
�⌧g

B  �⌧g
B �+ g/|( 0 |, 8B 2 ( 0

EgB  EgB �+ g/|( 0 |, 8B 2 ( 0
Fg
1
 Fg

1
�+ g/|( 0 |, 81 2 ⌫0

�⌧g
1
 �⌧g

1
++ g/|⇠2 (( 0,⌫0) |, 81 2 ⇠2 (( 0,⌫0)

"g
1
 "g

1
� (? + @)+ g/|⇠2 (( 0,⌫0) |, 81 2 ⇠2 (( 0,⌫0)

Eg1  Eg1 �+
g/|⇠2 (( 0,⌫0) |, 81 2 ⇠2 (( 0,⌫0)

Fg
1  Fg

1 �+
g/|⇠2 (( 0,⌫0) |, 81 2 ⇠2 (( 0,⌫0)

end
end

end
return: (⌧g

) + �⌧g
) ,"

g
) + �"g

) )

Similarly, a buyer 1 is compatible in the second stage with o�ers of sellers in ( 0 and buyers in
⌫0 ⇢ ⌫ \ {1} if ?g1 � ?gB0 , @

g
1 � @g10 and E

g
B0,F

g
10 > 0 8B 0 2 ( 0,1 0 2 ⌫0. We denote the set of buyers

compatible with o�ers of sellers in ( 0 and buyers in ⌫0 as ⇠2 (( 0,⌫0). The structure of the market
mechanism is outlined in Algorithm 1, and the overall Market game can be found in Algorithm 2.

Similarly as in the previous section, we are interested in the performance of the system over the pe-
riod of multiple rounds, each realized by aMarket game. To distinguish this implementation of Crisis
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ALGORITHM 2: Market
input :⌧g

C ,"
g
C , 8C 2 )

(EgB , ?gB )  cB (⌧g
⌫,"

g
⌫,⌧

g
( ), 8B 2 (

'g⌫  q (ÕB2( EgB ,⇡⌫)
(Fg

1
, ?g

1
)  ĉ1 (Eg( , ?

g
( ,⌧

g
⌫,"

g
⌫,'

g
⌫), 81 2 ⌫

(Fg
1
, ?g

1
, Eg1 , ?

g
1 ,F

g
1 ,@

g
1 )  c1 (Eg( , ?

g
( ,⌧

g
⌫,"

g
⌫,'

g
⌫,F

g
�1 ,@

g
�1 ), 81 2 ⌫

⌫g)  ` (Eg( , ?
g
( ,F

g
⌫,@

g
⌫, E

g
⌫, ?

g
⌫,F

g
⌫,@

g
⌫,"

g
⌫,'

g
⌫)

Dg)  D (G(⌫gC ),M(⌫gC ))
return: (G(⌫gC ),M(⌫gC ),Dg) )

ALGORITHM 3: Sequence

⌧1
C ,"

1
C ,DC  0, 8C 2 )

for g 2 {1, . . . T } do
G(⌫gC ),M(⌫gC ),Dg)  M(⌧g

) ,"
g
) )

DC  DC + DgC , 8C 2 )
⌧g+1
C ,"g+1

C  d (G(⌫gC ),M(⌫gC )), 8C 2 )
end
return: D)

with non-myopic traders from its myopic alternative, we refer to the sequential game consisting of
T Market games as the Sequence. Formally, the Sequence is a tuple S(T ) = ((,⌫,⇡,D,T ,q, `,l, d),
where (,⌫,⇡,q and ` have the same meaning as before, and d is a transition function. The purpose
of the transition function is to consume resources2 after each Market, and give traders additional
Good and Money for the next Market.

De�nition 4.2. The transition function d : R+,20 ! R
+,2
0 is given by

d (G(⌫gC ),M(⌫gC )) =
(
(6C + G(⌫gC ), 0) C 2 (,
(max(0,G(⌫gC ) � ⇡C ),<C +M(⌫gC )) C 2 ⌫,

where 6B and<1 is the amount of Good and Money sellers and buyers gain after each Market game
respectively. Our results rely on the assumption that the quantities 6B and<1 are stable during the
Sequence, and without a loss of generality, we set

Õ
B2( 6B = 1 and

Õ
12⌫<1 = 1. This assumption

is not only crucial for our analysis but also practical in the midst of a crisis.
The structure of the entire Sequence is given in Algorithm 3 and visualized in Figure 2. We

further assume the traders aggregate their utilities over the whole Sequence so that their resulting
outcomes are DC =

ÕT
g=1 D

g
C . As a solution of this interaction we employ the standard notion of

equilibrial strategies, such that no deviation of a trader may increase their utility.

De�nition 4.3. For a Sequence S(T ), a strategy pro�le c is an equilibrium, if for any other
strategy pro�le cC of C

T’
g=1

DgC (c) �
T’
g=1

DgC (cC , c�C ), 8C 2 ) ,

where DgC (c) is the utility received by trader C in Market g under strategy pro�le c .

At �rst glance, it may be unclear how the inclusion of Right in trading a�ects the strategies of
rational traders. We will demonstrate that a particular equilibrium of the Sequence is a natural
2Formally, we also need to remove Money of sellers to prevent them from obtaining utility for it multiple times.
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extension of the free market equilibrium, with a strictly lower Price of Anarchy. Informally, this
proposed strategy is that the sellers post the highest price that the buyers can a�ord to pay, taking
into account the cost of Right. As a result, buyers will purchase all available Good, which also
means some will purchase Right. Those who sell Right will do so for the same price as for the Good.
Buyers will not accept prices higher than this for either Right or the Good. Additionally, sellers
will not o�er more Good than they can sell in each Market. We refer to such strategies as Greedy,
and they will be of our focus further on.

De�nition 4.4. The Greedy strategies of the sellers are de�ned as

cB (⌧g
⌫,"

g
⌫,⌧

g
( ) = (6B , ?g ) , (1)

where ?g is the solution of ’
12⌫

"g
1 �max(0, ?g'g1 �"

g
1 ) = ?

g
’
12⌫

'g1 . (2)

For buyers, the Greedy strategies are

c1 (Eg( , ?g( ,⌧g
1 ,"

g
1 ,'

g
1,F

g
�1,@

g
�1) =

�
max(0,'g1 �"

g
1 /%

g ), %g ,'g1, %
g ,max(0,"g

1 /%
g � 'g1), %

g � , (3)

where %g =
Õ

B2( ?gB
|( | is the average of the selling price of Good.

We justify the exact form of Eq. (2) in the next section.

R����� 5. The Greedy strategy is for sellers to o�er at most the amount of Good they receive at
the beginning of each Market, as if the Good is perishable. At �rst this seems to force sellers to store
Good, but that is not the case as if all traders follow the Greedy strategy as all Good is sold. However, it
prevents certain deviations of buyers from Greedy to be bene�cial. See Theorem 4.6 for more details.

R����� 6 (C���������� �� D��������� 4.4). It may not be immediately clear how a seller can
derive ?g from Eq. (2), as it requires knowledge of 'g⌫ . However, if all sellers adopt the Greedy strategy,
the o�ered volume is

Õ
B2( 6B = 1, and the fairness function is publicly available. In contrast, 1 does

not know"g
�1 , and must therefore estimate the price of the Right by averaging the selling price of the

Good.

Our primary focus is on a shortage of Good, which we formalize by demanding that each buyer
can never purchase more than their Demand, even if they try to buy as much as possible in every
Market of the Sequence. This is analogous to point (3) of De�nition 3.2. To be more speci�c,

De�nition 4.5. Let M and S be a Market and a Sequence respectively. We say M has feasible
initial endowment, if when traders utilize the Greedy strategy outlined in De�nition 4.4, then
⇡1 > G(⌫g1), 81 2 ⌫. We say S is feasible if every Market of S is feasible.

4.2 Greedy equilibrial strategies
We will now demonstrate how the Market operates when all traders follow the Greedy strategy.
All sellers and buyers post the same selling prices, ?g and @g , respectively, for the Good and Right.
The amount of Good that all sellers can sell in the �rst stage is

Õ
12⌫ min{'g1,"

g
1 /?

g }. We will call
a buyer rich if ?g'g1 < "g

1 , and poor otherwise. In the second stage, poor buyers will o�er all the
Right that they cannot use in the �rst stage, as they know the prices set by sellers before o�ering
Right. The amount of o�ered Good is

Õ
12⌫ '

g
1 , which means the amount of Good sold in the second

stage is ’
12⌫

'g1 �min('g1,"
g
1 /?

g ) =
’
12⌫

max(0,'g1 �"
g
1 /?

g ).
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The amount of Money sellers get from the �rst and second stage is

�"g
( =

’
12⌫

?g'g1,

since all Good is sold, see Remark 5.
Note that this is less or equal than the amount of Money the buyers posses in total because the

Money used for selling Right may only be used in the following Market. That Money is the amount
of Right sold in the second stage times the price

�"g
⌫ =

’
12⌫

@g max(0,'g1 �"
g
1 /?

g ) � 0, (4)

where the equality holds only when ?g'g1 = "g
1 ,81 2 ⌫, so they can all buy everything in the �rst

stage. The inequality of the buyers thus dictates how much of the Money can be used to buy Good.
We will refer to �"( as useful Money in a Market and to �"⌫ as useless Money. The total Money in
the system is the sum of both, i.e.,’

12⌫
"g

1 = �"g
( + �"g

⌫ =
’
12⌫

?g'g1 + @
g max(0,'g1 �"

g
1 /?

g ).

We can also derive this equation by taking into account that the cost of the Good is ?g in the initial
stage and ?g + @g in the subsequent stage. This implies that’

12⌫
"g

1 �
@g

?g
max(0, ?g'g1 �"

g
1 ) = ?

g
’
12⌫

'g1, (5)

which o�ers a nice intuition: the Money each buyer has is e�ectively decreased by the (scaled)
frustration which ?g would induce. This is because the rich buyers will buy the amount of Right
exactly equal to frustration of the poor, hence the scaling by the relative price. If the traders follow
Greedy, then @g = ?g and Eq. (5) reduces to Eq. (2).

R����� 7. In the following Market, the useless Money is allocated to buyers who were poor in the
previous Market. Speci�cally, in the following Market a buyer will have

"g+1
1 =<1 + @g'g1 5

g
1 =<1 +

@g

?g
max(0, ?g'g1 �"

g
1 ), (6)

or, in other words, they earn a portion of the Money proportional to their frustration 5 g1 (see Der�nition
2.5) in this Market.

T������ 4.6. The Greedy strategies in Eqs. (1) and (3) form a coalition-proof equilibrium of a
feasible Sequence of any length. The equilibrium can be computed e�ciently.

P���� (S�����). Let us address the three claims separately.
(1) Greedy strategy is an equilibrium: Seemingly, the sellers can simply choose the (free) market-

clearing price, which would imply all Money would need to be spend on Good. However,
a poor buyer would not sell his Right for free, since increasing the price gives them more
Money for the next Market, increasing their utility3. This would imply that not all Good
would be sold, decreasing the sellers’ utility. Therefore, in non-trivial cases, ?g <

Õ
12⌫ "g

1Õ
12⌫ 'g

1
,

leaving some useless Money which the poor buyers split among themselves.
We focus on deviations in a single Market, followed by Greedy strategy. Any deviation from
the Greedy strategy by any trader will either have no impact on the Market or result in less
Good being sold. The main focus is on how the price will change in the following Market.

3Furthermore, decreasing the amount of Good sold would decrease the price in the following Market.
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When sellers o�er less Good in a Market and sells it in the next, we show the price in the
following Market either decreases compared to if they followed the Greedy strategy or is
lower than in the current Market. This means it is not bene�cial to o�er less Good. Next,
consider a deviation of a buyer, which results in less Good being sold in the current Market.
The buyer hopes this decreases in the next Market the price since more Good will be available.
However, following the Greedy strategy, sellers will not o�er the addition Good, leading
to the same distribution of Rights as in the current Market. Additionally, since some Good
is not sold, the total amount of Money in the next Market increases, and so does the price.
Furthermore, if a deviating buyer was poor in the current Market, they will receive less
Money from selling Rights, limiting the amount of Good they can buy in the next Market.
When considering a deviation in the last Market of the Sequence, it is clear that if less Good
is sold, no trader can increase their utility. Therefore, it is not bene�cial to deviate from the
Greedy strategy in the last Market of the Sequence. Since we showed that deviating and
following the Greedy strategy in the next Market is not bene�cial for any trader, they are
incentivized to follow the Greedy strategy in the second-to-last Market. The conclusion is
reached through induction.

(2) The equilibrium is coalition-proof: The introduction of the Right negatively impacts rich
buyers. Even if they all choose to deviate and not purchase the Right, their payo� will not
increase. This is because the sellers will continue to o�er the same amount of Good, resulting
in a continuously increasing price. Additionally, sellers do not want to join a coalition that
only sells to rich buyers, as it would require them to hold back Good for future Markets,
reducing their utility.

(3) The equilibrium can be computed e�ciently: The Greedy strategy can be computed e�ciently,
since it only requires solving Eq. (5), which involves a computation of a �xed point. This can
be done e�ciently in this case, since Eq. (2) can be partitioned into |⌫ | + 1 price intervals,
where in each the computation reduces to solving a simple linear equation.

⇤

When players follow the Greedy strategy, all Goods are sold, and the amount of Goods o�ered
remains the same in every Market. Therefore, we will no longer include the upper index of allocated
Right in the rest of this section and will use '1 to denote Right allocated to 1 in any Market. It is
also worth noting that

Õ
12⌫ '1 = 1.

The existence of an analytic solution for a Sequence with an arbitrary fairness function remains
uncertain. However, in certain speci�c cases, a solution can be found. One such example is a system
with only one buyer, which is akin to a free market. Additionally, if the ratio '1/<1 is the same for
all buyers, the system again reduces to a free market, as can be observed from Eq. (4). Notably, an
analytic solution also exists if all the rights are allocated to a single buyer, which implies a more
general result.

P���������� 4.7. Let all traders follow the Greedy strategy. Then the price ?g in MarketMg of a
Sequence with fairness function q satis�es

?g �
Õ

12⌫ (U1 + 1)"g
1

2
, where U1 = q1 (+ ,⇡).

P���� (S�����). The fairness functionq can be expressed as a linear combination of distributions
in which all Rights are allocated to a single buyer. The left hand side of Eq. (2) is concave in ?g ,
which after simple algebraic manipulation leads to the statement of the proposition. ⇤

We present a more thorough study of such fairness functions in Appendix B.
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4.3 Development of frustration over trading rounds
One may observe certain similarities between Eqs. (5) and (6): the frustration decreases useful
Money a buyer has, and increases the amount they will have in the following Market. Now we will
show that the price oscillates around a �xed value and tends to it over time. Moreover, that �xed
value is the (free-)market clearing price.

P���������� 4.8. Let all traders follow the Greedy strategy. Then the mapping of the current price
to the next one is a non-expansive mapping on R with the L1 norm, resulting in the limiting price
being one.

This suggests that the Sequence ultimately reaches a stable state. Additionally, the price is the
same as it would be in a free market

Õ
12⌫<1Õ
B2( 6B

= 1. This means the fairness mechanism primarily
impacts the income of buyers.

P���� (S�����). Similar to the free market, the price is an increasing function of the Money each
buyer has, and therefore also of the total amount. This implies, after some algebraic manipulation,
that if the price is smaller than one, it increases in the following Market, and vice versa. The
remaining task is to demonstrate that |?g � 1| � |?g+1 � 1|, which can be done through a simple
case study.

⇤

Proposition 4.8 illustrates that if all traders employ Greedy strategies, the Sequence eventually
stabilizes. In this scenario, the amount of Money and Goods entering and leaving the system are
equal, since limg!1 ?g = 1. The amount of Money buyers start a Market with hence stabilizes to

"1 =<1 +max(0,'1 �"1).

This leads to the Price of Anarchy being twice as high in the Sequence with free market than in a
one with a fairness mechanism.

T������ 4.9. Consider a Sequence where traders follow the Greedy strategy. Then the Price of
Anarchy in the Market with fairness is at most 1/2 of the free market’s PoA as T !1.

P����. When investigating frustration, we can focus only on the poor buyers, for whom'1 > "1 .
Asymptotically, Eq. (6) thus becomes

"1 =
<1 + '1

2
,

corresponding to the same amount of Good they can buy, since the price is equal to one. This
means their frustration is

51 =
'1 � <1+'1

2
'1

=
1
2

✓
1 � <1

'1

◆
 1

2
.

In contrast, since in the free market"1 =<1 , the frustration of poor buyers is twice as high, i.e.,

51 =
'1 �<1

'1
= 1 � <1

'1
.

For each poor buyer, the frustration is asymptotically half of what it would be in the free market.
Since the frustration of the rich buyers is zero, the Price of Anarchy is asymptotically half of what
it would be in the free market, once the initial portion of the Sequence becomes insigni�cant. ⇤
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5 CONCLUSION
In this paper, we present a system that combines market and fairness mechanisms to more equitably
redistribute critical goods during times of need. The fairness mechanism assigns the buyers their
buying rights, representing the amount of goods they are entitled to. We de�ne a multi-round
trading environment in which the buyers’ rights and goods o�ered by the sellers are traded. To
evaluate the fairness of the system, we use a concept of “frustration”, which measures the di�erence
between the amount of right allocated to a buyer and the amount of good they are able to acquire in
the market. We then de�ne an analog of the Price of Anarchy in our system as the sum of individual
frustrations. Our primary focus is to demonstrate that by using buying rights, the fairness of the
system improves compared to an unregulated market.
To understand the performance of our system, we study two di�erent implementations of the

single-round market. If the buyers are myopic, we formulate the solution in the form of market-
clearing prices and design an algorithm that computes an approximate solution in polynomial
time. We also show that the Price of Anarchy in the system is upper bounded by 1/2. In the case
of traders who optimize over multiple rounds, the solution takes the form of an equilibrium in a
sequential game. We provide an explicit formulation of the solution and demonstrate that it is also
computable in polynomial time. As the number of trading rounds increases, the upper bound on
the Price of Anarchy again approaches 1/2. However, it remains an open question whether there
exists a system that can achieve a zero Price of Anarchy in the limit.

Future work. We believe that our work has two major limitations. Firstly, we have focused on
the most severe crises scenarios and assumed a steady, albeit small, resupply of goods and money
over multiple trading rounds. We would like to further explore the impact of more complicated
system dynamics, such as the bullwhip e�ect that occurs when there is a sudden surge in demand
at the onset of a crisis. Secondly, our results are not speci�c to any particular fairness mechanism.
Examining speci�c mechanisms may alter the system dynamics and potentially improve the bounds
on the Price of Anarchy. Additionally, it may be possible to design practical optimal fairness rules
using similar approaches as those employed for voting mechanisms, as seen in [Koster et al., 2022].
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A PROOFS
T������ 3.3. Let 0 < n < 1. Assuming initial endowments of buyers are feasible for n , the o�ered

volume of Good is also feasible and each act of a buyer in a round needs at most a constant-time |⌫ |
steps, the following holds.
(1) The time-complexity of the auction-based algorithm is at most |⌫ |3 (1 + log1+n<); hence, the

auction-based algorithm is polynomial in the input size.
(2) For each participant, its basket assigned by the algorithm is feasible and its price plus 1 is bigger

than the total price of its initial endowment.
(3) The terminal price of Right is equal to the terminal price of Good.
(4) Relative to terminating prices, each buyer or seller gets a basket of utility at least (1 � 2n) times

the utility of its optimal feasible basket.

We denote by<, A ,6 the total initial endowments of Money, Right and Good and recall that A = 6.
We prove the theorem in a sequence of lemmata.

L���� A.1. At each stage of the algorithm, the total surplus is at most 2<.

P����. It is true in the beginning by assumption (1) of De�nition 3.2, the surplus is gradually
decreased during each iteration and at the end of each iteration, deleted funds are given back. ⇤

L���� A.2. In the �rst iteration, all items of Good and Right are paired.

P����. By assumptions (2) of De�nition 3.2, all buyers prefer to buy at least the fair amount of
items of Couple for the initial price; by assumption (1) there is enough cash in the initial surplus of
each buyer to do it. ⇤

L���� A.3. After the end of the �rst iteration: (1) a buyer owes to the system only cash for items of
Money in its initial endowment and (2) total cash among participants is always at most<.

P����. The �rst part follows from Lemma A.2 since all items of Good and Right are sold and
bought at the end of the �rst interaction. For the second part we note that among sellers, the total
cash is ?6 since all items of Good were sold in the �rst iteration and among buyers, the total cash
is at most< � ?6 since the buyers payed for the items of Good and there is no cash left from the
initial endowments of Right since all items of Right were sold and bought in the �rst iteration. ⇤

L���� A.4. The number of rounds in an iteration is at most 2 + |⌫ |.
P����. We observe that in each fully completed round, either none of the buyers buys items of

Couple and the trading ends, or none of the buyers buys items of Couple in the next round and
the trading ends or at least one buyer acts for the last time in this iteration: if in the current round
every buyer buys items of Couple only from itself then in the next round nobody buys since nobody
got additional cash. Hence let a buyer 1 buy items of Couple from another buyer in the current
round. It means that 1 gets no additional cash in this iteration since it has no items of Couple for 2 ,
otherwise it would have to buy these �rst by the rules of the outbid and the current round is the
last active round for 1. ⇤

L���� A.5. The total number of iterations is at most 1 + log1+n<.

P����. Each iteration raises the price of Couple by the factor of (1 + n) and the max price per
unit of Couple cannot be bigger than the total surplus. ⇤

L���� A.6. Relative to terminating prices, each buyer or seller gets a basket of utility at least
(1 � 2n) times the utility of its optimal feasible basket.
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P����. (1) Buyers owe nothing to the system since after the end of the trading they keep only
the items of Money they can buy with their remaining cash.

(2) After the end of the trading and buying items of Money, each participant is left with less than
1 dollar by the second part of Lemma A.3.

(3) The basket of each seller is optimal since all items of Good were sold.
(4) The only reason why the basket of buyer 1 is not optimal is: For some items of Couple, 1

payed (1+n)2 where 2 is the terminal price of Couple. Let G (~ respectively) denote the total number
of items of Couple (Money respectively) in b’s optimal basket. The utility of the optimal basket of 1
is thus D1 (G, 0) + D1 (0,~). By assumption (3) of De�nition 3.2, ~ > 2G .

In 1’s terminal basket, there are G items of Couple and at least ~ � n2G � 1 items of Money. First
let n2G � 1. The utility of 1’s terminal basket is thus, using the assumption on the linearity of the
utility of Money, at least D1 (G, 0) + D1 (0, (1 � 2n)~) = D1 (G, 0) + (1 � 2n)D1 (0,~).
Secondly let n2G < 1. The utility of 1’s terminal basket is thus at least D1 (G, 0) + D1 (0, (~ � 2))

and Claim 5 holds since we assume 1 > n > 2/"1 . ⇤

Now we are ready to prove Theorem 3.3.

P����. (1) It follows from Lemmata A.4, A.5 that the time complexity of the auction-based
algorithm behaves asymptotically as |⌫ |3 (1 + log1+n<).
(2) follows from (1) of Lemma A.3., (3) follows from the description of the algorithm and (4) is

Lemma A.5. ⇤

T������ 3.5. Let us consider a sequence of Markets satisfying (1) the total supply, the individual
demand and the individual utility of Good do not change in the sequence, (2) the Markets are imple-
mented by the auction-based algorithm and (3) after a Market of the sequence ends, the willingness to
pay in the next Market is equal to the potential willingness to pay for the next market. Then in all but
possibly the �rst Market, each individual frustration is at most 1/2.

P����. Let Market MarketMg , g � 1 of the sequence ended and let us consider the next Market
Mg+1. By the assumptions of the theorem, the auction-based algorithm repeats the steps of Market
Mg . After the �nal step of the auction for Mg , the willingness to pay of the buyers with zero
frustration inMg (let us call them happy) is saturated.
However, the buyers with positive frustration inMg (let us call them frustrated) remain active

since they acquired additional funds in Mg . Let 1 be such a frustrated buyer. We recall that its
willingness to pay, given the current price of the Couple (which is equal to the �nal price of Couple
in Mg ), assures that 1 is willing to buy an additional number of items of Couple which is equal
to the number =1 of items of Right 1 currently sold (which is equal to the number of items of the
Right 1 sold inMg ). This is because 1 currently has cash for these =1 sold items of Right.

Let (1 be the set of =1 items of Couple containing the items of Right buyer 1 sold so far inMg+1.
Buyer 1 buys the Couple of (1 at an increased price which in turn frees funds of active buyers

who may buy back. During this process the frustration of 1 can only go down, and active buyers
stay with zero frustration. Hence, we only need to rule out the case that the �nal frustration of 1 is
strictly bigger than 1/2. Let 0 < =01 < =1 be such that =1 � =01 = '1/2 where we denote by '1 the
number of assigned rights to 1 inMg (and thus also inMg+1).
Let us assume 1 doubled price of Couple in its �rst bid, and buys =01 additional items of Couple

of ( . Buyer 1 only needs to buy items of Good by which 1 spends all I1 additional items of Money
it got from the previous MarketMg :

• 2=01I1/=1 items of Money for buying =01 items of Good from (1 , and
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• (=1 � 2=01)I1/=1 items of Money needed to increase the price of '1 � =1 items of Good 1
already has, since =1 � =01 = '1/2.

Happy buyers from which 1 bought new items of Couple are not willing to buy back since:
They obtain in total 2=01I1/=1 items of Money for the sold =01 items of Couple of (1 , but in order

to increase the price further, 2(=1 � =01)I1/=1 items of these obtained Money is needed to increase
the price of the remaining (=1 � =01) items of Couple in (1 . Clearly by the de�nition of =01 and since
=1  '1 , (=1 � =01) = '1/2 � =01 .

Summarising, the �nal frustration of 1 inMg+1 is at most 1/2 by spending in addition only Money
obtained from selling Right inMg .

⇤

T������ 4.6. The Greedy strategies (1) and (3) form a coalition-proof equilibrium of a feasible
Sequence of any length. The equilibrium can be computed e�ciently.

P����. We proof the theorem as a sequence of lemmas. We begin with two useful lemmas,
showing how the price changes with Money, and throughout the Sequence.

L���� A.7. Let the traders follow the Greedy strategy. Then ?g , given as a solution of Eq. (2) is
increasing function of"g

1 81 2 ⌫, g 2 {1, . . . T }.
P����. Taking the derivative of both sides yields

d?g

d"g
10

=
d

d"g
10

’
12⌫

"g
1 �max(0, ?g'1 �"g

1 ) = 1 �
’
12⌫

sign(?g'1 �"g
1 )

✓
d?g

d"g
10
'1 � 1

◆
=

1 + #̃ � d?g

d"g
10

’
12⌫

sign(?g'1 �"g
1 )'1, ) d?g

d"g
10

=
1 + #̃
1 + '̃

� 1,

where #̃ > 0 is the number of poor buyers and 0 < '̃ < #̃ is the sum of their Right. ⇤

L���� A.8. Let the traders follow the Greedy strategy. Then ?g�1 < 1 ) ?g > ?g�1, resp.
?g�1 > 1) ?g < ?g�1.

P����. Substituting Eq. (6) into (5) gives’
12⌫

<1 +max(0, ?g�1'1 �"g�1
1 ) �max(0, ?g'1 �"g

1 ) = ?
g ,

1 +
’
12⌫

max(0, ?g�1'1 �"g�1
1 ) �max(0, ?g'1 �"g

1 ) = ?
g , (7)

If ?g�1 < 1, then the useful Money also is’
12⌫

"g�1
1 �max(0, ?g�1'1 �"g�1

1 ) < 1,

or in other words ’
12⌫

"g�1
1 < 1 +

’
12⌫

max(0, ?g�1'1 �"g�1
1 ).

Going back to Eq. (7), we see that

1 +
’
12⌫

max(0, ?g�1'1 �"g�1
1 ) = ?g +

’
12⌫

max(0, ?g'1 �"g
1 ),

’
12⌫

"g�1
1 < ?g +

’
12⌫

max(0, ?g'1 �"g
1 ) =

’
12⌫

"g
1 .



Jakub Černý, Anetta Jedličková, Martin Loebl, and David Sychrovský 23

Using Lemma A.7 we get ?g > ?g�1. Similarly we can show ?g�1 > 1) ?g < ?g�1. ⇤

To demonstrate that the Greedy strategy is an equilibrium, we show that no deviation from it is
bene�cial for any trader. We consider changes in the o�ered volume of Good and Right �rst.

L���� A.9. Let all traders follow Greedy except for a seller who o�ers less Good in a Market and
sells it in the following Market. Then his utility decreases as a consequence.

P����. Note that the scenario in which the seller deviates is denoted with a hat. Since the
fairness function is non-decreasing in the total o�ered volume, we get '̂g+11 � 'g+11 for all buyers.
For contradiction we also assume the deviation is bene�cial for the seller, i.e. ?̂g+1 � ?g+1. Since at
least one buyer didn’t get the Money for selling Right in g , we have’

12⌫
max(0, ?̂g+1'̂g+11 � "̂g+1

1 ) >
’
12⌫

max(0, ?g+1'g+11 �"g+1
1 ). (8)

Using Eq. (2) in both scenarios gives’
12⌫

"g+1
1 �max(0, ?g+1'g+11 �"g+1

1 ) = ?g+1, (9)

?gV +
’
12⌫

"g+1
1 �max(0, ?̂g+1'̂g+11 � "̂g+1

1 ) = ?̂g+1 (1 + V), (10)

or in combination with Eq. (8)
?gV + ?g+1 > ?̂g+1 (1 + V) .

The price if B deviates is thus upper bounded by the weighted average of prices under Greedy. We
can consider two cases.
(1) ?g < 1: Then by Lemma A.8, ?g+1 � ?g ) ?g+1 > ?̂g+1, which is a contradiction.
(2) ?g > 1: Again by Lemma A.8, ?g+1  ?g ) ?g > ?̂g+1. This means the seller could have sold

Good in g and increase his payo�.
⇤

L���� A.10. Let all traders follow Greedy except for a rich, resp. poor buyer who buys, resp. sells
less Right in a Market. Then his utility decreases as a consequence.

P����. If a buyer deviates in this way, it leaves sellers with more Good for the next Market, and
the buyers with more Money. But when following Greedy, the sellers will o�er the same volume of
Good in the next, leading to the same distribution of Right as in the last Market. And, since the
buyers now have more Money then by Lemma A.7, the price increases. Moreover, if 1 was poor in
g , then he will receive less Money from selling Right, limiting the amount of Good he can buy in
the next Market

"̂g+1
1 =<1 +max(0, ?g ('1 �V) �"g

1 ) < "g+1
1 .

⇤

Deviating from Greedy by changing of the price has a similar e�ect.

L���� A.11. Let all traders follow the Greedy strategy. Then no trader can increase his utility by
changing the selling price of Good, resp. Right in a single Market.

P����. Let us start with B 2 ( changing ?gB . There are two cases
(1) ?gB < ?g : In this situation, B will get less Money in g , which will stay in the system. However,

in the following Market, the Money will be split proportionally to 6B , decreasing the utility
of B .
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(2) ?gB > ?g : The acceptable price of Good is the average of the selling prices. This means B will
not sell anything, decreasing his utility as was shown in Lemma A.9.

Similarly for 1 2 ⌫
(1) @g1 < @g : When selling at a lower price, 1 will get less Money in the next Market, decreasing

his utility. Furthermore, some rich buyers will be left with more Money, increasing the price
in the following Market.

(2) @g1 > @g : The acceptable price of Right is ?g = @g , so 1 will not sell any Right. This will again
get him less Money and increase the price in the next Market.

⇤

Now, let us focus on coalition-proofness.

L���� A.12. There does not exist any coalition of traders that could increase their individual
utilities by deviating from the Greedy strategy.

P����. Let us split the proof into three parts, depending on the composition of the coalition ⇠ .
(1) ⇠ ⇢ ⌫ : To increase the utility of buyers, they need to acquire more Good, meaning) \⇠ will

have less. Since G(⌫B ) = 0 8B 2 ( when following Greedy, ⌫ \⇠ need to acquire less. The
only way ⇠ can accomplish that is if they don’t buy Right from ⌫ \⇠ . But, similar to proof of
Lemma A.10, this would only lead to an increase in price, lowering the utility of 1 2 ⇠ .

(2) ⇠ ⇢ ( : The sellers have utility for Money, and since following Greedy they obtain all Money
the buyers have, ( \⇠ needs to get less Money. The proportion in which the sellers split the
Money of buyers is given by ?gB and 6B , of which they can in�uence ?gB . But any change in
price will not decrease Money ( \⇠ get. Decreasing will leave some Money for next Market,
of which ( \⇠ gets a portion. Increasing the price will leave ⇠ with extra Good, decreasing
their utility.

(3) ⇠ ⇢ ) : Again, ( \⇠ can only increase their utility if ( \⇠ get less Money. This can only
be accomplished if ⌫ \⇠ don’t buy from ( \⇠ , so they accept a lower price, which is still
larger than selling price of ( \⇠ . But if the selling price is lower, and they are selling only to
a subset of buyers, they cannot get more Money.

⇤

Finally, let us discuss the computational complexity of a Market utilizing the Greedy strategy.

L���� A.13. The Greedy strategy can be computed e�ciently.

P����. The computation of the Greedy strategy given the price of Good can be done in constant
time. What remains to show is that Eq. (2) can be solved e�ciently. But that is the case since the
price ?g 2 R+0 , allowing us to split the interval into at most |⌫ | + 1 intervals separated by pointsn
"g

1
'g
1

o
12⌫

. In each interval, Eq. (2) can be partitioned into |⌫ | + 1 price intervals, where in each the
computation reduces to solving a simple linear equation’

12⌫
"g

1 � (?g'g1 �"
g
1 )sign(?

g'g1 �"
g
1 ) = ?

g
’
12⌫

'g1 .

which can be solved e�ciently. If it’s solution lies in the corresponding interval, it is a solution
of Eq. (2). By Brouwer �xed-point theorem the solution is guaranteed to exist, since the price is
upper bounded by the free market clearing price. The complexity is thus linear in the number of
buyers. ⇤

This concludes the proof of Theorem 4.6 ⇤
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P���������� 4.8. Let all traders follow the Greedy strategy. Then the mapping of the current price
to the next one is a non-expansive mapping on R with the L1 norm, resulting in the limiting price
being one.

P����. In the �rst part of the proof, we eliminate simple cases when the price can be equal to
one. In other cases, the mapping is a contraction, which we will show in the second part of this
proof.

Let us begin with a statement about uniqueness.

L���� A.14. For any"g
1 � <1,'1 2 [0, 1], Eq. (2) has a unique solution.

P����. For �xed Money and Right of buyers, the left hand side is a concave, decreasing piece-
wise linear function of the price. Since the right hand side is linear, they cross at at most one point.
For ?g = 0, the left hand side is

Õ
12⌫"

g
1 �

Õ
12⌫<1 = 1, while the right is zero, so a solution

exists. ⇤

It may happen that the price is one in a Market. But if that happens, the price stays for the
remainder of the Sequence.

L���� A.15. Let all traders follow the Greedy strategy. Then ?g = 1) ?g+1 = 1.

P����. If ?g = 1, then ’
12⌫

"g
1 �max(0,'1 �"g

1 ) = 1,

and in the next Market ’
12⌫

"g+1
1 �max(0, ?g+1'1 �"g+1

1 ) = ?g+1,

but ’
12⌫

"g+1
1 =

’
12⌫

<1 +max(0,'1 �"g
1 ) = 1 +

’
12⌫

max(0,'1 �"g
1 ) =

’
12⌫

"g
1 .

However, this implies that ?g+1 = ?g . For contradiction, let ⌫0 be a set of poor buyers at g . The price
can only be in�uenced by the Money poor buyers have, since '1 is �xed. There are two options
(1) ?g+1 > ?g : Then the poor buyers have more Money

Õ
10 2⌫0"

g+1
10 >

Õ
10 2⌫0"

g
10 . But that is

not possible without increasing the amount of Money all buyers have, since for the rich
"g+1

1 =<1 .
(2) ?g+1 < ?g : In this case, the amount of Money the poor buyers have decreases, meaning for

some 1 2 ⌫ \ ⌫0,"g+1
1 > <1 . But for rich buyers"g+1

1 =<1 .
⇤

This result shows that the mapping is non-expansive if at some g , ?g = 1. In other cases, we
show the mapping is a contraction, i.e.

1 >
|?g+1 � 1|
|?g � 1| .

The rest of the proof of Proposition 4.8 is dedicated to proving this. Combining Eq. (2) and (6) we
get

?g � 1 =
’
12⌫

max(0, ?g�1'1 �"g�1
1 ) �max(0, ?g'1 �"g

1 ),
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so the contraction condition is

1 >
|?g+1 � 1|
|?g � 1| =

�����
Õ

12⌫ max(0, ?g'1 �"g
1 ) �max(0, ?g+1'1 �"g+1

1 )Õ
12⌫ max(0, ?g�1'1 �"g�1

1 ) �max(0, ?g'1 �"g
1 )

����� =�����
Õ

12⌫ max(0, ?g+1'1 �"g+1
1 ) �max(0, ?g'1 �"g

1 )Õ
12⌫ max(0, ?g�1'1 �"g�1

1 ) �max(0, ?g'1 �"g
1 )

����� =�����1 �
Õ

12⌫ max(0, ?g�1'1 �"g�1
1 ) �max(0, ?g+1'1 �"g+1

1 )Õ
12⌫ max(0, ?g�1'1 �"g�1

1 ) �max(0, ?g'1 �"g
1 )

����� . (11)

We split the remainder of the proof into two parts
(1) The �rst option to satisfy Eq. (11) is’

12⌫
max(0, ?g+1'1 �"g+1

1 ) <
’
12⌫

max(0, ?g�1'1 �"g�1
1 ), (12a)

’
12⌫

max(0, ?g'1 �"g
1 ) <

’
12⌫

max(0, ?g�1'1 �"g�1
1 ) . (12b)

Eq. (12b) gives ’
12⌫

max(0, ?g'1 �"g
1 ) <

’
12⌫

max(0, ?g�1'1 �"g�1
1 ),

’
12⌫

max(0, ?g'1 �"g
1 ) <

’
12⌫

"g
1 �<1,

�?g +
’
12⌫

"g
1 < �1 +

’
12⌫

"g
1 ,

1 < ?g . (13)

Then the Eq. (12a) ’
12⌫

max(0, ?g+1'1 �"g+1
1 ) <

’
12⌫

max(0, ?g�1'1 �"g�1
1 ),

’
12⌫

max(0, ?g+1'1 �<1 �max(0, ?g'1 �"g
1 )) <

’
12⌫

"g
1 �<1 .

Let us show that the inequality holds for all buyers, not just their sum. If 1 is poor in g , then
the inequality becomes

max(<1 �"g
1 , (?

g+1 � ?g )'1) < 0,

however"g
1 > <1 for a poor buyer, and using Eq. (13) and Lemma A.8 yields ?g+1 < ?g .

Otherwise"g
1 =<1 and ?g'1 �"g

1  0. Using Lemma A.8 we get ?g'1 �"g
1 > ?g+1'1 �<1 ,

so

max(0, ?g+1'1 �<1) < 0,

or 1 is rich in the next Market as well.
(2) Similarly the second option is’

12⌫
max(0, ?g+1'1 �"g+1

1 ) >
’
12⌫

max(0, ?g�1'1 �"g�1
1 ),

’
12⌫

max(0, ?g'1 �"g
1 ) >

’
12⌫

max(0, ?g�1'1 �"g�1
1 ),
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where the second condition similarly reduces to 1 > ?g . Focusing on the �rst one gives’
12⌫

max(0, ?g+1'1 �<1 �max(0, ?g'1 �"g
1 ) >

’
12⌫

"g
1 �<1 . (14)

Again, for a poor buyer in g we get

max(<1 �"g
1 , (?

g+1 � ?g )'1) > 0

which is again true. For a rich buyer we getmax(0, ?g+1'1 �<1), which can be zero. However,
since for the poor buyers the inequality was strict, Eq. (14) is satis�ed.

⇤

B CANONICAL SOLUTIONS
In this section, we study a solution of the Sequence with perhaps the simplest class of fairness
function. Speci�cally, this fairness function assigns all Right to a buyer with the =th largest Demand4

i1,=

 ’
B2(

EgB ,⇡

!
=

(Õ
B2( E

g
B if ⇡1 is the =th highest Demand,

0 otherwise.
(15)

We call it the n-canonical fairness function. Let 1= be the buyer receiving all Right. In g = 1 we get’
12⌫

"1
1 �max(0, ?1'1 �"1

1 ) = ?1
’
12⌫

'1,

’
12⌫

<1 �max(0, ?1'1 �<1) = ?1,

1 � ?1 +<1= = ?1, ) ?1 =
1 +<1=

2
. (16)

Therefore, in the second Market,"2
1=

=<1= + 1+<1=
2 �<1= = 1+<1=

2 and the price is’
12⌫

"2
1 �max(0, ?2'1 �"2

1 ) = ?2
’
12⌫

'1,

1 + 1 +<1=

2
�<1= � ?2 +<1= + 1 +<1=

2
�<1= = ?2

) ?2 =
2 + 2<1=

2
�<1= = 1.

This means 1 will have"3
1 =<1 + 1 � 1+<1

2 = 1+<1
2 = "2

1 and the cycle repeats.
Any fairness function q can be constructed as a sum of weighted sum of canonical mechanisms

q (+ ,⇡) =
|⌫ |’
==1

U=i1,= (+ ,⇡) . (17)

Since Eq. (2) is quasi-linear in this composition of Right’
12⌫

"g
1 �max(0, ?g (U'g1 + V'

g
1) �"g

1 ) = ?
g
’
12⌫

U'g1 + V'
g
1,

’
12⌫

(U + V)"g
1 �max(0, ?g (U'g1 + V'

g
1) � (U + V)"g

1 ) = ?
g
’
12⌫

U'g1 + V'
g
1 .

We want to split the maximum into two maxima, but

max(0, ?g (U'g1 + V'
g
1) � (U + V)"g

1 )  U max(0, ?g'g1 �"
g
1 ) + V max(0, ?g'g1 �"g

1 ),
4Ties are broken arbitrarily, but consistently.



Jakub Černý, Anetta Jedličková, Martin Loebl, and David Sychrovský 28

so computing each price separately gives a lower bound on the price in the composed system,
which can be obtained by solving

U
’
12⌫

"g
1 �max(0, ?g'1 �"g

1 ) + V
’
12⌫

"g
1 �max(0, ?g'1 �"g

1 ) = ?
gU

’
12⌫

'1 + ?gV
’
12⌫

'1

This approach can be further generalized to an arbitrary decomposition of the fairness function,
leading to a lower bound’

=

U=
’
12⌫

"g
1 �max(0, ?g'1,= �"g

1 ) =
’
=

U=?
g .

This construction is especially useful, since we can solve the = problems separately. This can be
done for the canonical fairness function, leading to a lower bound on price in a Sequence with and
arbitrary fairness function.

P���������� 4.7. Let all traders follow the Greedy strategy. Then the price ?g in MarketMg of a
Sequence with fairness function q satis�es

?g �
Õ

12⌫ (U1 + 1)"g
1

2
, where U1 = q1 (+ ,⇡).

P����. Let"g
1 be the amount of Money buyers have at the start of Market g . We can write the

distribution q as

q (+ ,⇡) =
|⌫ |’
==1

U=i1,= (+ ,⇡) .

where i1,= (+ ,⇡) is the n-canonical fairness function de�ned in Eq. (15), and U= 2 [0, 1].
In the system with canonical fairness function we can obtain an explicit solution in a similar

way to Eq. (16)’
12⌫

"g
1 �max(0, ?g'1= �"g

1 ) = ?
g ,

"g
1=
� ?g +

’
12⌫

"g
1 = ?g , ) ?g =

"g
1=

+Õ
12⌫"

g
1

2
.

Weighing the prices according to the decomposition of the fairness function, we obtain the statement
of the proposition. ⇤


