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Drawings and embeddings

drawing of a graph:

vertices → points

edges → simple curves
forbidden:

embedding = drawing with no crossings
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application: polynomial-time algorithm for testing planarity
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Hanani–Tutte theorems

(Strong) Hanani–Tutte theorem: (Hanani, 1934; Tutte, 1970)

A graph is planar if and only if it has an independently even drawing

in the plane; that is, every pair of non-adjacent edges crosses an

even number of times.

Weak Hanani–Tutte theorem: (Cairns–Nikolayevsky, 2000;

Pach–Tóth, 2000; Pelsmajer–Schaefer–Štefankovič, 2007)

If a graph G has an even drawing D in the plane (every pair of edges

crosses an even number of times), then G is planar.

(Moreover, G has a plane embedding with the same rotation system

as D.)
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Hanani–Tutte theorems on surfaces

Weak Hanani–Tutte theorem on surfaces:

(Cairns–Nikolayevsky, 2000; Pelsmajer–Schaefer–Štefankovič, 2009)

If a graph G has an even drawing D on a surface S, then G has an

embedding on S (that preserves the embedding scheme of D).

(Strong) Hanani–Tutte theorem on the projective plane:

(Pelsmajer–Schaefer–Stasi, 2009;

Colin de Verdière–Kaluža–Paták–Patáková–Tancer, 2016)

If a graph G has an independently even drawing on the projective

plane, then G has an embedding on the projective plane.

Problem: Can the strong Hanani–Tutte theorem be extended to

other surfaces?

Partial answer: No to the orientable surface of genus 4 or larger

(Fulek–K., 2017)
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genus g(G) of a graph G = minimum g such that G has an

embedding on the orientable surface Mg of genus g.

Z2-genus g0(G) of a graph G is the minimum g such that G has an

independently even drawing on Mg .

Strong Hanani–Tutte theorem: g0(G) = 0 ⇒ g(G) = 0.

Theorem: (Fulek–K., 2017)

There is a graph G with g(G) = 5 and g0(G) ≤ 4.

Consequently, for every positive integer k there is a graph G with

g(G) = 5k and g0(G) ≤ 4k .

Problem: (Schaefer–Štefankovič, 2013)

Is there a function f such that g(G) ≤ f (g0(G)) for every graph G?

Main result: YES, if a certain “folklore result” is true.
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Bounding genus by Z2-genus—the plan

1) Ramsey-type statement:

If G has large genus g = g(t), then G contains, as a minor, G1(t) or

G2(t) or . . . or Gr(t) of genus t .

2) Easier subproblem:

Show that the Z2-genus of each of Gi(t) is unbounded in t .



Ramsey-type statements

Theorem: (Böhme–Kawarabayashi–Maharry–Mohar, 2008)

For every positive integer t , every sufficiently large 7-connected

graph contains K3,t as a minor.



Ramsey-type statements
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Ramsey-type statements

Theorem: (Böhme–Kawarabayashi–Maharry–Mohar, 2008)

For every positive integer t , every sufficiently large 7-connected

graph contains K3,t as a minor.

Generalization: (Böhme–Kawarabayashi–Maharry–Mohar, 2009)

- larger connectivity and Ka,t minors for every fixed a > 3.

Unpublished “folklore” result: (Robertson–Seymour)

There is a function g such that for every t ≥ 3, every graph of Euler

genus g(t) contains a t-Kuratowski graph as a minor.

t-Kuratowski graph:

• K3,t , or

• t copies of K5 or K3,3 sharing at most 2 common vertices
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3-Kuratowski graphs

a) b) c) d) e)

f) g) h)

- what about graphs with large (orientable) genus and constant Euler

genus?
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Ramsey-type statement for genus

projective 5 × 5 grid projective 5-wall

Theorem:

The “folklore result” implies that there is a function h such that for

every t ≥ 3, every graph of genus h(t) contains, as a minor, a

t-Kuratowski graph or the projective t-wall.
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Lower bounds on the Z2-genus

Theorem: (Schaefer–Štefankovič, 2013)

If G consists of t copies of K5 or K3,3 sharing at most 1 vertex, then

g0(G) = g(G) = t .

(The Z2-genus is additive for disjoint unions and 1-amalgamations.)

Observation:

If G has maximum degree 3, then g0(G) = g(G). In particular, the

Z2-genus of the projective t-wall is ⌊t/2⌋.

• “correct” the rotation of each vertex to obtain an even drawing

• use the weak Hanani–Tutte theorem for surfaces

Theorem:

We have g0(G) = g(G) also for each of the remaining t-Kuratowski

graphs G: K3,t and 2-amalgamations of t copies of K5 or K3,3.
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Lower bounds on the Z2-genus of K3,t

problem with independently even drawings:

- no faces, rotations “do not matter”, no Euler’s formula . . .

First lower bound: g0(K3,t) ≥ Ω(log log log t)

• “correct” the rotation of each degree-3 vertex so that incident

edges cross evenly

• use Ramsey’s theorem for each degree-t vertex so that incident

edges cross with the same parity

• if the parity is odd for some vertex v , “flip” a neighborhood of v

• use the weak Hanani–Tutte theorem for surfaces

• use the fact g(K3,n) = ⌈(n − 2)/4⌉
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Second lower bound: g0(K3,t) ≥ Ω(log t)

- Z2-homology of closed curves on Mg and pigeon-hole principle

Third lower bound: g0(K3,t) = g(K3,t) = ⌈(t − 2)/4⌉

- Z2-homology of closed curves on Mg and linear-algebraic trick

a

b

c

u0 u1 uiuj

Ci, Cj, C
′

i, C
′

j
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Z2-homology of closed curves on Mg

Fact: H1(Mg;Z2) is isomorphic to Z
2g
2 .

α
β

= = + =

H1(M1;Z2) = 〈α, β〉

intersection form (Cairns–Nikolayevsky, 2000) (symmetric, bilinear)

cr : H1(Mg;Z2)× H1(Mg;Z2) → Z2

for g = 1:

cr(α, α) = 0 cr(β, β) = 0 cr(α, β) = 1
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“Crosscap vectors” of closed curves on Mg

Fact: Mg − {x} is homeomorphic to a subset of N2g+1

or, to a subset of the sphere with 2g + 1 crosscaps

e f

ye = (1, 1, 0), yf = (0, 1, 1)

• a cycle C → a crosscap vector yC = (yC
1 , y

C
2 , . . . , y

C
2g+1) where

yi = number of passes of C through the i th crosscap mod 2.

• a drawing on Mg ↔ a drawing with 2g + 1 crosscaps where the

crosscap vector of each cycle has an even number of 1’s.

• homology class of C ↔ crosscap vector yC

• intersection form cr(C,D) ↔ scalar product yC · yD
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Lemma: In every independently even drawing of K3,3 (induced by

{a, b, c, u0, u1, u2} from K3,t ) on Mg , we have

cr(C1,C
′

2) + cr(C′

1,C2) = 1.

a u0 a u0

C1

C
′

2

C
′

1

C2

• Let A be the (t − 1)× (t − 1) matrix with Ai,j = cr(Ci ,C
′

j )

• Lemma implies Ai,j + Aj,i = 1 for i 6= j ,

so A is a tournament matrix, that is, A + AT = J − I

• rank of A is at least (t − 2)/2 (De Caen, 1991)

• the rank of the intersection form is at least (t − 2)/2 and so

2g ≥ (t − 2)/2.


