# Exercises for Combinatorial and Computational Geometry 2 

Series 1 - Erdős-Szekeres theorem

hints 3. 3. 2023, deadline 10. 3. 2023
Please choose a nickname that will be used in the list of scores on the webpage of the exercises. If you have already chosen a nickname, you can just sign your solutions with either your name or your nickname.

1. (a) Show that for every $k \in \mathbb{N}$ there is an $n(k) \in \mathbb{N}$ such that every set of $n(k)$ points in the plane contains $k$ points in general position or $k$ points on a common line.
(b) Prove the previous statement with $n(k)$ at most polynomial in $k$.
2. (a) Prove the Erdős-Szekeres theorem in $\mathbb{R}^{d}$ : for every $d \geq 3$ and $k \in \mathbb{N}$ there is an $n=n_{d}(k) \in \mathbb{N}$ such that every set of $n$ points in $\mathbb{R}^{d}$ in general position (no $m+2$ points in an affine subspace of dimension $m$, for $m=1,2, \ldots, d-1$ ) contains a subset of $k$ points in convex position.
(b) Show that every sufficiently large finite point set in $\mathbb{R}^{3}$ in general position contains a 7 -hole.
3. Let $P$ be a set of $3 n-1$ points in the plane in convex position. Every closed segment between two points in $P$ is colored either red or blue. Prove that there exist $n$ pairwise disjoint red segments or $n$ pairwise disjoint blue segments.
4. Prove that there is a sufficiently large constant $C$ such that the $n \times n$ $\operatorname{grid}\{(i, j) ; i=1,2, \ldots, n ; j=1,2, \ldots, n\}$ has no subset in convex position with more than $C n^{2 / 3}$ points. [4, hint]
5. Prove that for $h \geq 1$, the Horton set with $2^{h}$ points has no subset in convex position with more than $4 h$ points.
