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New thrackles from old

Subdividing a path:

Conway’s doubling:
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Conway’s conjecture is known in special cases:

• geometric thrackles (exercise)

• monotone thrackles (Pach–Sterling, 2011)

• outerplanar thrackles (Cairns–Nikolayevsky, 2012)

• annular and pants thrackles (Misereh–Nikolayevsky, 2018)



Surfaces

genus:

non-orientable genus:

0 1 2

1 2

sphere S0 torus S1

projective plane N1 Klein bottle N2

crosscap

S2
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Let G be a graph with n vertices and m edges that has a thrackle

drawing on Sg .

Conjecture: (Cairns–Nikolayevsky, 2000) m ≤ n + 2g.

Proposition: (Cairns–Nikolayevsky, 2000) The conjecture is true

for n ≤ 5 and m ≤ 9.

Theorem: (Cairns–Nikolayevsky, 2000) If G is bipartite with k

components with at least three vertices, then m ≤ 2n − 4k + 4g.

Theorem: (Cairns–Nikolayevsky, 2009) If G is connected, then

m ≤ 2n − 2 + 4g.

Theorem: If G has k components with at least three vertices, then

m ≤ 2n − 4k + 4g + 2. If G has instead a thrackle drawing on Ng ,

then m ≤ 2n − 4k + 2g + 2.

(using an equivalence between generalized thrackles and X -parity

embeddings (Pelsmajer–Schaefer–Štefankovič, 2009))
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Thrackles on surfaces, upper bounds

Let G be a graph with n vertices and m edges that has a thrackle

drawing on Sg .

Conjecture: (Cairns–Nikolayevsky, 2000) m ≤ n + 2g.

Theorem: (Cairns–McIntyre–Nikolayevsky, 2004)

The conjecture is true for K3,3 and K5.

In particular, K3,3 has no thrackle drawing on the torus.
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Toroidal iterator with n = 8 and m = 11
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creates thrackles on Sg with m = n + 4g.



Thrackled W5 on the projective plane

a vertex in the infinity
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Thrackled W5 on the projective plane

a vertex in the infinity

In general, W2k+1 has n = 2k + 1 and m = 2n − 2.

(without the crosscap: Figure 12 in Cairns–Nikolayevsky, 2000)



Thrackled sparse double-fan on the torus, with m = 2n − 5
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creates thrackles on Ng with m = 2n + g − 4.
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adding g handles, 1 vertex and 2g + 1 edges

creates thrackles on Sg with m = 2n + 2g − 8.


