Exercises for Combinatorial and Computational Geometry 2

Series 4 - Intersection patterns of convex sets

deadline 12. 5. 2023

1. (Carathéodory's theorem, cone version.)

Let $A \subseteq \mathbb{R}^{d}$ and $x \in \operatorname{cone}(A)$; that is, x can be expressed as $x=$ $\sum_{i \in[n]} \alpha_{i} a_{i}$ for some $n \in \mathbb{N}, a_{i} \in A$ and $\alpha_{i} \geq 0$. Prove that there is a subset $B \subseteq A$ of at most d points such that $x \in \operatorname{cone}(B)$.
2. (Colorful Carathéodory's theorem, cone version.)

Let $x \in \mathbb{R}^{d} \backslash\{0\}$ and $A_{1}, \ldots, A_{d} \subseteq \mathbb{R}^{d}$ such that for every $i \in[d]$, we have $x \in \operatorname{cone}\left(A_{i}\right)$. Prove that there are points a_{1}, \ldots, a_{d} with $a_{i} \in A_{i}$ such that $x \in \operatorname{cone}\left(\left\{a_{1}, \ldots, a_{d}\right\}\right)$.
3. (Colorful Carathéodory's theorem, stronger version in the plane.)

Let X_{1}, X_{2}, X_{3} be finite point sets in the plane such that for every $i, j \in\{1,2,3\}, i \neq j$, we have $0 \in \operatorname{conv}\left(X_{i} \cup X_{j}\right)$. Prove that there are points x_{1}, x_{2}, x_{3} with $x_{i} \in X_{i}$ such that $0 \in \operatorname{conv}\left(\left\{x_{1}, x_{2}, x_{3}\right\}\right)$.
4. (Helly's theorem, colored version.)

Let $\mathcal{C}_{1}, \ldots, \mathcal{C}_{d+1}$ be finite families of convex sets in \mathbb{R}^{d} such that for every choice $C_{i} \in \mathcal{C}_{i}, i \in[d+1]$, we have $\bigcap_{i \in[d+1]} C_{i} \neq \emptyset$. Prove that there exists $i \in[d+1]$ such that $\bigcap \mathcal{C}_{i} \neq \emptyset$ (that is, there is a point common to all sets of certain color). Hint: consider lexicographic minima of the intersections and show that one of them is the desired point.
5. Prove that the quantity $(r-1)(d+1)+1$ in Tverberg's theorem cannot be improved: for every $d, r \geq 2$, there are $(r-1)(d+1)$ points in \mathbb{R}^{d} with no Tverberg r-partition.
6. (a) Let S be a set of n points in the plane in general position and let $x \in \operatorname{conv}(S)$. Prove that there are at least $n-2$ triangles with vertices in S that contain x in their convex hull.
(b) Let S be a set of n points in the plane in general position and let $x \in \mathbb{R}^{2}$ be an arbitrary point. Prove that the number of triangles with vertices in S that contain x in their convex hull is at most $n^{3} / 24+O\left(n^{2}\right)$. Hint: count the triangles that do not contain x. [3]

