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Abstract. We model and study winter road maintenance when better maintaining vehicles are1

used which allows single passing maintenance in an arbitrary direction for most of the roads.2

Hence, the basic building block of a route is an orientation of a cycle. Historically, the mainte-3

nance is regionally divided into many independent parts-districts. Each district is a connected4

part of the regional network, and the regions, aside from being connected, have a geographically5

local character given by the planarity of the whole network. Such a local division is often re-6

quired by the regional authorities. This work aims to define such a district partition and suggest7

algorithms to construct it.8

Keywords: Capacity routing · Chinese postman · Arc routing · Graph packing · Matching9

Theory · Augmentation10

1 Introduction11

This is a follow-up to our paper [12] where the arc-routing problem (ARP) for symmetrically12

oriented networks is studied. In ARP, the objective is usually defined in terms of minimum13

cost traversal of a specified arc subset of a graph, possibly with constraints (see, e.g., [6]). For14

symmetrically oriented networks, the basic building block of a route is the oppositely oriented15

double edge and the subgraph spanned by a vehicle route is typically a tree. This leads to16

graph-cutting and tree-cutting problems, see [12].17

This current work reflects our experience with the planning of winter road maintenance18

when better maintenance vehicles are available. These vehicles have more advanced technology19

which allows them to treat both sides of most of the roads with one passing only. Hence, some20

wide roads need to be maintained in both directions, but for most of the roads, single passing21

maintenance in an arbitrary direction is su�cient. The most general situation contains one-22

way streets as well. This changes the problem: the basic building block of a route is an23

orientation of a cycle.24

The next important notion of this work is planarity. The road networks for the winter25

road maintenance are essentially planar, with a fixed planar embedding: this is intuitive and26

was recently tested and discussed in [3] where it is noted that the road networks could be27

made planar by a small number of adjustments which do not essentially change the practical28

application.29

1.1 Planar aspects of the winter road maintenance30

A typical plan of winter road maintenance in a region consists of hundreds of routes and is31

divided into many independent parts-districts. Each district has a compact local character32

given by the planarity of the whole network and contains one depot. Such a local division33



Table 1. The used notations in the paper

Notation Purpose
D Depot set
V Vertex set
A Arc set
E Edge set
G Undirected graph
D Directed graph
X Mixed graph
H Eligible embedded planar graph
G

0 Eligible enhanced graph
B Black faces set
e(a) An inserted arc
l(a) Length of arc a

c(v) Capacity of vertex v

C Capacity of depots
a, a

�1 Opposite oriented arcs
E Union of the routes
A

a Set of arcs of E
A

s One way street set
A

d Oppositely oriented arcs set
E

d Set of all double edges
J Min T-join
J
0 Set of edges of min T-join

is often required by the regional authorities. This aspect is important: it makes sense from34

the maintenance point of view since the winter conditions are similar locally, and also such35

district divisions reflect the habitual administrative divisions. On the other hand, historically36

fixed district divisions usually do not take into account the optimization of the winter road37

maintenance and other arc routing applications of the whole region. This suggests a natural38

problem to optimize district divisions around fixed depots; it is expensive to move a depot and39

region authorities typically do not want to do that. We refer to this problem as districting40

problem.41

1.2 Main contribution42

Most previous work for districting problem are heuristics based on plans for minimizing43

the total maintenance costs, see section 1.3. Our main contribution is to define a model of44

districting, i.e., of a partition of the whole road network into local districts, which involves two45

parameters crucial for many arc routing applications. Then, we reduce the defined districting46

problem to a novel planar graph packing problem.47

This connects districting for arc routing to Matching Theory, one of the most developed48

fields of Discrete Mathematics and Discrete Optimisation.49

We then study our approach numerically. A thorough algorithmic and complexity study50

of the new packing problem is left for future work.51

1.3 State of the Art52

In [12], we studied the problem of improving the routing for winter road maintenance in some53

regions in the Czech Republic. We found a formalization of the winter road maintenance54



based on graph cutting and splitting of necklaces, and our approach was based on integer55

and linear programming machinery. Our approach is also successfully implemented for winter56

road maintenance. We note that a recent paper [3] is devoted to exploring the structure of57

the graph, namely the planarity and bounded degrees, and compares various algorithms with58

e�ciency in mind.59

The authors in [4] designed heuristics for districting based on the amalgamation of edges.60

In [26], the authors present heuristics for districting which is not based on routing, but on61

indirectly related composing districts from facial cycles based on normalized average distances62

of a face to depots.63

The approach of designing heuristics to actual routing based on facial cycles was intro-64

duced in [22] and used later also in [9].65

It is argued in [26], based on [10], that actual routing where each route consists of a66

disjoint union of facial cycles is too rigid to lead to optimal design of actual routes in some67

situations.68

A closely related problem to ARP is the Mixed Chinese Postman Problem (CPP) [14]69

which is a generalization of the Eulerian path problem. In this problem, we are allowed to70

traverse each edge more than once. In the following, we explain the problem and its literature71

in detail.72

Given a strongly connected mixed graph X = (V,E,A) and a weight function w : E[A !73

N . The objective is finding a closed tour of X that traverses each edge and arc at least once,74

of minimum total weight. If X is an undirected graph, then CPP is solved by adding to it a75

minimum T-join [7].76

There is also an e�cient algorithm for CPP in strongly connected digraphs, see [8]. CPP77

becomes NP-complete for generally mixed graphs, see [30].78

Since CPP connects the theoretical material with the practical applications, it is exten-79

sively studied in the literature. A notable result is that the mixed CPP is fixed-parameter80

tractable, where the parameter is the number of the arcs [16]. This is an important result81

since road network graphs in Europe have typically only a few one-way streets. See also [15]82

and the references therein. We note that several sophisticated heuristics for solving CPP have83

already been proposed in the literature [11]. The rural postman problem (RPP) is also an-84

other variant of the CPP problem. The aim is finding a minimum cost closed route which85

traverses each arc in a given subset at least once. See [28, 29] for more discussion.86

A constrained version of the CPP is the capacitated arc routing problem (CARP) [13] 3.87

In this problem, each edge has a non-negative weight and all arcs with positive weight must88

be traversed by a fleet of identical vehicles of a specific capacity and based at the depots. The89

CARP problem is also shown to be NP-hard [19]. Di↵erent heuristics have been proposed90

over the years to solve this problem, which include multi-agent methods and Evolutionary91

algorithms [1, 25, 32, 23, 27, 17], local search [2], Simulated Annealing [9], Tabu search [24] and92

hybrid methods [20, 18, 31, 5], etc.93

In our approach, the basic building block of a district is an orientation of a facial cycle of94

the road network graph. This facilitates the desired local character of the districts and also95

corresponds to modern trends in winter road maintenance.96

The such a basic approach is adopted also in [26] which contains a thorough discussion97

on principles of districting for arc routing and surveys the previous work. Designing routes98

is an operational task, the routes can change frequently while districting is a strategic task:99

3 Also known as vehicle routing or dispatch problem.



it is costly and administratively di�cult to change district division and thus the districts are100

defined for an extensive period. Hence, districting needs to be done with a broader view of101

all arc routing applications as well as the demand for the compact local character of each102

district.103

Our approach is novel: we build districts from faces using optimization of simplified rout-104

ing of the whole region road network graph. The simplified routes are constrained by two105

parameters as commonly used for most arc-routing applications: the road length enabling106

to consider minimisation of non-maintaining parts of routes (called dead mileage) and the107

capacity abstracting capacity of maintaining vehicles and robustness of districts.108

2 Basic Notions, Definitions and Preprocessing109

We consider finite graphs and use standard notations of the graph theory. In particular: (1)110

G = (V,E) always denotes an undirected graph with the vertex-set V and the edge-set E,111

(2) D = (V,A) denotes a directed graph where A is the set of its arcs, i.e., ordered pairs of112

vertices, and (3) X(V,E,A) denotes a mixed graph with the edge-set E and the arc-set A.113

We say that a mixed graph is strongly connected if there is a route from any vertex x to any114

vertex y, which respects the directions of all arcs it traverses. We will fix a subset D ⇢ V of115

vertices as the set of depots. See Table 1 for all notations we used throughout the paper.116

We note that to compose districts from orientations of facial cycles, the regional network117

graph needs to satisfy properties that most network graphs do not meet. Hence, we first118

enhance network graphs by adding arcs and orienting edges and then construct regions using119

the enhanced digraph. Let us follow the following reasoning:120

– Assuming each simplified route is a disjoint union of facial cycles with a prescribed orien-121

tation, let E denote the disjoint union of the routes.122

– Let Aa denote the set of the arcs of E , where each arc can appear several times.123

– The digraph (V,Aa) has properties that are summarised in the definition of an eligible124

network digraph below.125

Definition 1. Let D = (V,A) be a planar embedded digraph with possibly multiple arcs and126

with two weight functions on the arc-set, l : A ! N called length and c : A ! N called127

capacity . We say that D is eligible if it satisfies the following properties:128

– Each face of the underlying graph of D is bounded by a cycle,129

– The dual graph D
⇤ is bipartite. Let f⇤ denote the outer face of D. Faces of D correspond130

to vertices of D⇤ and we call black the faces of D with corresponding dual vertices in the131

part of the bi-partition of D⇤ not containing the vertex corresponding to f
⇤.132

– the black faces of D are directed.133

In this section, we will construct, given a (mixed) graph X of a road network, its eligible134

enhanced digraph D
X . The next sections are studying districting of eligible digraphs.135

In the following, we recall the definitions used in other parts of the paper.136

Minimum Weight Perfect Matching Let G = (V,E) be an undirected graph, where the137

number of vertices of G is even. A perfect matching is a set of edges that meets each vertex138

exactly once. For a weighted graph G, the minimum weight perfect matching is a matching139

with the sum of the weights of its edges minimised.140



Eulerian Tour An Eulerian tour in a graph (digraph respectively) is a closed tour of the141

edges (arcs respectively) which contains each edge (arc respectively) exactly once. A graph142

(digraph respectively) is called Eulerian if it admits an Eulerian tour, and it is well-known143

that a graph is Eulerian if and only if it is connected and all the degrees are even. Also,144

a digraph is Eulerian if the underlying graph is connected and the in-degree of each vertex145

equals its out-degree. Another basic fact simple to observe is that the edge-set of each Eulerian146

graph (digraph respectively) consists of edge-disjoint cycles (directed cycles respectively).147

Analogously, one defines an Eulerian tour in mixed graphs.148

T-joins Given a graph, let T be its set of vertices of an odd degree. A T-join is a set of edges149

of the graph that induces an odd degree in each vertex of T and an even degree (possibly150

zero) in each vertex not in T . Doubling each edge of a T-join results in a graph where each151

degree is even.152

Minimum T-joins are extensively studied. It is well known that finding a minimum weight153

T-join in a graph is polynomially reducible to the minimum weight perfect matching. However,154

with graphs having thousands of vertices, this is still a non-trivial task computationally.155

We remark that the reductions of minimum T-join to minimum weighted perfect matching156

are quite old and are being discovered independently in various settings. Perhaps the first157

such constructions appear in the work of statistical physicists Fisher and Kastelein from the158

beginning of the 1960s, and Fisher’s construction also keeps the planarity of the original159

graph.160

2.1 Construction of Enhanced Eligible Digraph161

If D is an eligible planar digraph then the black faces can be composed into a closed directed162

tour containing each arc exactly once. Such tours are Eulerian tours.163

Some regional road network mixed graphs are not Eulerian. There is a standard process164

of enhancing them into Eulerian (di)graphs.165

Enhancement Procedure We note that we require more than the Eulerian property from166

eligible digraphs, namely, we want that each black face is directed. This makes the enhance-167

ment procedure more complicated. The following steps obtain an enhanced eligible digraph.168

INPUT: We assume that the road network planar mixed graph is X = (V,E,A) where V169

is the set of vertices, E is the set of the edges and A = A
d [A

s is the set of arcs partitioned170

into the set A
d of pairs of oppositely oriented arcs that represent roads maintained in both171

directions and the set As of arcs representing one-way-streets. Typically, As is a small set. We172

further assume X is strongly connected. We are also given two weight functions, the length,173

and the capacity, on edges and arcs. If a, a
�1 are oppositely oriented arcs of A

d then we174

assume that l(a) = l(a�1).175

Step 1. We update X so that for each (x, y) 2 A
s we delete (x, y) from A

s and we add the176

pair (x, y) and the opposite arc (y, x) to A. We let c(y, x) = 0 and l(y, x) be equal to the177

shortest route in X from y to x. After Step 1, As is thus empty and X = (V,E,A) where A178

consists of double edges only.179



Step 2. Let X = (V,E,A) be the output mixed graph after Step 1. Let G(X) be the graph180

obtained from (V,E) by adding two parallel edges e1 = e(a), e2 = e(a�1) for each double arc181

a, a
�1 of A. For i = 1, 2, we let c(e1) = c(a), c(e2) = c(a�1) and both l(ei) equal to maximum182

of l(a), l(a�1) because of the following reasoning: if l(a) 6= l(a�1) then one of them was added183

in Step 1 and contributes to dead mileage only. Setting of l(ei) large will negatively influence184

frequency of using e1, e2 for dead mileage which is preferable around one-way roads.185

Each such pair of edges of G(X) will be called a double edge and let Ed denote the set of186

all double edges of G(X).187

Step 3. Let J be a minimum T-join of G(X) with respect to edge-weights l.188

Step 4. We let G0 = (V,E0), where E
0 is the disjoint union of E and J . G0 is an embedded189

planar graph and each degree of G0 is even. G0 is thus 2-edge-connected, each face of G0 is190

bounded by a cycle and the dual graph of G0 is bipartite. Let B be the part not containing191

the outer face and let us color the faces of B with black.192

Observation 1 It is possible to orient the edges of G0 so that each black face is directed and193

each double edge is directed oppositely.194

Proof. We let G00 = (V,E00), where E
00 = E

0 \ Ed. Clearly, G00 is an embedded planar graph195

and each degree of G0 is even and as for G
0, its dual graph is bipartite. Let B00 be the part196

not containing the outer face. We orient each face of B00.197

It remains to orient the edges of Ed oppositely and according to the original orientation.
If a, a�1 is such an orientation of a double edge, then there are two possibilities according to
where a, a

�1 is embedded with respect to the faces of G00: inside a face of B00 or inside a face
of G00 not in B00. In both case, B00 can be easily modified to yield orientations of faces of B. ut

This finishes the enhancement procedure.198

3 Districting Eligible Digraphs199

From now on, let H = (V,A) be an eligible embedded planar digraph (see Definition 1), let200

D ⇢ V be the set of depots, let B be the set of the oriented black faces of H and let H be201

equipped with a length function l and a capacity function c on the arc set.202

Districting of H is done as follows: we first do Capacity Routing described in section 3.1.203

The output is a collection of arc-disjoint routs R1, . . . , Rn such that each route consists of204

a subset of B and is associated with one vertex-depot of D. This leads to a partition of H205

into districts so that each district consists of the arcs of the routes associated with the same206

vertex-depot. In the next section, we define and study Capacity Routing.207

3.1 Capacity Routing (CR)208

Capacity Routing is an optimization problem with the input consisting of (1) H = (V,A), D,209

B, (2) weight functions l, c and (3) a constant C. It aims to find a partition of A into Eulerian210

subsets S1, . . . , Sn so that (a) each Si is a union of faces of B and (b) the total capacity of211

each Si is at most C.212



We further want that the partition is optimal, i.e., the sum of distances (given by length213

l of the shortest directed path) of the computed districts to D is minimized.214

We remark that a variant of the optimization criterion is that the length of both shortest215

paths to and from a depot is minimized.216

3.2 A Reduction to a Packing Problem217

We introduce a graphic variant of the Bin Packing Problem which we call the Plane Bin218

Packing Problem (PBPP) and show in Theorem 1 that CR can be reduced to it.219

Definition 2 (Plane Bin Packing Problem(PBPP)). The input consists of (1) con-220

nected planar graph G = (V,E), (2) a subset D(G) ⇢ V , (3) a non-negative integer capacity221

c(v) for each v 2 V , (4) a non-negative integer constant C, (5) a non-negative integer length222

l(e) for each e 2 E.223

We want to find a partition V = V1 [ . . . Vm so that for each i  m (a) Vi induces a
connected subgraph and (b)

P
v2Vi

c(v)  C. We further want that the partition is optimal,
i.e.,

X

im

Li + dist(Vi,D(G))

is minimized, where (1) Li denote the minimum total length of a spanning tree of Vi, and224

(2) the distance of two subsets of vertices dist(X,Y ) is defined as minx2X.y2Y p(x, y) where225

p(x, y) denotes the length of a shortest path between x, y.226

If we do not insist on the planarity of the graph G in Definition 2, we get a more general227

problem which we call the Graphic Bin Packing Problem (GBPP).228

Theorem 1. CR is polynomially reducible to PBPP.229

Proof. Given an input (H,D,B, l, c, C) of CR, we first contract edges incident to a vertex of230

degree 2 and split vertices to make sure that each vertex of H is incident with two faces of231

B. Having this, we construct the input G = (V (G), E(G)) of PBPP as follows.232

– We let V (G) = V (H) [ {vf : f 2 B},233

– E(G) = E(H) [ {e(f, v) = {vf , v} : v 2 V (H) \ f, f 2 B}.234

– We note that G is planar,235

– We let c(vf ) be equal to the sum of capacities of edges of f in H,236

– We let vertex vf of G belong to set D(G) if f contains a vertex of D. Also, the constant237

C for G is equal to the constant C of the input of CR.238

– It remains to define the length l for G. The lengths l(e), e 2 E(H) are inherited from H239

and we let the lengths of the remaining edges be all equal to zero.240

This finishes the construction of the input graph G for PBPP. A solution of PBPP for G241

clearly translates to a solution of CR for H.242

ut



4 Graphic Bin Packing Problem243

We note that GBPP is a weighted graph packing problem and as such belongs to the Matching244

Theory, a most developed part of discrete optimization.245

Theorem 2. GBPP is polynomially solvable for C = 2.246

Proof. We assume that c(v) = 1 for each vertex v 2 V since otherwise (1) if there exists a247

vertex v with c(v) > 2, then there is no feasible solution, (2) If c(v) = 2, then v must form a248

single-vertex-part of any solution and we can thus delete v from G and consider the smaller249

problem.250

We construct new graph G
0 with vertex-set disjoint union of V and its copy V

0, and the251

edge-set E [ {{v, v0}; v 2 V } [
�V 0

2

�
), where v

0 denotes the copy of v 2 V from V
0.252

We define edge-weights w in G
0 as follows: (1) If e 2

�V 0

2

�
then w(e) = 0, (2) if e = {v, v0}253

then w(e) = dist(v,D) and (3) if e 2 E then w(e) = dist(e,D).254

We observe that there is a weight-preserving bijection between the set of perfect match-
ings of G0 and feasible solutions of GBPP on G. In particular, the minimum-weight perfect
matching algorithm solves the GBPP on G. ut

4.1 Case of C = 3255

This case is already interesting and we do not know its complexity, even for the planar graphs.256

The problem can be formulated as the problem to cover the vertices of the input graph by257

vertex disjoint copies of path P2 and edges so that the total distance to D is minimized. The258

unweighted version of this problem has been intensively studied in the past, see e.g. [21].259

5 Numerical experiments260

In this section, we analyze the e�ciency of our algorithm for districting problem on several261

road networks. For all experiments, we used a desktop PC with an i5-8250U processor, running262

under Linux at 1.6 GHz with 32GB of RAM. We implemented our algorithm in Julia 1.3.263

We used the data set from [3] which is available at the Lancaster University Data Repos-264

itory4. This data set contains 18 CPP instances, with cities selected from Paris, London, and265

Moscow, and with 1000, 2000, 5000, 10 000, 20 000, and 50 000 vertices for each city. We266

assumed the input graph from the data set is not directed. For simplicity of implementation,267

we removed all the loops and parallel edges. None of the data sets are planar.268

We tested our technique for the whole data set. The maximum running time for the largest269

data set was less than 10.1 seconds; see Table 2. The computed solution by our algorithm for270

city London with 1000 vertices is visualized in Fig. 4. In Table 2, we also present the minimum271

and maximum number of vehicles we required in our approach. Also, we define the magnitude272

of a depot as the number of vehicles required in that depot. In Fig. 1,2,3, the Histogram of273

each city represents the frequency distribution of the number of vehicles in the depots. We274

have merged the associated information included with each city to draw a single Histogram275

for that city.276

We note that number of districts in each data set is computed based on a formula explained277

bellow. In the following, we describe the preprocessing and experimental procedures required278

for our algorithm.279

4 http://www.research.lancs.ac.uk/portal/en/datasets/search.html



Selection of the Depots Each data set of [3] has only one depot which does not serve our280

purposes. In the following, we elaborate on how we produced depots for each data set.281

For a planar graph G of n positioned vertices, and given the number of depots d, we282

consider a grid of size
p
d⇥

p
d on the bounding box of G, and count the number of vertices283

inside each grid cell. We then sort the grid cells based on the number of vertices contained in284

the grid cells and select the d cells of the highest number of vertices. For each of the selected285

grid cells, an arbitrary random vertex within the cell is chosen as the depot.286

Computing Planar Graphs Each input graph is made planar by removing a minimal set of287

edges, such that none of the removed edges can be added without violating planarity.288

Computing Enhanced Eligible Digraph We follow our algorithm of section 2.1.289

Graphic Bin Packing Recall that D denotes the set of the depots. Let the capacity of a face290

be the total sum of the capacities of all its edges. First, for each face v which is adjacent to291

a depot, we create a bin Bv and add v into it.292

Throughout the packing procedure, we first pack a black face of heaviest capacity which293

shares a vertex with packed faces in the bins. We use the worst-fit bin packing, at which the294

emptiest bin will get the connected black face of heaviest capacity.295

If there is not enough space left in the bins or the remaining faces are not connected to296

any of the packed faces, we open a new bin, add to it a non-packed face of heaviest capacity297

and proceed as above.298

We stop when all the faces are packed. The number of bins determines the number of dis-299

tricts, and the packed faces of each bin determine the associated regions to the corresponding300

district.301

See Table 2 for the summary of our experimental results.302
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Fig. 1. The magnitude of the depots of the
city of London on the data sets of [3].
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Fig. 2. The magnitude of the depots of the
city of Moscow on the data sets of [3].

303

6 Conclusion304

In this paper, we introduced a mathematical model for districting problem, for grouping a305

set of defined basic geographical units into clusters, such that the total sum of distances of306

the units to the clusters is optimized. Our practical procedures have shown the e�ciency307

of our approach for real data sets. We note that, although changing the geographical or308
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Fig. 3. The magnitude of the depots of the city of Paris on the data sets of [3].

Fig. 4. Three districs of the network of London of 1000 of vertices on the data set of [3]. The depots are
highlighted in the given figure.

political districts might not be completely possible in specific case studies, our approach is309

most valuable at the time when the companies design the sales territories for consumer goods,310

telecommunications, etc. We finally note that our research stimulates several open problems,311

e.g., bounding the capacity of the nodes of the road networks, or finding the units of clusters312

with prescribed combinatorial structures.313
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