Exercises for Combinatorial and Computational Geometry 2

Series 1 — Erdős–Szekeres theorem

hints 5. 3. 2025, deadline 11. 3. 2025

Please choose a nickname that will be used in the list of scores on the webpage of the exercises. If you have already chosen a nickname, you can just sign your solutions with either your name or your nickname.

- 1. (a) Show that for every $k \in \mathbb{N}$ there is an $n(k) \in \mathbb{N}$ such that every set of n(k) points in the plane contains k points in general position or k points on a common line. [2]
 - (b) Prove the previous statement with n(k) at most polynomial in k. [1]
- 2. (a) Prove the Erdős–Szekeres theorem in \mathbb{R}^d : for every $d \geq 3$ and $k \in \mathbb{N}$ there is an $n = n_d(k) \in \mathbb{N}$ such that every set of n points in \mathbb{R}^d in general position (no m+2 points in an affine subspace of dimension m, for $m = 1, 2, \ldots, d-1$) contains a subset of k points in convex position.
 - (b) Show that every sufficiently large finite point set in \mathbb{R}^3 in general position contains a 7-hole. [2]
- Let P be a set of 3n − 1 points in the plane in convex position. Every closed segment between two points in P is colored either red or blue. Prove that there exist n pairwise disjoint red segments or n pairwise disjoint blue segments.
 [3]
- 4. Prove that there is a sufficiently large constant C such that the $n \times n$ grid $\{(i,j); i=1,2,\ldots,n; j=1,2,\ldots,n\}$ has no subset in convex position with more than $Cn^{2/3}$ points. [4, hint]
- 5. Prove that for $h \ge 1$, the Horton set with 2^h points has no subset in convex position with more than 4h points. [2]