The \mathbb{Z}_{2}-genus of Kuratowski minors

Radoslav Fulek and Jan Kynčl

Charles University, Prague

Drawings and embeddings

drawing of a graph:
vertices \rightarrow points
edges \rightarrow simple curves

Drawings and embeddings

drawing of a graph: vertices \rightarrow points edges \rightarrow simple curves
forbidden:

Drawings and embeddings

drawing of a graph:

vertices \rightarrow points

edges \rightarrow simple curves
forbidden:

Drawings and embeddings

drawing of a graph:
forbidden:

vertices \rightarrow points
edges \rightarrow simple curves

Drawings and embeddings

drawing of a graph:
forbidden:

vertices \rightarrow points
edges \rightarrow simple curves

Drawings and embeddings

drawing of a graph:
forbidden:

vertices \rightarrow points
edges \rightarrow simple curves

embedding = drawing with no crossings

Hanani-Tutte theorems

(Strong) Hanani-Tutte theorem: (Hanani, 1934; Tutte, 1970)
A graph is planar if and only if it has an independently even drawing in the plane; that is, every pair of non-adjacent edges crosses an even number of times.

Hanani-Tutte theorems

(Strong) Hanani-Tutte theorem: (Hanani, 1934; Tutte, 1970)
A graph is planar if and only if it has an independently even drawing in the plane; that is, every pair of non-adjacent edges crosses an even number of times.

Hanani-Tutte theorems

(Strong) Hanani-Tutte theorem: (Hanani, 1934; Tutte, 1970)
A graph is planar if and only if it has an independently even drawing in the plane; that is, every pair of non-adjacent edges crosses an even number of times.

Hanani-Tutte theorems

(Strong) Hanani-Tutte theorem: (Hanani, 1934; Tutte, 1970)
A graph is planar if and only if it has an independently even drawing in the plane; that is, every pair of non-adjacent edges crosses an even number of times.

Hanani-Tutte theorems

(Strong) Hanani-Tutte theorem: (Hanani, 1934; Tutte, 1970)
A graph is planar if and only if it has an independently even drawing in the plane; that is, every pair of non-adjacent edges crosses an even number of times.

Hanani-Tutte theorems

(Strong) Hanani-Tutte theorem: (Hanani, 1934; Tutte, 1970)

A graph is planar if and only if it has an independently even drawing in the plane; that is, every pair of non-adjacent edges crosses an even number of times.

Hanani-Tutte theorems

(Strong) Hanani-Tutte theorem: (Hanani, 1934; Tutte, 1970)

A graph is planar if and only if it has an independently even drawing in the plane; that is, every pair of non-adjacent edges crosses an even number of times.

application: polynomial-time algorithm for testing planarity

Hanani-Tutte theorems

(Strong) Hanani-Tutte theorem: (Hanani, 1934; Tutte, 1970)
A graph is planar if and only if it has an independently even drawing in the plane; that is, every pair of non-adjacent edges crosses an even number of times.

Weak Hanani-Tutte theorem: (Cairns-Nikolayevsky, 2000; Pach-Tóth, 2000; Pelsmajer-Schaefer-Štefankovič, 2007)
If a graph G has an even drawing D in the plane (every pair of edges crosses an even number of times), then G is planar.

Hanani-Tutte theorems

(Strong) Hanani-Tutte theorem: (Hanani, 1934; Tutte, 1970)
A graph is planar if and only if it has an independently even drawing in the plane; that is, every pair of non-adjacent edges crosses an even number of times.

Weak Hanani-Tutte theorem: (Cairns-Nikolayevsky, 2000; Pach-Tóth, 2000; Pelsmajer-Schaefer-Štefankovič, 2007)
If a graph G has an even drawing D in the plane (every pair of edges crosses an even number of times), then G is planar.
(Moreover, G has a plane embedding with the same rotation system as D.)

Hanani-Tutte theorems on surfaces

Weak Hanani-Tutte theorem on surfaces:
(Cairns-Nikolayevsky, 2000; Pelsmajer-Schaefer-Štefankovič, 2009) If a graph G has an even drawing \mathcal{D} on a surface S, then G has an embedding on S (that preserves the embedding scheme of \mathcal{D}).

Hanani-Tutte theorems on surfaces

Weak Hanani-Tutte theorem on surfaces:
(Cairns-Nikolayevsky, 2000; Pelsmajer-Schaefer-Štefankovič, 2009)
If a graph G has an even drawing \mathcal{D} on a surface S, then G has an embedding on S (that preserves the embedding scheme of \mathcal{D}).
(Strong) Hanani-Tutte theorem on the projective plane: (Pelsmajer-Schaefer-Stasi, 2009; Colin de Verdière-Kaluža-Paták-Patáková-Tancer, 2016)
If a graph G has an independently even drawing on the projective plane, then G has an embedding on the projective plane.

Hanani-Tutte theorems on surfaces

Weak Hanani-Tutte theorem on surfaces:

(Cairns-Nikolayevsky, 2000; Pelsmajer-Schaefer-Štefankovič, 2009) If a graph G has an even drawing \mathcal{D} on a surface S, then G has an embedding on S (that preserves the embedding scheme of \mathcal{D}).
(Strong) Hanani-Tutte theorem on the projective plane: (Pelsmajer-Schaefer-Stasi, 2009; Colin de Verdière-Kaluža-Paták-Patáková-Tancer, 2016) If a graph G has an independently even drawing on the projective plane, then G has an embedding on the projective plane.

Problem: Can the strong Hanani-Tutte theorem be extended to other surfaces?

Hanani-Tutte theorems on surfaces

Weak Hanani-Tutte theorem on surfaces:

(Cairns-Nikolayevsky, 2000; Pelsmajer-Schaefer-Štefankovič, 2009) If a graph G has an even drawing \mathcal{D} on a surface S, then G has an embedding on S (that preserves the embedding scheme of \mathcal{D}).
(Strong) Hanani-Tutte theorem on the projective plane: (Pelsmajer-Schaefer-Stasi, 2009; Colin de Verdière-Kaluža-Paták-Patáková-Tancer, 2016) If a graph G has an independently even drawing on the projective plane, then G has an embedding on the projective plane.

Problem: Can the strong Hanani-Tutte theorem be extended to other surfaces?

Partial answer: No to the orientable surface of genus 4 or larger (Fulek-K., 2017)

Genus and \mathbb{Z}_{2}-genus

genus $g(G)$ of a graph $G=$ minimum g such that G has an embedding on the orientable surface M_{g} of genus g.

Genus and \mathbb{Z}_{2}-genus

genus $g(G)$ of a graph $G=$ minimum g such that G has an embedding on the orientable surface M_{g} of genus g.
\mathbb{Z}_{2}-genus $g_{0}(G)$ of a graph G is the minimum g such that G has an independently even drawing on M_{g}.

Genus and \mathbb{Z}_{2}-genus

genus $g(G)$ of a graph $G=$ minimum g such that G has an embedding on the orientable surface M_{g} of genus g.
\mathbb{Z}_{2}-genus $g_{0}(G)$ of a graph G is the minimum g such that G has an independently even drawing on M_{g}.

Strong Hanani-Tutte theorem: $\mathbf{g}_{0}(G)=0 \Rightarrow \mathbf{g}(G)=0$.

Genus and \mathbb{Z}_{2}-genus

genus $g(G)$ of a graph $G=$ minimum g such that G has an embedding on the orientable surface M_{g} of genus g.
\mathbb{Z}_{2}-genus $g_{0}(G)$ of a graph G is the minimum g such that G has an independently even drawing on M_{g}.

Strong Hanani-Tutte theorem: $\mathbf{g}_{0}(G)=0 \Rightarrow \mathbf{g}(G)=0$.
Theorem: (Fulek-K., 2017)
There is a graph G with $\mathbf{g}(G)=5$ and $\mathbf{g}_{0}(G) \leq 4$.
Consequently, for every positive integer k there is a graph G with $\mathbf{g}(G)=5 k$ and $\mathbf{g}_{0}(G) \leq 4 k$.

Genus and \mathbb{Z}_{2}-genus

genus $g(G)$ of a graph $G=$ minimum g such that G has an embedding on the orientable surface M_{g} of genus g.
\mathbb{Z}_{2}-genus $g_{0}(G)$ of a graph G is the minimum g such that G has an independently even drawing on M_{g}.

Strong Hanani-Tutte theorem: $\mathbf{g}_{0}(G)=0 \Rightarrow \mathbf{g}(G)=0$.
Theorem: (Fulek-K., 2017)
There is a graph G with $\mathbf{g}(G)=5$ and $\mathbf{g}_{0}(G) \leq 4$.
Consequently, for every positive integer k there is a graph G with $\mathbf{g}(G)=5 k$ and $\mathbf{g}_{0}(G) \leq 4 k$.

Problem: (Schaefer-Štefankovič, 2013)
Is there a function f such that $\mathbf{g}(G) \leq f\left(\mathbf{g}_{0}(G)\right)$ for every graph G ?

Genus and \mathbb{Z}_{2}-genus

genus $g(G)$ of a graph $G=$ minimum g such that G has an embedding on the orientable surface M_{g} of genus g.
\mathbb{Z}_{2}-genus $g_{0}(G)$ of a graph G is the minimum g such that G has an independently even drawing on M_{g}.

Strong Hanani-Tutte theorem: $\mathbf{g}_{0}(G)=0 \Rightarrow \mathbf{g}(G)=0$.
Theorem: (Fulek-K., 2017)
There is a graph G with $\mathbf{g}(G)=5$ and $\mathbf{g}_{0}(G) \leq 4$.
Consequently, for every positive integer k there is a graph G with $\mathbf{g}(G)=5 k$ and $\mathbf{g}_{0}(G) \leq 4 k$.

Problem: (Schaefer-Štefankovič, 2013)
Is there a function f such that $\mathbf{g}(G) \leq f\left(\mathbf{g}_{0}(G)\right)$ for every graph G ?
Main result: YES, if a certain "folklore result" is true.

Bounding genus by \mathbb{Z}_{2}-genus-the plan

1) Ramsey-type statement:

If G has large genus $g=g(t)$, then G contains, as a minor, $G_{1}(t)$ or $G_{2}(t)$ or \ldots or $G_{r}(t)$ of genus t.

Bounding genus by \mathbb{Z}_{2}-genus-the plan

1) Ramsey-type statement:

If G has large genus $g=g(t)$, then G contains, as a minor, $G_{1}(t)$ or $G_{2}(t)$ or \ldots or $G_{r}(t)$ of genus t.
2) Easier subproblem:

Show that the \mathbb{Z}_{2}-genus of each of $G_{i}(t)$ is unbounded in t.

Ramsey-type statements

Theorem: (Böhme-Kawarabayashi-Maharry-Mohar, 2008) For every positive integer t, every sufficiently large 7-connected graph contains $K_{3, t}$ as a minor.

Ramsey-type statements

Theorem: (Böhme-Kawarabayashi-Maharry-Mohar, 2008) For every positive integer t, every sufficiently large 7-connected graph contains $K_{3, t}$ as a minor.

Generalization: (Böhme-Kawarabayashi-Maharry-Mohar, 2009) - larger connectivity and $K_{a, t}$ minors for every fixed $a>3$.

Ramsey-type statements

Theorem: (Böhme-Kawarabayashi-Maharry-Mohar, 2008) For every positive integer t, every sufficiently large 7-connected graph contains $K_{3, t}$ as a minor.

Generalization: (Böhme-Kawarabayashi-Maharry-Mohar, 2009) - larger connectivity and $K_{a, t}$ minors for every fixed $a>3$.

Unpublished "folklore" result: (Robertson-Seymour)
There is a function g such that for every $t \geq 3$, every graph of Euler genus $g(t)$ contains a t-Kuratowski graph as a minor.

Ramsey-type statements

Theorem: (Böhme-Kawarabayashi-Maharry-Mohar, 2008) For every positive integer t, every sufficiently large 7-connected graph contains $K_{3, t}$ as a minor.

Generalization: (Böhme-Kawarabayashi-Maharry-Mohar, 2009) - larger connectivity and $K_{a, t}$ minors for every fixed $a>3$.

Unpublished "folklore" result: (Robertson-Seymour)
There is a function g such that for every $t \geq 3$, every graph of Euler genus $g(t)$ contains a t-Kuratowski graph as a minor.
t-Kuratowski graph:

- $K_{3, t}$, or
- t copies of K_{5} or $K_{3,3}$ sharing at most 2 common vertices

3-Kuratowski graphs

3-Kuratowski graphs

- what about graphs with large (orientable) genus and constant Euler genus?

Ramsey-type statement for genus

projective 5×5 grid

projective 5-wall

Ramsey-type statement for genus

projective 5×5 grid

projective 5-wall

Theorem:

The "folklore result" implies that there is a function h such that for every $t \geq 3$, every graph of genus $h(t)$ contains, as a minor, a t-Kuratowski graph or the projective t-wall.

Lower bounds on the \mathbb{Z}_{2}-genus

Theorem: (Schaefer-Štefankovič, 2013)
If G consists of t copies of K_{5} or $K_{3,3}$ sharing at most 1 vertex, then $\mathbf{g}_{0}(G)=\mathbf{g}(G)=t$.
(The \mathbb{Z}_{2}-genus is additive for disjoint unions and 1-amalgamations.)

Lower bounds on the \mathbb{Z}_{2}-genus

Theorem: (Schaefer-Štefankovič, 2013)
If G consists of t copies of K_{5} or $K_{3,3}$ sharing at most 1 vertex, then $\mathbf{g}_{0}(G)=\mathbf{g}(G)=t$.
(The \mathbb{Z}_{2}-genus is additive for disjoint unions and 1-amalgamations.)

Observation:

If G has maximum degree 3 , then $\mathbf{g}_{0}(G)=\mathbf{g}(G)$. In particular, the \mathbb{Z}_{2}-genus of the projective t-wall is $\lfloor t / 2\rfloor$.

Lower bounds on the \mathbb{Z}_{2}-genus

Theorem: (Schaefer-Štefankovič, 2013)
If G consists of t copies of K_{5} or $K_{3,3}$ sharing at most 1 vertex, then $\mathbf{g}_{0}(G)=\mathbf{g}(G)=t$.
(The \mathbb{Z}_{2}-genus is additive for disjoint unions and 1-amalgamations.)

Observation:

If G has maximum degree 3 , then $\mathbf{g}_{0}(G)=\mathbf{g}(G)$. In particular, the \mathbb{Z}_{2}-genus of the projective t-wall is $\lfloor t / 2\rfloor$.

- "correct" the rotation of each vertex to obtain an even drawing

Lower bounds on the \mathbb{Z}_{2}-genus

Theorem: (Schaefer-Štefankovič, 2013)
If G consists of t copies of K_{5} or $K_{3,3}$ sharing at most 1 vertex, then $\mathbf{g}_{0}(G)=\mathbf{g}(G)=t$.
(The \mathbb{Z}_{2}-genus is additive for disjoint unions and 1-amalgamations.)

Observation:

If G has maximum degree 3 , then $\mathbf{g}_{0}(G)=\mathbf{g}(G)$. In particular, the \mathbb{Z}_{2}-genus of the projective t-wall is $\lfloor t / 2\rfloor$.

- "correct" the rotation of each vertex to obtain an even drawing

- use the weak Hanani-Tutte theorem for surfaces

Lower bounds on the \mathbb{Z}_{2}-genus

Theorem: (Schaefer-Štefankovič, 2013)
If G consists of t copies of K_{5} or $K_{3,3}$ sharing at most 1 vertex, then $\mathbf{g}_{0}(G)=\mathbf{g}(G)=t$.
(The \mathbb{Z}_{2}-genus is additive for disjoint unions and 1-amalgamations.)

Observation:

If G has maximum degree 3 , then $\mathbf{g}_{0}(G)=\mathbf{g}(G)$. In particular, the \mathbb{Z}_{2}-genus of the projective t-wall is $\lfloor t / 2\rfloor$.

- "correct" the rotation of each vertex to obtain an even drawing

- use the weak Hanani-Tutte theorem for surfaces

Theorem:

We have $\mathbf{g}_{0}(G)=\mathbf{g}(G)$ also for each of the remaining t-Kuratowski graphs $G: K_{3, t}$ and 2-amalgamations of t copies of K_{5} or $K_{3,3}$.

Lower bounds on the \mathbb{Z}_{2}-genus of $K_{3, t}$

problem with independently even drawings:

- no faces, rotations "do not matter", no Euler's formula ...

Lower bounds on the \mathbb{Z}_{2}-genus of $K_{3, t}$

problem with independently even drawings:

- no faces, rotations "do not matter", no Euler's formula . . .

First lower bound: $\mathbf{g}_{0}\left(K_{3, t}\right) \geq \Omega(\log \log \log t)$

Lower bounds on the \mathbb{Z}_{2}-genus of $K_{3, t}$

problem with independently even drawings:

- no faces, rotations "do not matter", no Euler's formula ...

First lower bound: $\mathbf{g}_{0}\left(K_{3, t}\right) \geq \Omega(\log \log \log t)$

- "correct" the rotation of each degree-3 vertex so that incident edges cross evenly

Lower bounds on the \mathbb{Z}_{2}-genus of $K_{3, t}$

problem with independently even drawings:

- no faces, rotations "do not matter", no Euler's formula ...

First lower bound: $\mathbf{g}_{0}\left(K_{3, t}\right) \geq \Omega(\log \log \log t)$

- "correct" the rotation of each degree-3 vertex so that incident edges cross evenly
- use Ramsey's theorem for each degree- t vertex so that incident edges cross with the same parity

Lower bounds on the \mathbb{Z}_{2}-genus of $K_{3, t}$

problem with independently even drawings:

- no faces, rotations "do not matter", no Euler's formula ...

First lower bound: $\mathbf{g}_{0}\left(K_{3, t}\right) \geq \Omega(\log \log \log t)$

- "correct" the rotation of each degree-3 vertex so that incident edges cross evenly
- use Ramsey's theorem for each degree- t vertex so that incident edges cross with the same parity
- if the parity is odd for some vertex v, "flip" a neighborhood of v

Lower bounds on the \mathbb{Z}_{2}-genus of $K_{3, t}$

problem with independently even drawings:

- no faces, rotations "do not matter", no Euler's formula ...

First lower bound: $\mathbf{g}_{0}\left(K_{3, t}\right) \geq \Omega(\log \log \log t)$

- "correct" the rotation of each degree-3 vertex so that incident edges cross evenly
- use Ramsey's theorem for each degree- t vertex so that incident edges cross with the same parity
- if the parity is odd for some vertex v, "flip" a neighborhood of v

- use the weak Hanani-Tutte theorem for surfaces

Lower bounds on the \mathbb{Z}_{2}-genus of $K_{3, t}$

problem with independently even drawings:

- no faces, rotations "do not matter", no Euler's formula ...

First lower bound: $\mathbf{g}_{0}\left(K_{3, t}\right) \geq \Omega(\log \log \log t)$

- "correct" the rotation of each degree-3 vertex so that incident edges cross evenly
- use Ramsey's theorem for each degree- t vertex so that incident edges cross with the same parity
- if the parity is odd for some vertex v, "flip" a neighborhood of v

- use the weak Hanani-Tutte theorem for surfaces
- use the fact $\mathbf{g}\left(K_{3, n}\right)=\lceil(n-2) / 4\rceil$

Lower bounds on the \mathbb{Z}_{2}-genus of $K_{3, t}$

Lower bounds on the \mathbb{Z}_{2}-genus of $K_{3, t}$

Second lower bound: $\mathbf{g}_{0}\left(K_{3, t}\right) \geq \Omega(\log t)$

- \mathbb{Z}_{2}-homology of closed curves on M_{g} and pigeon-hole principle

Lower bounds on the \mathbb{Z}_{2}-genus of $K_{3, t}$

Second lower bound: $\mathbf{g}_{0}\left(K_{3, t}\right) \geq \Omega(\log t)$

- \mathbb{Z}_{2}-homology of closed curves on M_{g} and pigeon-hole principle

Third lower bound: $\mathbf{g}_{0}\left(K_{3, t}\right)=\mathbf{g}\left(K_{3, t}\right)=\lceil(t-2) / 4\rceil$

- \mathbb{Z}_{2}-homology of closed curves on M_{g} and linear-algebraic trick

Lower bounds on the \mathbb{Z}_{2}-genus of $K_{3, t}$

Second lower bound: $\mathbf{g}_{0}\left(K_{3, t}\right) \geq \Omega(\log t)$

- \mathbb{Z}_{2}-homology of closed curves on M_{g} and pigeon-hole principle

Third lower bound: $\mathbf{g}_{0}\left(K_{3, t}\right)=\mathbf{g}\left(K_{3, t}\right)=\lceil(t-2) / 4\rceil$

- \mathbb{Z}_{2}-homology of closed curves on M_{g} and linear-algebraic trick

Lower bounds on the \mathbb{Z}_{2}-genus of $K_{3, t}$

Second lower bound: $\mathbf{g}_{0}\left(K_{3, t}\right) \geq \Omega(\log t)$

- \mathbb{Z}_{2}-homology of closed curves on M_{g} and pigeon-hole principle

Third lower bound: $\mathbf{g}_{0}\left(K_{3, t}\right)=\mathbf{g}\left(K_{3, t}\right)=\lceil(t-2) / 4\rceil$

- \mathbb{Z}_{2}-homology of closed curves on M_{g} and linear-algebraic trick

Lower bounds on the \mathbb{Z}_{2}-genus of $K_{3, t}$

Second lower bound: $\mathbf{g}_{0}\left(K_{3, t}\right) \geq \Omega(\log t)$

- \mathbb{Z}_{2}-homology of closed curves on M_{g} and pigeon-hole principle

Third lower bound: $\mathbf{g}_{0}\left(K_{3, t}\right)=\mathbf{g}\left(K_{3, t}\right)=\lceil(t-2) / 4\rceil$

- \mathbb{Z}_{2}-homology of closed curves on M_{g} and linear-algebraic trick

Lower bounds on the \mathbb{Z}_{2}-genus of $K_{3, t}$

Second lower bound: $\mathbf{g}_{0}\left(K_{3, t}\right) \geq \Omega(\log t)$

- \mathbb{Z}_{2}-homology of closed curves on M_{g} and pigeon-hole principle

Third lower bound: $\mathbf{g}_{0}\left(K_{3, t}\right)=\mathbf{g}\left(K_{3, t}\right)=\lceil(t-2) / 4\rceil$

- \mathbb{Z}_{2}-homology of closed curves on M_{g} and linear-algebraic trick

\mathbb{Z}_{2}-homology of closed curves on M_{g}

Fact: $H_{1}\left(M_{g} ; \mathbb{Z}_{2}\right)$ is isomorphic to $\mathbb{Z}_{2}^{2 g}$.

$$
H_{1}\left(M_{1} ; \mathbf{Z}_{2}\right)=\langle\alpha, \beta\rangle
$$

\mathbb{Z}_{2}-homology of closed curves on M_{g}

Fact: $H_{1}\left(M_{g} ; \mathbb{Z}_{2}\right)$ is isomorphic to $\mathbb{Z}_{2}^{2 g}$.

$$
H_{1}\left(M_{1} ; \mathbf{Z}_{2}\right)=\langle\alpha, \beta\rangle
$$

\mathbb{Z}_{2}-homology of closed curves on M_{g}

Fact: $H_{1}\left(M_{g} ; \mathbb{Z}_{2}\right)$ is isomorphic to $\mathbb{Z}_{2}^{2 g}$.

$$
H_{1}\left(M_{1} ; \mathbf{Z}_{2}\right)=\langle\alpha, \beta\rangle
$$

intersection form (Cairns-Nikolayevsky, 2000) (symmetric, bilinear)

$$
\text { cr : } H_{1}\left(M_{g} ; \mathbb{Z}_{2}\right) \times H_{1}\left(M_{g} ; \mathbb{Z}_{2}\right) \rightarrow \mathbb{Z}_{2}
$$

\mathbb{Z}_{2}-homology of closed curves on M_{g}

Fact: $H_{1}\left(M_{g} ; \mathbb{Z}_{2}\right)$ is isomorphic to $\mathbb{Z}_{2}^{2 g}$.

$$
H_{1}\left(M_{1} ; \mathbf{Z}_{2}\right)=\langle\alpha, \beta\rangle
$$

intersection form (Cairns-Nikolayevsky, 2000) (symmetric, bilinear)

$$
\text { cr: } H_{1}\left(M_{g} ; \mathbb{Z}_{2}\right) \times H_{1}\left(M_{g} ; \mathbb{Z}_{2}\right) \rightarrow \mathbb{Z}_{2}
$$

for $g=1$:

$$
\operatorname{cr}(\alpha, \alpha)=0 \quad \operatorname{cr}(\beta, \beta)=0 \quad \operatorname{cr}(\alpha, \beta)=1
$$

"Crosscap vectors" of closed curves on M_{g}
Fact: $M_{g}-\{x\}$ is homeomorphic to a subset of $N_{2 g+1}$

"Crosscap vectors" of closed curves on M_{g}

Fact: $M_{g}-\{x\}$ is homeomorphic to a subset of $N_{2 g+1}$ or, to a subset of the sphere with $2 g+1$ crosscaps

"Crosscap vectors" of closed curves on M_{g}

Fact: $M_{g}-\{x\}$ is homeomorphic to a subset of $N_{2 g+1}$ or, to a subset of the sphere with $2 g+1$ crosscaps

"Crosscap vectors" of closed curves on M_{g}

Fact: $M_{g}-\{x\}$ is homeomorphic to a subset of $N_{2 g+1}$ or, to a subset of the sphere with $2 g+1$ crosscaps

- a cycle $C \rightarrow$ a crosscap vector $\mathbf{y}^{C}=\left(y_{1}^{C}, y_{2}^{C}, \ldots, y_{2 g+1}^{C}\right)$ where $y_{i}=$ number of passes of C through the i th crosscap mod 2.

"Crosscap vectors" of closed curves on M_{g}

Fact: $M_{g}-\{x\}$ is homeomorphic to a subset of $N_{2 g+1}$ or, to a subset of the sphere with $2 g+1$ crosscaps

- a cycle $C \rightarrow$ a crosscap vector $\mathbf{y}^{C}=\left(y_{1}^{C}, y_{2}^{C}, \ldots, y_{2 g+1}^{C}\right)$ where $y_{i}=$ number of passes of C through the i th crosscap mod 2.
- a drawing on $M_{g} \leftrightarrow$ a drawing with $2 g+1$ crosscaps where the crosscap vector of each cycle has an even number of 1's.

"Crosscap vectors" of closed curves on M_{g}

Fact: $M_{g}-\{x\}$ is homeomorphic to a subset of $N_{2 g+1}$ or, to a subset of the sphere with $2 g+1$ crosscaps

- a cycle $C \rightarrow$ a crosscap vector $\mathbf{y}^{C}=\left(y_{1}^{C}, y_{2}^{C}, \ldots, y_{2 g+1}^{C}\right)$ where $y_{i}=$ number of passes of C through the i th crosscap mod 2.
- a drawing on $M_{g} \leftrightarrow$ a drawing with $2 g+1$ crosscaps where the crosscap vector of each cycle has an even number of 1's.
- homology class of $C \leftrightarrow$ crosscap vector \mathbf{y}^{C}

"Crosscap vectors" of closed curves on M_{g}

Fact: $M_{g}-\{x\}$ is homeomorphic to a subset of $N_{2 g+1}$ or, to a subset of the sphere with $2 g+1$ crosscaps

- a cycle $C \rightarrow$ a crosscap vector $\mathbf{y}^{C}=\left(y_{1}^{C}, y_{2}^{C}, \ldots, y_{2 g+1}^{C}\right)$ where $y_{i}=$ number of passes of C through the i th crosscap mod 2.
- a drawing on $M_{g} \leftrightarrow$ a drawing with $2 g+1$ crosscaps where the crosscap vector of each cycle has an even number of 1's.
- homology class of $C \leftrightarrow$ crosscap vector \mathbf{y}^{C}
- intersection form $\operatorname{cr}(C, D) \leftrightarrow$ scalar product $\mathbf{y}^{C} \cdot \mathbf{y}^{D}$

Third lower bound on the \mathbb{Z}_{2}-genus of $K_{3, t}$

Lemma: In every independently even drawing of $K_{3,3}$ (induced by $\left\{a, b, c, u_{0}, u_{1}, u_{2}\right\}$ from $K_{3, t}$) on M_{g}, we have

$$
\operatorname{cr}\left(C_{1}, C_{2}^{\prime}\right)+\operatorname{cr}\left(C_{1}^{\prime}, C_{2}\right)=1
$$

Third lower bound on the \mathbb{Z}_{2}-genus of $K_{3, t}$

Lemma: In every independently even drawing of $K_{3,3}$ (induced by $\left\{a, b, c, u_{0}, u_{1}, u_{2}\right\}$ from $K_{3, t}$) on M_{g}, we have

$$
\operatorname{cr}\left(C_{1}, C_{2}^{\prime}\right)+\operatorname{cr}\left(C_{1}^{\prime}, C_{2}\right)=1
$$

Third lower bound on the \mathbb{Z}_{2}-genus of $K_{3, t}$

Lemma: In every independently even drawing of $K_{3,3}$ (induced by $\left\{a, b, c, u_{0}, u_{1}, u_{2}\right\}$ from $K_{3, t}$) on M_{g}, we have

$$
\operatorname{cr}\left(C_{1}, C_{2}^{\prime}\right)+\operatorname{cr}\left(C_{1}^{\prime}, C_{2}\right)=1
$$

- Let A be the $(t-1) \times(t-1)$ matrix with $A_{i, j}=\operatorname{cr}\left(C_{i}, C_{j}^{\prime}\right)$

Third lower bound on the \mathbb{Z}_{2}-genus of $K_{3, t}$

Lemma: In every independently even drawing of $K_{3,3}$ (induced by $\left\{a, b, c, u_{0}, u_{1}, u_{2}\right\}$ from $\left.K_{3, t}\right)$ on M_{g}, we have

$$
\operatorname{cr}\left(C_{1}, C_{2}^{\prime}\right)+\operatorname{cr}\left(C_{1}^{\prime}, C_{2}\right)=1
$$

- Let A be the $(t-1) \times(t-1)$ matrix with $A_{i, j}=\operatorname{cr}\left(C_{i}, C_{j}^{\prime}\right)$
- Lemma implies $A_{i, j}+A_{j, i}=1$ for $i \neq j$, so A is a tournament matrix, that is, $A+A^{T}=J-I$

Third lower bound on the \mathbb{Z}_{2}-genus of $K_{3, t}$

Lemma: In every independently even drawing of $K_{3,3}$ (induced by $\left\{a, b, c, u_{0}, u_{1}, u_{2}\right\}$ from $\left.K_{3, t}\right)$ on M_{g}, we have

$$
\operatorname{cr}\left(C_{1}, C_{2}^{\prime}\right)+\operatorname{cr}\left(C_{1}^{\prime}, C_{2}\right)=1
$$

- Let A be the $(t-1) \times(t-1)$ matrix with $A_{i, j}=\operatorname{cr}\left(C_{i}, C_{j}^{\prime}\right)$
- Lemma implies $A_{i, j}+A_{j, i}=1$ for $i \neq j$, so A is a tournament matrix, that is, $A+A^{T}=J-I$
- rank of A is at least $(t-2) / 2$ (De Caen, 1991)

Third lower bound on the \mathbb{Z}_{2}-genus of $K_{3, t}$

Lemma: In every independently even drawing of $K_{3,3}$ (induced by $\left\{a, b, c, u_{0}, u_{1}, u_{2}\right\}$ from $\left.K_{3, t}\right)$ on M_{g}, we have

$$
\operatorname{cr}\left(C_{1}, C_{2}^{\prime}\right)+\operatorname{cr}\left(C_{1}^{\prime}, C_{2}\right)=1
$$

- Let A be the $(t-1) \times(t-1)$ matrix with $A_{i, j}=\operatorname{cr}\left(C_{i}, C_{j}^{\prime}\right)$
- Lemma implies $A_{i, j}+A_{j, i}=1$ for $i \neq j$, so A is a tournament matrix, that is, $A+A^{T}=J-I$
- rank of A is at least $(t-2) / 2$ (De Caen, 1991)
- the rank of the intersection form is at least $(t-2) / 2$ and so $2 g \geq(t-2) / 2$.

