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Motivation
Why (novel) discrete exterior calculus?

We are interested in geometry processing on curved surface
meshes.
Exterior calculus is a coordinate–free calculus that greatly simplifies
analysis and calculations on curved spaces of differential manifolds.
Discrete exterior calculus (DEC) is a discrete counterpart of
exterior calculus on disretized domains (meshes).
The vast majority of work on DEC is restricted to triangle meshes,
despite the prevalence of non–triangle surface meshes in
geometric design and engineering applications.

Figure: The control mesh for Geri’s head used for recursive
Catmull-Clark subdivision. Catmull-Clark subdivision
produces meshes consisting only of quadrilaterals. Image
taken from [DKT98].
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Outline

To expose our framework, published in [Pta17, PV17, PV21], we shall
look at:
1. Discretization of diffferential surfaces and discretization of differential

forms.
2. Definition of new discrete versions of several operators, including:

wedge product,
Hodge star operator,
codifferential,
Laplace–de Rham operator,
Lie derivative.

3. Evaluation of accuracy of our operators by series of numerical test.
4. Comparisson to existing related methods.
5. Application of our operators for various tasks such as:

mesh smoothing by mean curvature flow,
vector field decomposition,
Lie advection of functions and vector fields.
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A mesh and discrete differential forms
POV of Algebraic Topology ↓
2–dimensional orientable
pseudomanifold = mesh → chains → cochains =

discrete differential forms

2–dimensional orientable
differential manifold

→ tangent spaces → differential forms

POV of Differential Geometry ↑
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Discretization of differential manifold
A mesh M = (F , E , V ) is a 2–dimensional orientable pseudomanifold:

every 0–dimensional cell —vertex v ∈ V and every 1–dimensional
cell —edge e ∈ E is an element of a 2–dimensional cell f ∈ F ;
every edge e ∈ E is an element of at most two 2–dimensional cells;
given any two faces fa, fb ∈ F , there exists a sequence of faces
fa = f0, f1, . . . , fk = fb such that fi−1 and fi , i = 1, . . . , k, have a
common edge (M is strongly connected cellular complex);
all faces of f can be oriented such that any pair of faces fi , fj sharing
an edge e can be oriented coherently, i.e., [fi : e] + [fj : e] = 0, where
[f : e] ∈ {−1, 0, 1} denotes the incidence number of f and e.

A k–chain is a function c from the set of oriented k–cells to the integers.
We add k–cells to k–chains by adding their values, the resulting group is
the chain group Ck(M).

Further, let G be an abelian group, the group of k–cochains of M, with
coefficients in G , is the group Ck(M) = Homomorphism(Ck(M), G).
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Discretization of differential forms

Let M be a Riemannian manifold and TM a tangent bundle on it. A
R–valued differential k–form Ωk is a smooth antisymmetric k–linear map
of a set of k tangent vectors to a scalar, that is:

Ωk : TM × · · · × TM → R.

A differential k–form is also seen as an oriented density that can be
integrated over a k–dimensional manifold or k–dimensional chain. Thus
(ideal) discretization of differential forms reads:

α0
D(v) = α0(v), β1

D(e) =
∫

e
β1, κ2

D(f ) =
∫

f
κ2,

where v ∈ V , e ∈ E , f ∈ F of a mesh M = (V , E , F ). Furthermore, a
vector field X is discretized over an edge e = (v0, v1) as a 1–form X ♭:

X ♭
D(e) =

∫
e
⟨e′, X ⟩ =

∫ 1

0
⟨e′(t), X (e(t))⟩dt, e(t) = v0+t(v1−v0), t ∈ [0, 1].
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Discretization of differential forms

Figure: The mesh on the left shall be used for numerical tests of discrete wedge product. As
illustrated in the left figure, we assign discrete 0–forms to vertices, discrete 1–forms to edges, and
discrete 2–forms to faces of a mesh.

For example, numerical tests of discrete wedge product are performed
with the following differential forms:

α0 = sin(x) cos(y) + 1,
β1 = (sin2(x) − 1)dx + (3 cos(x + 2) + sin(y))dy ,
ω2 = (sin(xy) + cos(1))dx ∧ dy .
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Our Approach
DEC has been well developed for triangle meshes — mainly by
computer graphics community, e.g., [Hir03], we call it the classical
DEC.
We provide an extension of DEC from triangle to general polygonal
meshes on flat and curved surfaces.
Our approach has several advantages:

1. Working directly with polygonal meshes bypasses the need for
combinatorial subdivision.

2. Our construction operates solely on primal (input) meshes, thus
removing any dependency on dual meshes, unlike in the classical DEC.

3. Our method allows for discretization of new differential operators such
as the Lie derivative.

Figure: By working directly with polygonal meshes, we overcome the ambiguities of subdividing a
discrete surface into a triangle mesh. Furthermore, we thus store less data.
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Discrete Exterior Calculus
We define all operators through these 3 “basic” discrete operators:

1. Exterior derivative d (metric independent) – borrowed from
algebraic topology: it is the coboundary operator of cochains. It
satisfies the Stokes’ formula.

2. Wedge product ∧ (metric independent) – shares several defining
properties with the cup product of algebraic topology.

3. Hodge star operator ⋆ (metric dependent).

Figure: Exterior derivative d as the coboundary operator. Here ∂ denotes the boundary operator
and [f0 : ei ] is the incidence number between face f0 and edge ei .
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Our Contribution

We define a new polygonal wedge product ∧ compatible with
discrete exterior derivative such that it obeys the Leibniz product
rule.

We introduce a novel primal–to–primal Hodge star operator ⋆,
that does not involve any dual mesh.

Using these two operators we derive a discrete contraction
operator (called also interior product) iX .

The contraction operator together with discrete exterior derivative
then allows for definition of the discrete Lie derivative
LX = iX d + d iX .

We also define a discrete version of the codifferential δ and
Laplace–de Rham operator ∆ = dδ + δd .
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Discrete Wedge Product
Just like the wedge product of differential forms Ω, our discrete wedge
product is a bilinear operation such that

∧ : Ωk × Ωl → Ωk+l .

Our polygonal wedge product satisfies the Leibniz product rule and
is skew–commutative, just like its differential analog. However, it is
associative only if one of the 0–forms involved is closed.
It extends the notion of a cup product from simplicial and cubical
2–dimensional pseudomanifolds to general polygonal case.

Figure: The wedge product on a quadrilateral: the product of two 0–forms is a 0–form located on
vertices (far left). The product of a 0–form with a 1–form is a 1–form located on edges (center
left). The product of a 0–form with a 2–form is a 2–form located on faces (center right), and the
product of two 1–forms is a 2–form located on faces (far right).
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Discrete Wedge Product – Numerical Behavior

Numerical tests on flat and curved surface meshes (possibly with
non–planar and non–convex faces) show at least linear convergence to
the respective analytical solutions, both in L2 and L∞ norm.

Figure: Convergence of the wedge products on a set of unstructured polygonal meshes on a planar
square to analytical solutions in L2 norm (center right) and L∞ norm (right). Both axes are in
log10 scale. The differential forms tested are: α0 = sin(x) cos(y) + 1,
β1 = (sin2(x) − 1)dx + (3 cos(x + 2) + sin(y))dy , γ1 = (cos(x) sin(y) + 3)dx + cos(y)dy ,
ω2 = (sin(xy) + cos(1))dx ∧ dy . Two samples of test meshes (left and center left) over a planar
[−1, 1]2 square.
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Hodge Star Operator
Discrete Hodge star operator is defined is a linear operator such that

⋆ : Ωk → Ω2−k .

Since dual forms are atributed to primal elements, we can compute
discrete wedge products of primal and dual forms and define a
contraction operator later on.
On the other hand, there is no isomorphism between the groups of k–
and (2 − k)–dimensional cells, in general. Hence our Hodge star is not
an isomorphism, unlike the Hodge star on Riemannian manifolds.

Figure: Left: Hodge dual of a 2–form ω is a 0–form ⋆ω, whose value on vertex v (colored red) is a
linear combination of values of ω on adjacent faces (colored green). Right: Hodge dual of a
0–form α is a 2–form ⋆α, the value of ⋆α on face f (colored red) is a linear combination of values
of α on vertices (green) of that face.
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Hodge Star Operator – Numerical Behavior

Numerical tests on flat and curved surface meshes show at least linear
convergence to the respective analytical solutions, both in L2 and L∞

norm.

Figure: Test meshes of a torus azimuthally symmetric about the z-axis with 5k vertices (far left)
and 20k vertices (center left). Graphs show the approximation errors of the discrete Hodge star on
a set of such irregular polygonal meshes on the torus, in L2 norm (center right) and L∞ norm (far
right). We have chosen α0 = x2 + y2, β1 = X♭, where X = (−y , x , 0) is a tangent vector field,
and ω2 = µ is the area element on the torus. Thus ⋆ω = ⋆µ = 1, ⋆α = (x2 + y2)µ, and
⋆β = Y ♭, where Y = 2(−xz, −yz, x2 + y2 −

√
x2 + y2) is a tangent vector field orthogonal to

X . Both axes are in log10 scale.
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Contraction Operator

The contraction operator maps k–forms to (k − 1)–forms. We define our
discrete contraction operator iX on a polygonal mesh M by the
following property that holds on Riemannian 2–manifolds (see [Hir03,
Lemma 8.2.1]):

iX α = (−1)k(2−k) ⋆ (⋆α ∧ X ♭), α ∈ Ck(M), k = 1, 2, (1)

where X is a tangent vector field and ♭ is (discrete) flat operator that
maps vector fields to (discrete) differential forms.

On Riemannian manifolds, it is an antiderivation, because it obeys a
graded Leibniz rule with wedge product:

iX (αk ∧ βl) = (iX αk) ∧ βl + (−1)kαk ∧ (iX βl).

However, in our discrete setting the Leibniz product rule is satisfied only
if α or β is a closed 0–form. In [Hir03] the author argued that the Leibniz
rule for contraction operator, therefore also for Lie derivative, might not
hold due to the discrete wedge product not being associative in general.
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Contraction Operator – Numerical Behavior
Our discrete contraction of 2–forms wrt to different vector fields exhibit
linear convergence to the analytically computed solutions, both in L∞

and L2 norms. On 1–forms, the errors of approximation decrease linearly
in L2 norm and with slope 0.5 in L∞ norm.

Figure: The contraction operator on a unit sphere (center) and a torus (right). For the sphere we
have used the set of jittered with r = 0.4 as in the sample mesh (left), and contracted forms
β1 = −xzdx − yzdy + (x2 + y2)dz, ω2 = xdy ∧ dz + ydz ∧ dx + zdx ∧ dy wrt vector field
X = (−y , x , 0). For the torus we have contracted differential forms β1 = Y♭, Y = (−y , x , 0), and
ω2 = µ wrt vector field X = 2(−xz, −yz, x2 + y2 −

√
x2 + y2) on the same set of meshes as in

the Hodge star operator case. Here iX β L2 denotes the L2 error approximation of the contraction
operator on the 1–form β, whereas iX β Inf denotes the L∞ error approximation on β, and
similarly for the 2–form ω.
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Lie Derivative

We define discrete Lie derivative LX : Ωk → Ωk using the Cartan’s
homotopy formula and our discrete contraction operator:

LX α = iX dα + d iX α, α ∈ Ωk(M), k = 0, 1, 2, X ∈ TM. (2)

The Lie derivative is the directional derivative of a k–form α in the
direction X . It measures the rate of change of α along of the flow
generated by vector field X .
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Lie Derivative – Numerical Behavior
The Lie derivatives exhibit converging behavior on regular meshes,
planar and non–planar. However, the L2 error of approximation of Lie
derivatives of 1– and 2–forms on irregular meshes stays rather constant.

Figure: Influence of jittering on experimental convergence of discrete Lie derivatives: L2 and L∞

errors on a set of regular polygonal meshes on a sphere (upper row) and jittered meshes with
vertex displacement by 0.4× shortest edge length (lower row). Here α0 = x2 + y2, β1 = Y ♭,
where Y = 2(−xz, −yz, x2 + y2 −

√
x2 + y2), ω2 = xdy ∧ dz + ydz ∧ dx + zdx ∧ dy , and

X = (−y , x , 0).
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The Codifferential and Laplacian

Just like on Riemannian n–manifolds M, the Hodge star operator is
employed to define codifferential operator δ : Ωk(M) → Ωk−1(M) by

δ(αk) = (−1)n(k−1)+1 ⋆ d ⋆ α.

Then using the codifferential operator, the Laplace–de Rham operator
is given as

∆ := δd + dδ.

In [AW11], we find a codifferential operator acting on 1–forms and
Laplacian acting on 0–forms on general polygonal meshes given as

δ1 = M−1
0 d⊤

0 M1, L0 = M−1
0 d⊤

0 M1d0,

where M0 and M1 = Mf + λCf C⊤
f for admissible matrix Cf are defined in

[AW11, eq. (9), (10)]. We compare our operators with theirs next.
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The Codifferential Operator – Numerical Behavior

Figure: The influence of jittering on experimental convergence of codifferentials of a 1–form
β1 = (sin(2x) + cos( 1

2 ))dx + (3 sin(x) − cos(y))dy and a 2–form
κ2 = (sin(4x + 4) + cos(1 − 3y))dx ∧ dy on a set of planar quadrilateral jittered meshes with
vertex displacement 0.01× shortest edge length (L) and 0.2× shortest edge length (R).
Here AWβ stands for the L2 error of approximation of the codifferential of [AW11] with λ = 0.
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The Laplacian – Numerical Behavior

Our Laplace operator on 0–forms is linearly precise, i.e., it is zero on
linear forms in the plane.
The experimental convergence of our discrete Laplacian is comparable to
convergence of purely geometric Laplacian of [AW11], but the error of
approximation is smaller than for their combinatorially enhanced
Laplacians.

Figure: Discrete Laplacians of 0–form α = sin(x − 1) − cos(2y) on sets of planar quadrilateral
jittered meshes with vertex displacement 0.01× shortest edge length (far and center left) and
0.2× shortest edge length (center and far right). Note that the graphs in the center left and on
the far right are in arithmetic scale. Here AWα stands for the L2 error of approximation of the
Laplacians of [AW11] with λ = 0, 1, 2, see [AW11, section 3.3].
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Applications: Implicit mean curvature flow
If f is a 0–form representing coordinates of points on a smooth surface
M in R3, then

∆f = −H⃗(f ),
where H⃗(f ) is the mean curvature vector at point f ∈ M \ ∂M.
Let V0 be vertex positions of an initial mesh M, we move its interior
vertices along mean curvature flow to decrease the curvature. Concretely,
we employ backward Euler method and solve the following linear system:

(I + dt∆)Vk+1 = Vk , k ≥ 0, dt > 0.

Figure: Discrete mean curvature flow with time step dt = 0.02 on a general polygonal mesh with
2399 vertices: initial mesh (L), mesh after one (C) and two iterations (R). We fixed the boundary
vertices.
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Applications: Implicit mean curvature flow

Figure: Comparison of implicit mean curvature flows on a general polygonal mesh (29k vertices)
after 10 iterations with time step t = 10−4. The original mesh (left), mesh smoothed by our
method (center left). The algorithm of [AW11] with λ = 1 (center right) produces a visually
well–smoothed meshes. However, their method with λ = 0 (right) exhibits some undesirable
artifacts on the ears, neck, and tail of the kitten.
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Applications: Discrete Helmholtz–Hodge Decomposition

The Hodge theorem states that a differential k–form ω on an oriented
compact Riemannian manifold without boundary can be uniquely
decomposed into three parts

ω = dα + δβ + γ (3)

for some (k − 1)–form α, (k + 1)–form β, and a harmonic k–form γ
(∆γ = 0).

If we decompose a vector field as a differential 1–form ω1, then
1. dα corresponds to a curl–free component of the vector field,
2. δβ corresponds to a divergence–free (incompressible) component,
3. γ corresponds to a harmonic component.

This is the three component form of the HHD. As mentioned in
[Bhatia et al. 2013], some applications employ the two component
form of the HHD, where the harmonic component is "included" either
into the curl–free or the divergence–free part.

Lenka Ptackova Geometry processing with discrete exterior calculus



Applications: Discrete Helmholtz–Hodge Decomposition

Figure: Original vector field (left), its incompressible component (center) and its curl–free
component (right).
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Figure: HHD of an incompressible vector field X (top left) on a torus (mesh with 20k vertices).
The original vector field is X = XH + XR , where XH = (−y , x , 0) is a harmonic field, and XR is a
rotational vector field. Our discrete decomposition gives approximate expected results. The
calculated decomposition consists of harmonic part γ♯ (top right) and rotational part (δβ)♯

(bottom left). We also depict vector potential β in pseudocolors (bottom right). The potential of
strongest CCW rotation is cyan, CW rotation is magenta.
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Applications: Lie Advection
We can model advection of a conserved q–form β in a flow generated by
vector field X by solving the Lie advection equation:

∂β

∂t + LX β = 0.

Thus to advect a discrete q–form β by the flow of a vector field X , we
can iterate over discrete solutions using a simple forward Euler method:

βk+1 = βk − dt LX βk , k = 0, . . . , (4)
where dt is the time step, k is the number of iterations.

Figure: Lie advection of a color function (a (R,G,B)–valued 0–form) on a mesh of a vase.
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Applications: Lie Advection

Figure: Lie advection on a mesh on torus with 8k vertices(top left corner). We advect a vorticial
tangent vector field Y0 (second picture from the left) along the flow of a harmonic tangent vector
field X = (−y , x , 0). We apply time steps of length 10−3. From left to right and top to bottom,
we plot the advected vector field Yk field after 1000, 2000,. . . , 5000 iterations and at the bottom
right after 6283 iterations. Since the flow is periodic, Yk should be equal to original state Y0 for
k = 2π · 103 ≈ 6283.
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Discussion
Geometry processing on general polygonal meshes is getting more
attention in last few years, especially within computer graphics
community, see [DGBD20, BBW+24] and references therein.
We have presented a novel framework for geometry processing on
general polygonal meshes as a new discrete version of Exterior
Calculus, that allowed for definition of Lie derivative.
Contrary to the so called Polygonal Laplacian [BBW+24], Lie
derivative has not yet been explored enough, especially on
polygonal meshes.
Experimental convergence of Lie derivative was observed on regular
meshes, however on irregular meshes the L2 error of approximation
kept rather constant.
Our discrete Laplace operator is numerically comparable to the
purely geometric Laplacian of [AW11], but results in a better mesh
smoothing. On the other hand, our Laplacian gives a better
numerical approximation of the analytically computed Laplacian
than their combinatorially enhanced Laplacians, yet performs as well
as theirs in mesh smoothing.
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Future and Ongoing Work

Apply Schwarz domain decomposition methods in geometry
processing tasks in combination with our framework.

Compare our Laplacian to newly emerged polygonal Laplacians
([BBW+24] and references therein).

Analyze with greater details algebraic properties of our operators and
establish under what conditions they meet the algebraic properties of
operators on differential manifolds.

Apply our framework for 2D fluid flow simulation and compare our
method to traditional methods (FVM) used in computational fluid
dynamics, since Navier–Stokes equation can be rewritten in terms of
differential forms, see [WIL11, MHS16].

Examine the possibility of extending DEC to 3–dimensional manifolds,
such as volumetric meshes made of tetrahedrons or 3–dimensional
(topological) cubes. See [Arn12] for treatment of cubical complexes.
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