Counterexamples to the thrackle conjecture on higher genus surfaces

César Hernández-Vélez, Jan Kynčl, Gelasio Salazar and Kebin Velasquez

Charles University, Prague

Thrackles

Thrackle: a drawing of a graph where every pair of edges have **exactly** one point in common: an endpoint or a crossing

Thrackles

Thrackle: a drawing of a graph where every pair of edges have **exactly** one point in common: an endpoint or a crossing

Examples:

Thrackles

Thrackle: a drawing of a graph where every pair of edges have **exactly** one point in common: an endpoint or a crossing

Examples:

New thrackles from old

Adding an edge:

New thrackles from old

Subdividing a path:

New thrackles from old

Subdividing a path:

Conway's doubling:

Let G be a graph with n vertices and m edges that has a thrackle drawing in the plane.

Conjecture: (Conway) $m \le n$.

- **Conjecture:** (Conway) $m \le n$.
- **Theorem:** (Lovász–Pach–Szegedy, 1997) $m \le 2n 3$.

- **Conjecture:** (Conway) $m \le n$.
- **Theorem:** (Lovász–Pach–Szegedy, 1997) $m \le 2n 3$.
- **Theorem:** (Cairns–Nikolayevsky, 2000) $m \leq 3(n-1)/2$.

- **Conjecture:** (Conway) $m \le n$.
- **Theorem:** (Lovász–Pach–Szegedy, 1997) $m \le 2n 3$.
- **Theorem:** (Cairns–Nikolayevsky, 2000) $m \leq 3(n-1)/2$.
- **Theorem:** (Fulek–Pach, 2011) $m \le 1.428n$.

- **Conjecture:** (Conway) $m \le n$.
- **Theorem:** (Lovász–Pach–Szegedy, 1997) $m \le 2n 3$.
- **Theorem:** (Cairns–Nikolayevsky, 2000) $m \leq 3(n-1)/2$.
- **Theorem:** (Fulek–Pach, 2011) $m \le 1.428n$.
- **Theorem:** (Xu, 2014; Goddyn–Xu, 2017) $m \le 1.4n$.

- **Conjecture:** (Conway) $m \le n$.
- **Theorem:** (Lovász–Pach–Szegedy, 1997) $m \le 2n 3$.
- **Theorem:** (Cairns–Nikolayevsky, 2000) $m \leq 3(n-1)/2$.
- **Theorem:** (Fulek–Pach, 2011) $m \le 1.428n$.
- **Theorem:** (Xu, 2014; Goddyn–Xu, 2017) $m \le 1.4n$.
- **Theorem:** (Fulek–Pach, 2019) $m \le 1.3984(n-1)$.

- **Conjecture:** (Conway) $m \le n$.
- **Theorem:** (Lovász–Pach–Szegedy, 1997) $m \le 2n-3$.
- **Theorem:** (Cairns–Nikolayevsky, 2000) $m \leq 3(n-1)/2$.
- **Theorem:** (Fulek–Pach, 2011) $m \le 1.428n$.
- **Theorem:** (Xu, 2014; Goddyn–Xu, 2017) $m \le 1.4n$.
- **Theorem:** (Fulek–Pach, 2019) $m \le 1.3984(n-1)$.
- **Theorem:** (Xu, 2021) $m \le 1.393n$.

Let G be a graph with n vertices and m edges that has a thrackle drawing in the plane.

Conjecture: (Conway) $m \le n$.

- **Theorem:** (Lovász–Pach–Szegedy, 1997) $m \le 2n 3$.
- **Theorem:** (Cairns–Nikolayevsky, 2000) $m \le 3(n-1)/2$.
- **Theorem:** (Fulek–Pach, 2011) $m \le 1.428n$.
- **Theorem:** (Xu, 2014; Goddyn–Xu, 2017) $m \le 1.4n$.
- **Theorem:** (Fulek–Pach, 2019) $m \le 1.3984(n-1)$.
- **Theorem:** (Xu, 2021) $m \le 1.393n$.

Conway's conjecture is known in special cases:

- geometric thrackles (exercise)
- monotone thrackles (Pach–Sterling, 2011)
- outerplanar thrackles (Cairns-Nikolayevsky, 2012)
- annular and pants thrackles (Misereh–Nikolayevsky, 2018)

Surfaces

Thrackles on surfaces

Cairns–Nikolayevsky, 2000 adding 1 handle, 2 vertices and 4 edges:

Thrackles on surfaces

Cairns–Nikolayevsky, 2000 adding 1 handle, 2 vertices and 4 edges:

Let *G* be a graph with *n* vertices and *m* edges that has a thrackle drawing on S_g .

Conjecture: (Cairns–Nikolayevsky, 2000) $m \le n + 2g$.

Let *G* be a graph with *n* vertices and *m* edges that has a thrackle drawing on S_g .

Conjecture: (Cairns–Nikolayevsky, 2000) $m \le n + 2g$.

- Let *G* be a graph with *n* vertices and *m* edges that has a thrackle drawing on S_g .
- **Conjecture:** (Cairns–Nikolayevsky, 2000) $m \le n + 2g$.
- **Proposition:** (Cairns–Nikolayevsky, 2000) The conjecture is true for $n \le 5$ and $m \le 9$.

- Let *G* be a graph with *n* vertices and *m* edges that has a thrackle drawing on S_g .
- **Conjecture:** (Cairns–Nikolayevsky, 2000) $m \le n + 2g$.
- **Proposition:** (Cairns–Nikolayevsky, 2000) The conjecture is true for $n \le 5$ and $m \le 9$.
- **Theorem:** (Cairns–Nikolayevsky, 2000) If *G* is **bipartite** with *k* components with at least three vertices, then $m \le 2n 4k + 4g$.

- Let *G* be a graph with *n* vertices and *m* edges that has a thrackle drawing on S_g .
- **Conjecture:** (Cairns–Nikolayevsky, 2000) $m \le n + 2g$.
- **Proposition:** (Cairns–Nikolayevsky, 2000) The conjecture is true for $n \le 5$ and $m \le 9$.
- **Theorem:** (Cairns–Nikolayevsky, 2000) If *G* is **bipartite** with *k* components with at least three vertices, then $m \le 2n 4k + 4g$.
- **Theorem:** (Cairns–Nikolayevsky, 2009) If *G* is **connected**, then $m \le 2n 2 + 4g$.

- Let *G* be a graph with *n* vertices and *m* edges that has a thrackle drawing on S_g .
- **Conjecture:** (Cairns–Nikolayevsky, 2000) $m \le n + 2g$.

Proposition: (Cairns–Nikolayevsky, 2000) The conjecture is true for $n \le 5$ and $m \le 9$.

Theorem: (Cairns–Nikolayevsky, 2000) If *G* is **bipartite** with *k* components with at least three vertices, then $m \le 2n - 4k + 4g$.

Theorem: (Cairns–Nikolayevsky, 2009) If *G* is **connected**, then $m \le 2n - 2 + 4g$.

Theorem: If *G* has *k* components with at least three vertices, then $m \le 2n - 4k + 4g + 2$. If *G* has instead a thrackle drawing on N_g , then $m \le 2n - 4k + 2g + 2$.

(using an equivalence between generalized thrackles and *X*-parity embeddings (Pelsmajer–Schaefer–Štefankovič, 2009))

Let *G* be a graph with *n* vertices and *m* edges that has a thrackle drawing on S_g .

Conjecture: (Cairns–Nikolayevsky, 2000) $m \le n + 2g$.

- Let *G* be a graph with *n* vertices and *m* edges that has a thrackle drawing on S_g .
- **Conjecture:** (Cairns–Nikolayevsky, 2000) $m \le n + 2g$.
- **Theorem:** (Cairns–McIntyre–Nikolayevsky, 2004) The conjecture is true for $K_{3,3}$ and K_5 . In particular, $K_{3,3}$ has no thrackle drawing on the torus.

Counterexamples / lower bounds

Cairns-Nikolayevsky's toroidal iterator

Cairns-Nikolayevsky's toroidal iterator

General toroidal iterator

Toroidal iterator with n = 8 and m = 11

adds 1 handle, 6 vertices and 10 edges

Toroidal iterator with n = 8 and m = 11

adds 1 handle, 6 vertices and 10 edges creates thrackles on S_g with m = n + 4g.

Thrackled W_5 on the projective plane

In general, W_{2k+1} has n = 2k + 1 and m = 2n - 2.

Thrackled W_5 on the projective plane

In general, W_{2k+1} has n = 2k + 1 and m = 2n - 2.

(without the crosscap: Figure 12 in Cairns-Nikolayevsky, 2000)

Thrackled sparse double-fan on the torus, with m = 2n - 5

Cloning a star, nonorientable surfaces

adding g crosscaps, 1 vertex and g + 1 edges

Cloning a star, nonorientable surfaces

adding *g* crosscaps, 1 vertex and g + 1 edges creates thrackles on N_g with m = 2n + g - 4.

Cloning a star, orientable surfaces

adding g handles, 1 vertex and 2g + 1 edges

Cloning a star, orientable surfaces

adding *g* handles, 1 vertex and 2g + 1 edges creates thrackles on S_g with m = 2n + 2g - 8.