Teorie množin (NAIL063), LS 2025/2026
English version
Jan Kynčl, KAM (kyncl zavináč kam.mff.cuni.cz)
Přednáška se koná ve čtvrtek v 9:00 v S4 na Malé Straně.
Stránka v SISu, sylabus
K přednášce je letos nepovinné cvičení: Cvičení z teorie množin (NAIL124)
Na případných konzultacích se můžeme domluvit osobně nebo e-mailem.
Doporučená literatura:
- [BS] B. Balcar, P. Štěpánek, Teorie množin, Academia, Praha, 2001 (případně dřívější vydání). K dispozici v Půjčovně skript a učebnic MFF UK v Troji.
Seznam témat včetně odkazů do knížky od tématu relací je na stránce z roku 2021/2022.
- [T++] Dodatky k teorii množin (hlavně pro samostudium)
Další zdroje:
- Jakub Smolík, Úvod do teorie množin - skriptíčka k přednášce
- Mirek Olšák, Do nekonečna a ještě dál...... - seriál Matematického korespondenčního semináře, vcelku. Jednotlivé kapitoly:
- Díl první - Svět nekonečen - neformální úvod: nekonečna, spočetné množiny, dobře uspořádané množiny, indukce, rekurze
- Díl druhý - Pevné základy - formálnější základy, axiomy, ordinální čísla, přirozená čísla
- Díl třetí - Síla volby - axiom výběru, Zornovo lemma, Cauchyho rovnice, kardinální čísla, příklady na transfinitní rekurzi
- Mirek Olšák, Esence teorie množin - velmi názorná animovaná videa (mírně odlišná terminologie - axiom existence, axiom nekonečna, uspořádání, ...)
- Karel Hrbacek, Thomas Jech: Introduction to Set Theory, 3. edition, Marcel Dekker, 1999
- Thomas Jech, Set theory, Springer, 2003 (Part I)
- Richard Evan Schwartz, Gallery of the infinite, American Mathematical Society, Providence, RI, 2016 (link)
- Joel David Hamkins: Infinity, Gödel Incompleteness, and the Paradoxes that Broke Mathematics | Lex Fridman Podcast #488
Další průběh přednášky bude podobný jako v loňské verzi.