The \mathbb{Z}_2 -genus of Kuratowski minors

Radoslav Fulek and Jan Kynčl

Charles University, Prague

drawing of a graph:

vertices \rightarrow points

edges \rightarrow simple curves

drawing of a graph:

vertices \rightarrow points

edges \rightarrow simple curves

drawing of a graph:

drawing of a graph:

drawing of a graph:

drawing of a graph:

embedding = drawing with no crossings

(Strong) Hanani–Tutte theorem: (Hanani, 1934; Tutte, 1970)

(Strong) Hanani–Tutte theorem: (Hanani, 1934; Tutte, 1970)

(Strong) Hanani–Tutte theorem: (Hanani, 1934; Tutte, 1970)

(Strong) Hanani–Tutte theorem: (Hanani, 1934; Tutte, 1970)

(Strong) Hanani–Tutte theorem: (Hanani, 1934; Tutte, 1970)

(Strong) Hanani–Tutte theorem: (Hanani, 1934; Tutte, 1970)

(Strong) Hanani–Tutte theorem: (Hanani, 1934; Tutte, 1970)

A graph is planar if and only if it has an **independently even** drawing in the plane; that is, every pair of non-adjacent edges crosses an even number of times.

application: polynomial-time algorithm for testing planarity

(Strong) Hanani–Tutte theorem: (Hanani, 1934; Tutte, 1970)

A graph is planar if and only if it has an **independently even** drawing in the plane; that is, every pair of non-adjacent edges crosses an even number of times.

Weak Hanani–Tutte theorem: (Cairns–Nikolayevsky, 2000; Pach–Tóth, 2000; Pelsmajer–Schaefer–Štefankovič, 2007) If a graph *G* has an **even** drawing *D* in the plane (every pair of edges crosses an even number of times), then *G* is planar.

(Strong) Hanani–Tutte theorem: (Hanani, 1934; Tutte, 1970)

A graph is planar if and only if it has an **independently even** drawing in the plane; that is, every pair of non-adjacent edges crosses an even number of times.

Weak Hanani–Tutte theorem: (Cairns–Nikolayevsky, 2000; Pach–Tóth, 2000; Pelsmajer–Schaefer–Štefankovič, 2007)

If a graph G has an **even** drawing D in the plane (every pair of edges crosses an even number of times), then G is planar.

(Moreover, G has a plane embedding with the same rotation system as D.)

Weak Hanani–Tutte theorem on surfaces:

(Cairns–Nikolayevsky, 2000; Pelsmajer–Schaefer–Štefankovič, 2009)

If a graph *G* has an even drawing \mathcal{D} on a surface *S*, then *G* has an embedding on *S* (that preserves the embedding scheme of \mathcal{D}).

Weak Hanani–Tutte theorem on surfaces:

(Cairns–Nikolayevsky, 2000; Pelsmajer–Schaefer–Štefankovič, 2009)

If a graph *G* has an even drawing \mathcal{D} on a surface *S*, then *G* has an embedding on *S* (that preserves the embedding scheme of \mathcal{D}).

(Strong) Hanani–Tutte theorem on the projective plane: (Pelsmajer–Schaefer–Stasi, 2009; Colin de Verdière–Kaluža–Paták–Patáková–Tancer, 2016)

If a graph G has an independently even drawing on the projective plane, then G has an embedding on the projective plane.

Weak Hanani–Tutte theorem on surfaces:

(Cairns–Nikolayevsky, 2000; Pelsmajer–Schaefer–Štefankovič, 2009)

If a graph *G* has an even drawing \mathcal{D} on a surface *S*, then *G* has an embedding on *S* (that preserves the embedding scheme of \mathcal{D}).

(Strong) Hanani–Tutte theorem on the projective plane: (Pelsmajer–Schaefer–Stasi, 2009; Colin de Verdière–Kaluža–Paták–Patáková–Tancer, 2016)

If a graph G has an independently even drawing on the projective plane, then G has an embedding on the projective plane.

Problem: Can the strong Hanani–Tutte theorem be extended to other surfaces?

Weak Hanani–Tutte theorem on surfaces:

(Cairns–Nikolayevsky, 2000; Pelsmajer–Schaefer–Štefankovič, 2009)

If a graph *G* has an even drawing \mathcal{D} on a surface *S*, then *G* has an embedding on *S* (that preserves the embedding scheme of \mathcal{D}).

(Strong) Hanani–Tutte theorem on the projective plane: (Pelsmajer–Schaefer–Stasi, 2009; Colin de Verdière–Kaluža–Paták–Patáková–Tancer, 2016)

If a graph G has an independently even drawing on the projective plane, then G has an embedding on the projective plane.

Problem: Can the strong Hanani–Tutte theorem be extended to other surfaces?

Partial answer: No to the orientable surface of genus 4 or larger (Fulek–K., 2017)

genus g(G) of a graph G = minimum g such that G has an embedding on the orientable surface M_q of genus g.

genus g(G) of a graph G = minimum g such that G has an embedding on the orientable surface M_g of genus g.

 \mathbb{Z}_2 -genus $\mathbf{g}_0(G)$ of a graph *G* is the minimum *g* such that *G* has an independently even drawing on M_g .

genus g(G) of a graph G = minimum g such that G has an embedding on the orientable surface M_g of genus g.

 \mathbb{Z}_2 -genus $\mathbf{g}_0(G)$ of a graph *G* is the minimum *g* such that *G* has an independently even drawing on M_g .

Strong Hanani–Tutte theorem: $\mathbf{g}_0(G) = 0 \Rightarrow \mathbf{g}(G) = 0$.

genus g(G) of a graph G = minimum g such that G has an embedding on the orientable surface M_g of genus g.

 \mathbb{Z}_2 -genus $g_0(G)$ of a graph *G* is the minimum *g* such that *G* has an independently even drawing on M_g .

Strong Hanani–Tutte theorem: $\mathbf{g}_0(G) = \mathbf{0} \Rightarrow \mathbf{g}(G) = \mathbf{0}$.

Theorem: (Fulek–K., 2017)

There is a graph G with $\mathbf{g}(G) = 5$ and $\mathbf{g}_0(G) \leq 4$.

Consequently, for every positive integer *k* there is a graph *G* with $\mathbf{g}(G) = 5k$ and $\mathbf{g}_0(G) \le 4k$.

genus g(G) of a graph G = minimum g such that G has an embedding on the orientable surface M_g of genus g.

 \mathbb{Z}_2 -genus $g_0(G)$ of a graph *G* is the minimum *g* such that *G* has an independently even drawing on M_g .

Strong Hanani–Tutte theorem: $\mathbf{g}_0(G) = \mathbf{0} \Rightarrow \mathbf{g}(G) = \mathbf{0}$.

Theorem: (Fulek–K., 2017)

There is a graph *G* with $\mathbf{g}(G) = 5$ and $\mathbf{g}_0(G) \le 4$. Consequently, for every positive integer *k* there is a graph *G* with $\mathbf{g}(G) = 5k$ and $\mathbf{g}_0(G) \le 4k$.

Problem: (Schaefer–Štefankovič, 2013) Is there a function *f* such that $\mathbf{g}(G) \le f(\mathbf{g}_0(G))$ for every graph *G*?

genus g(G) of a graph G = minimum g such that G has an embedding on the orientable surface M_g of genus g.

 \mathbb{Z}_2 -genus $g_0(G)$ of a graph *G* is the minimum *g* such that *G* has an independently even drawing on M_g .

Strong Hanani–Tutte theorem: $\mathbf{g}_0(G) = \mathbf{0} \Rightarrow \mathbf{g}(G) = \mathbf{0}$.

Theorem: (Fulek–K., 2017)

There is a graph *G* with $\mathbf{g}(G) = 5$ and $\mathbf{g}_0(G) \le 4$. Consequently, for every positive integer *k* there is a graph *G* with $\mathbf{g}(G) = 5k$ and $\mathbf{g}_0(G) \le 4k$.

Problem: (Schaefer–Štefankovič, 2013) Is there a function *f* such that $\mathbf{g}(G) \le f(\mathbf{g}_0(G))$ for every graph *G*?

Main result: YES, if a certain "folklore result" is true.

Bounding genus by \mathbb{Z}_2 -genus—the plan

1) Ramsey-type statement:

If *G* has large genus g = g(t), then *G* contains, as a minor, $G_1(t)$ or $G_2(t)$ or ... or $G_r(t)$ of genus *t*.

Bounding genus by \mathbb{Z}_2 -genus—the plan

1) Ramsey-type statement:

If *G* has large genus g = g(t), then *G* contains, as a minor, $G_1(t)$ or $G_2(t)$ or ... or $G_r(t)$ of genus *t*.

2) Easier subproblem:

Show that the \mathbb{Z}_2 -genus of each of $G_i(t)$ is unbounded in t.

Theorem: (Böhme–Kawarabayashi–Maharry–Mohar, 2008) For every positive integer *t*, every sufficiently large 7-connected graph contains $K_{3,t}$ as a minor.

Theorem: (Böhme–Kawarabayashi–Maharry–Mohar, 2008) For every positive integer *t*, every sufficiently large 7-connected graph contains $K_{3,t}$ as a minor.

Generalization: (Böhme–Kawarabayashi–Maharry–Mohar, 2009) - larger connectivity and $K_{a,t}$ minors for every fixed a > 3.

Theorem: (Böhme–Kawarabayashi–Maharry–Mohar, 2008) For every positive integer *t*, every sufficiently large 7-connected graph contains $K_{3,t}$ as a minor.

Generalization: (Böhme–Kawarabayashi–Maharry–Mohar, 2009) - larger connectivity and $K_{a,t}$ minors for every fixed a > 3.

Unpublished "folklore" result: (Robertson–Seymour) There is a function g such that for every $t \ge 3$, every graph of Euler genus g(t) contains a *t*-Kuratowski graph as a minor.

Theorem: (Böhme–Kawarabayashi–Maharry–Mohar, 2008) For every positive integer *t*, every sufficiently large 7-connected graph contains $K_{3,t}$ as a minor.

Generalization: (Böhme–Kawarabayashi–Maharry–Mohar, 2009) - larger connectivity and $K_{a,t}$ minors for every fixed a > 3.

Unpublished "folklore" result: (Robertson–Seymour) There is a function g such that for every $t \ge 3$, every graph of Euler genus g(t) contains a *t*-Kuratowski graph as a minor.

t-Kuratowski graph:

- *K*_{3,*t*}, or
- *t* copies of K_5 or $K_{3,3}$ sharing at most 2 common vertices

3-Kuratowski graphs

3-Kuratowski graphs

- what about graphs with large (orientable) genus and constant Euler genus?

Ramsey-type statement for genus

projective 5-wall

Ramsey-type statement for genus

Theorem:

The "folklore result" implies that there is a function *h* such that for every $t \ge 3$, every graph of genus h(t) contains, as a minor, a *t*-Kuratowski graph or the projective *t*-wall.
Theorem: (Schaefer–Štefankovič, 2013)

If *G* consists of *t* copies of K_5 or $K_{3,3}$ sharing at most 1 vertex, then $\mathbf{g}_0(G) = \mathbf{g}(G) = t$.

(The \mathbb{Z}_2 -genus is additive for disjoint unions and 1-amalgamations.)

Theorem: (Schaefer–Štefankovič, 2013)

If *G* consists of *t* copies of K_5 or $K_{3,3}$ sharing at most 1 vertex, then $\mathbf{g}_0(G) = \mathbf{g}(G) = t$.

(The \mathbb{Z}_2 -genus is additive for disjoint unions and 1-amalgamations.)

Observation:

If *G* has maximum degree 3, then $\mathbf{g}_0(G) = \mathbf{g}(G)$. In particular, the \mathbb{Z}_2 -genus of the projective *t*-wall is $\lfloor t/2 \rfloor$.

Theorem: (Schaefer–Štefankovič, 2013)

If *G* consists of *t* copies of K_5 or $K_{3,3}$ sharing at most 1 vertex, then $\mathbf{g}_0(G) = \mathbf{g}(G) = t$.

(The \mathbb{Z}_2 -genus is additive for disjoint unions and 1-amalgamations.)

Observation:

If *G* has maximum degree 3, then $\mathbf{g}_0(G) = \mathbf{g}(G)$. In particular, the \mathbb{Z}_2 -genus of the projective *t*-wall is $\lfloor t/2 \rfloor$.

• "correct" the rotation of each vertex to obtain an even drawing

Theorem: (Schaefer–Štefankovič, 2013)

If *G* consists of *t* copies of K_5 or $K_{3,3}$ sharing at most 1 vertex, then $\mathbf{g}_0(G) = \mathbf{g}(G) = t$.

(The \mathbb{Z}_2 -genus is additive for disjoint unions and 1-amalgamations.)

Observation:

If *G* has maximum degree 3, then $\mathbf{g}_0(G) = \mathbf{g}(G)$. In particular, the \mathbb{Z}_2 -genus of the projective *t*-wall is $\lfloor t/2 \rfloor$.

• "correct" the rotation of each vertex to obtain an even drawing

• use the weak Hanani–Tutte theorem for surfaces

Theorem: (Schaefer–Štefankovič, 2013)

If *G* consists of *t* copies of K_5 or $K_{3,3}$ sharing at most 1 vertex, then $\mathbf{g}_0(G) = \mathbf{g}(G) = t$.

(The \mathbb{Z}_2 -genus is additive for disjoint unions and 1-amalgamations.)

Observation:

If *G* has maximum degree 3, then $\mathbf{g}_0(G) = \mathbf{g}(G)$. In particular, the \mathbb{Z}_2 -genus of the projective *t*-wall is $\lfloor t/2 \rfloor$.

• "correct" the rotation of each vertex to obtain an even drawing

• use the weak Hanani–Tutte theorem for surfaces

Theorem:

We have $\mathbf{g}_0(G) = \mathbf{g}(G)$ also for each of the remaining *t*-Kuratowski graphs *G*: $K_{3,t}$ and 2-amalgamations of *t* copies of K_5 or $K_{3,3}$.

problem with independently even drawings:

- no faces, rotations "do not matter", no Euler's formula ...

problem with independently even drawings:

- no faces, rotations "do not matter", no Euler's formula ...

First lower bound: $\mathbf{g}_0(K_{3,t}) \geq \Omega(\log \log \log t)$

problem with independently even drawings:

- no faces, rotations "do not matter", no Euler's formula ...

First lower bound: $\mathbf{g}_0(\mathcal{K}_{3,t}) \geq \Omega(\log \log \log t)$

• "correct" the rotation of each degree-3 vertex so that incident edges cross evenly

problem with independently even drawings:

- no faces, rotations "do not matter", no Euler's formula ...

First lower bound: $\mathbf{g}_0(\mathcal{K}_{3,t}) \geq \Omega(\log \log \log t)$

- "correct" the rotation of each degree-3 vertex so that incident edges cross evenly
- use Ramsey's theorem for each degree-*t* vertex so that incident edges cross with the same parity

problem with independently even drawings:

- no faces, rotations "do not matter", no Euler's formula ...

First lower bound: $\mathbf{g}_0(K_{3,t}) \ge \Omega(\log \log \log t)$

- "correct" the rotation of each degree-3 vertex so that incident edges cross evenly
- use Ramsey's theorem for each degree-t vertex so that incident edges cross with the same parity
- if the parity is odd for some vertex v, "flip" a neighborhood of v

problem with independently even drawings:

- no faces, rotations "do not matter", no Euler's formula ...

First lower bound: $\mathbf{g}_0(K_{3,t}) \ge \Omega(\log \log \log t)$

- "correct" the rotation of each degree-3 vertex so that incident edges cross evenly
- use Ramsey's theorem for each degree-t vertex so that incident edges cross with the same parity
- if the parity is odd for some vertex v, "flip" a neighborhood of v

• use the weak Hanani–Tutte theorem for surfaces

problem with independently even drawings:

- no faces, rotations "do not matter", no Euler's formula ...

First lower bound: $\mathbf{g}_0(K_{3,t}) \ge \Omega(\log \log \log t)$

- "correct" the rotation of each degree-3 vertex so that incident edges cross evenly
- use Ramsey's theorem for each degree-t vertex so that incident edges cross with the same parity
- if the parity is odd for some vertex v, "flip" a neighborhood of v

- use the weak Hanani–Tutte theorem for surfaces
- use the fact $\mathbf{g}(K_{3,n}) = \lceil (n-2)/4 \rceil$

Second lower bound: $\mathbf{g}_0(K_{3,t}) \geq \Omega(\log t)$

- \mathbb{Z}_2 -homology of closed curves on M_g and pigeon-hole principle

Second lower bound: $\mathbf{g}_0(K_{3,t}) \ge \Omega(\log t)$

- \mathbb{Z}_2 -homology of closed curves on M_g and pigeon-hole principle

Third lower bound: $\mathbf{g}_0(K_{3,t}) = \mathbf{g}(K_{3,t}) = \lceil (t-2)/4 \rceil$

Second lower bound: $\mathbf{g}_0(K_{3,t}) \ge \Omega(\log t)$

- \mathbb{Z}_2 -homology of closed curves on M_g and pigeon-hole principle

Third lower bound: $\mathbf{g}_0(K_{3,t}) = \mathbf{g}(K_{3,t}) = \lceil (t-2)/4 \rceil$

Second lower bound: $\mathbf{g}_0(K_{3,t}) \ge \Omega(\log t)$

- \mathbb{Z}_2 -homology of closed curves on M_g and pigeon-hole principle

Third lower bound: $\mathbf{g}_0(K_{3,t}) = \mathbf{g}(K_{3,t}) = \lceil (t-2)/4 \rceil$

Second lower bound: $\mathbf{g}_0(K_{3,t}) \ge \Omega(\log t)$

- \mathbb{Z}_2 -homology of closed curves on M_g and pigeon-hole principle

Third lower bound: $\mathbf{g}_0(K_{3,t}) = \mathbf{g}(K_{3,t}) = \lceil (t-2)/4 \rceil$

Second lower bound: $\mathbf{g}_0(K_{3,t}) \geq \Omega(\log t)$

- \mathbb{Z}_2 -homology of closed curves on M_g and pigeon-hole principle

Third lower bound: $\mathbf{g}_0(K_{3,t}) = \mathbf{g}(K_{3,t}) = \lceil (t-2)/4 \rceil$

Fact: $H_1(M_g; \mathbb{Z}_2)$ is isomorphic to \mathbb{Z}_2^{2g} .

$$H_1(M_1; \mathbf{Z}_2) = \langle \alpha, \beta \rangle$$

Fact: $H_1(M_g; \mathbb{Z}_2)$ is isomorphic to \mathbb{Z}_2^{2g} .

Fact: $H_1(M_g; \mathbb{Z}_2)$ is isomorphic to \mathbb{Z}_2^{2g} .

intersection form (Cairns–Nikolayevsky, 2000) (symmetric, bilinear) cr : $H_1(M_g; \mathbb{Z}_2) \times H_1(M_g; \mathbb{Z}_2) \to \mathbb{Z}_2$

Fact: $H_1(M_g; \mathbb{Z}_2)$ is isomorphic to \mathbb{Z}_2^{2g} .

intersection form (Cairns–Nikolayevsky, 2000) (symmetric, bilinear) cr : $H_1(M_g; \mathbb{Z}_2) \times H_1(M_g; \mathbb{Z}_2) \to \mathbb{Z}_2$ for g = 1:

$$\operatorname{cr}(\alpha, \alpha) = 0$$
 $\operatorname{cr}(\beta, \beta) = 0$ $\operatorname{cr}(\alpha, \beta) = 1$

Fact: $M_g - \{x\}$ is homeomorphic to a subset of N_{2g+1}

• a cycle $C \rightarrow$ a crosscap vector $\mathbf{y}^{C} = (y_{1}^{C}, y_{2}^{C}, \dots, y_{2g+1}^{C})$ where $y_{i} =$ number of passes of *C* through the *i*th crosscap mod 2.

- a cycle $C \rightarrow$ a crosscap vector $\mathbf{y}^{C} = (y_{1}^{C}, y_{2}^{C}, \dots, y_{2g+1}^{C})$ where $y_{i} =$ number of passes of *C* through the *i*th crosscap mod 2.
- a drawing on $M_g \leftrightarrow$ a drawing with 2g + 1 crosscaps where the crosscap vector of each cycle has an even number of 1's.

- a cycle $C \rightarrow$ a crosscap vector $\mathbf{y}^{C} = (y_{1}^{C}, y_{2}^{C}, \dots, y_{2g+1}^{C})$ where $y_{i} =$ number of passes of *C* through the *i*th crosscap mod 2.
- a drawing on $M_g \leftrightarrow$ a drawing with 2g + 1 crosscaps where the crosscap vector of each cycle has an even number of 1's.
- homology class of $C \leftrightarrow$ crosscap vector \mathbf{y}^{C}

- a cycle $C \rightarrow$ a crosscap vector $\mathbf{y}^{C} = (y_{1}^{C}, y_{2}^{C}, \dots, y_{2g+1}^{C})$ where $y_{i} =$ number of passes of *C* through the *i*th crosscap mod 2.
- a drawing on $M_g \leftrightarrow$ a drawing with 2g + 1 crosscaps where the crosscap vector of each cycle has an even number of 1's.
- homology class of $\mathcal{C} \leftrightarrow$ crosscap vector $\mathbf{y}^{\mathcal{C}}$
- intersection form $cr(C, D) \leftrightarrow scalar \text{ product } \mathbf{y}^C \cdot \mathbf{y}^D$

Lemma: In every independently even drawing of $K_{3,3}$ (induced by $\{a, b, c, u_0, u_1, u_2\}$ from $K_{3,t}$) on M_g , we have

$$cr(C_1, C'_2) + cr(C'_1, C_2) = 1.$$

Lemma: In every independently even drawing of $K_{3,3}$ (induced by $\{a, b, c, u_0, u_1, u_2\}$ from $K_{3,t}$) on M_g , we have

 $\operatorname{cr}(\mathit{C}_1,\mathit{C}_2')+\operatorname{cr}(\mathit{C}_1',\mathit{C}_2)=1.$

Lemma: In every independently even drawing of $K_{3,3}$ (induced by $\{a, b, c, u_0, u_1, u_2\}$ from $K_{3,t}$) on M_g , we have

 $cr(C_1, C'_2) + cr(C'_1, C_2) = 1.$

• Let A be the $(t-1) \times (t-1)$ matrix with $A_{i,j} = \operatorname{cr}(C_i, C'_j)$

Lemma: In every independently even drawing of $K_{3,3}$ (induced by $\{a, b, c, u_0, u_1, u_2\}$ from $K_{3,t}$) on M_g , we have

 $cr(C_1, C'_2) + cr(C'_1, C_2) = 1.$

- Let A be the $(t-1) \times (t-1)$ matrix with $A_{i,j} = \operatorname{cr}(C_i, C'_i)$
- Lemma implies $A_{i,j} + A_{j,i} = 1$ for $i \neq j$, so A is a **tournament matrix**, that is, $A + A^T = J - I$

Lemma: In every independently even drawing of $K_{3,3}$ (induced by $\{a, b, c, u_0, u_1, u_2\}$ from $K_{3,t}$) on M_g , we have

 $cr(C_1, C'_2) + cr(C'_1, C_2) = 1.$

- Let A be the $(t-1) \times (t-1)$ matrix with $A_{i,j} = \operatorname{cr}(C_i, C'_i)$
- Lemma implies $A_{i,j} + A_{j,i} = 1$ for $i \neq j$, so A is a **tournament matrix**, that is, $A + A^T = J - I$
- rank of A is at least (t-2)/2 (De Caen, 1991)

Lemma: In every independently even drawing of $K_{3,3}$ (induced by $\{a, b, c, u_0, u_1, u_2\}$ from $K_{3,t}$) on M_g , we have

 $cr(C_1, C'_2) + cr(C'_1, C_2) = 1.$

- Let A be the $(t-1) \times (t-1)$ matrix with $A_{i,j} = \operatorname{cr}(C_i, C'_i)$
- Lemma implies $A_{i,j} + A_{j,i} = 1$ for $i \neq j$, so A is a **tournament matrix**, that is, $A + A^T = J - I$
- rank of A is at least (t-2)/2 (De Caen, 1991)
- the rank of the intersection form is at least (t-2)/2 and so $2g \ge (t-2)/2$.