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embedding = drawing with no crossings
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(Strong) Hanani—Tutte theorem: (Hanani, 1934; Tutte, 1970)

A graph is planar if and only if it has an independently even drawing
in the plane; that is, every pair of non-adjacent edges crosses an
even number of times.

Weak Hanani-Tutte theorem: (Cairns—Nikolayevsky, 2000;
Pach-Téth, 2000; Pelsmajer—Schaefer—Stefankovic, 2007)

If a graph G has an even drawing D in the plane (every pair of edges
crosses an even number of times), then G is planar.

(Moreover, G has a plane embedding with the same rotation system
as D.)
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Hanani—Tutte theorems on surfaces

Weak Hanani-Tutte theorem on surfaces: 5
(Cairns—Nikolayevsky, 2000; Pelsmajer—Schaefer—Stefankovic, 2009)

If a graph G has an even drawing D on a surface S, then G has an
embedding on S (that preserves the embedding scheme of D).

(Strong) Hanani—Tutte theorem on the projective plane:
(Pelsmajer—Schaefer—Stasi, 2009;
Colin de Verdiere—Kaluza—Patak—Patakova—Tancer, 2016)

If a graph G has an independently even drawing on the projective
plane, then G has an embedding on the projective plane.

Problem: Can the strong Hanani—Tutte theorem be extended to
other surfaces?

Partial answer: No to the orientable surface of genus 4 or larger
(Fulek-K., 2017)
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Genus and Z,-genus

genus g(G) of a graph G = minimum g such that G has an
embedding on the orientable surface M, of genus g.

Zo-genus g,( G) of a graph G is the minimum g such that G has an
independently even drawing on M,

Strong Hanani-Tutte theorem: g,(G) =0 = ¢(G) =0.

Theorem: (Fulek—K., 2017)

There is a graph G with g(G) = 5 and g,(G) < 4.

Consequently, for every positive integer k there is a graph G with
d(G) = 5k and g,(G) < 4k.

Problem: (Schaefer—Stefankovig, 2013)
Is there a function f such that g(G) < f(g,(G)) for every graph G?

Main result: YES, if a certain “folklore result” is true.
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Bounding genus by Z,-genus—the plan

1) Ramsey-type statement:

If G has large genus g = g(t), then G contains, as a minor, G;(t) or
Go(t) or ... or G,(t) of genus t.

2) Easier subproblem:
Show that the Z,-genus of each of Gi(t) is unbounded in t.
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Ramsey-type statements

Theorem: (Bohme—Kawarabayashi—Maharry—Mohar, 2008)
For every positive integer ¢, every sufficiently large 7-connected
graph contains K;; as a minor.

Generalization: (Bbhme—Kawarabayashi—-Maharry—Mohar, 2009)
- larger connectivity and K ; minors for every fixed a > 3.

Unpublished “folklore” result: (Robertson—Seymour)
There is a function g such that for every t > 3, every graph of Euler
genus g(t) contains a t-Kuratowski graph as a minor.

t-Kuratowski graph:

o Ka, or
« t copies of Ks or K3 3 sharing at most 2 common vertices
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3-Kuratowski graphs

d) e)
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- what about graphs with large (orientable) genus and constant Euler
genus?
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Ramsey-type statement for genus

projective 5 x 5 grid projective 5-wall

Theorem:

The “folklore result” implies that there is a function h such that for
every t > 3, every graph of genus h(t) contains, as a minor, a
t-Kuratowski graph or the projective t-wall.
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Lower bounds on the Z,-genus

Theorem: (Schaefer—Stefankovig, 2013)
If G consists of t copies of K5 or K3 3 sharing at most 1 vertex, then

9,(G) = 9(G) = t.
(The Z,-genus is additive for disjoint unions and 1-amalgamations.)

Observation:
If G has maximum degree 3, then g,(G) = g(G). In particular, the
Zy-genus of the projective t-wall is [ t/2].

o “correct” the rotation of each vertex to obtain an even drawing

TS

e use the weak Hanani—Tutte theorem for surfaces

Theorem:
We have g,(G) = g(G) also for each of the remaining t-Kuratowski
graphs G: K;; and 2-amalgamations of t copies of Ks or Kj 3.
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Lower bounds on the Z;-genus of K; ;

problem with independently even drawings:
- no faces, rotations “do not matter”, no Euler’s formula ...

First lower bound: g,(K;) > Q(logloglog t)
e “correct” the rotation of each degree-3 vertex so that incident
edges cross evenly

e use Ramsey’s theorem for each degree-t vertex so that incident
edges cross with the same parity

o if the parity is odd for some vertex v, “flip” a neighborhood of v

e use the weak Hanani—Tutte theorem for surfaces
e use the fact g(Ks,n) = [(n — 2)/4]
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Z»-homology of closed curves on VM,
Fact: H;(M,; Z) is isomorphic to Z5°.

o

& Hy(My;Zy) = (o, 8)

= F_ s |+

intersection form (Cairns—Nikolayevsky, 2000) (symmetric, bilinear)
Cr: H1(Mg; Zg) X H1(Mg; Zg) — Zg

forg=1:
cr(a,a) =0 cr(8,8) =0 cr(a, B) =1
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“Crosscap vectors” of closed curves on V|,

Fact: M, — {x} is homeomorphic to a subset of Ny 1
or, to a subset of the sphere with 2g + 1 crosscaps

A | g . | /
=
.

Ye = (L 170)7 Yr= (Oa ]-7 1)

« acycle C — acrosscap vectory© = (y7, y5, ..., y5, 1) where
yi = number of passes of C through the ith crosscap mod 2.

e adrawing on M, <+ a drawing with 2g + 1 crosscaps where the
crosscap vector of each cycle has an even number of 1’s.

« homology class of C <+ crosscap vector y°©
« intersection form cr(C, D) < scalar product y° - y?
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Third lower bound on the Z;-genus of Kj ;

Lemma: In every independently even drawing of K3 3 (induced by
{a, b, c, up, uy, U} from Kz ;) on M,, we have

cr(Cy, Cy) +cr(Cy, Co) = 1.

7/ C
Let Abe the (1 — 1) x (t — 1) matrix with A;; = cr(C;, C))
Lemma implies A;; + A;; = 1 for i # j,

so Ais a tournament matrix, thatis, A+ A" =J — |

rank of A is at least (t — 2)/2 (De Caen, 1991)

the rank of the intersection form is at least (t — 2)/2 and so
2g > (t—2)/2.



