Exercises for Combinatorial and Computational Geometry 2

Series 4 — Intersection patterns of convex sets

deadline 12. 5. 2023

- 1. (Carathéodory's theorem, cone version.) Let $A \subseteq \mathbb{R}^d$ and $x \in \text{cone}(A)$; that is, x can be expressed as $x = \sum_{i \in [n]} \alpha_i a_i$ for some $n \in \mathbb{N}$, $a_i \in A$ and $\alpha_i \ge 0$. Prove that there is a subset $B \subseteq A$ of at most d points such that $x \in \text{cone}(B)$. [2]
- 2. (Colorful Carathéodory's theorem, cone version.) Let $x \in \mathbb{R}^d \setminus \{0\}$ and $A_1, \ldots, A_d \subseteq \mathbb{R}^d$ such that for every $i \in [d]$, we have $x \in \text{cone}(A_i)$. Prove that there are points a_1, \ldots, a_d with $a_i \in A_i$ such that $x \in \text{cone}(\{a_1, \ldots, a_d\})$. [2]
- 3. (Colorful Carathéodory's theorem, stronger version in the plane.) Let X_1, X_2, X_3 be finite point sets in the plane such that for every $i, j \in \{1, 2, 3\}, i \neq j$, we have $0 \in \operatorname{conv}(X_i \cup X_j)$. Prove that there are points x_1, x_2, x_3 with $x_i \in X_i$ such that $0 \in \operatorname{conv}(\{x_1, x_2, x_3\})$. [3]
- 4. (Helly's theorem, colored version.) Let C_1, \ldots, C_{d+1} be finite families of convex sets in \mathbb{R}^d such that for every choice $C_i \in \mathcal{C}_i$, $i \in [d+1]$, we have $\bigcap_{i \in [d+1]} C_i \neq \emptyset$. Prove that there exists $i \in [d+1]$ such that $\bigcap \mathcal{C}_i \neq \emptyset$ (that is, there is a point common to all sets of certain color). Hint: consider lexicographic minima of the intersections and show that one of them is the desired point. [3]
- 5. Prove that the quantity (r-1)(d+1)+1 in Tverberg's theorem cannot be improved: for every $d, r \ge 2$, there are (r-1)(d+1) points in \mathbb{R}^d with no Tverberg *r*-partition. [2]
- 6. (a) Let S be a set of n points in the plane in general position and let $x \in \text{conv}(S)$. Prove that there are at least n-2 triangles with vertices in S that contain x in their convex hull. [2]
 - (b) Let S be a set of n points in the plane in general position and let $x \in \mathbb{R}^2$ be an arbitrary point. Prove that the number of triangles with vertices in S that contain x in their convex hull is at most $n^3/24 + O(n^2)$. Hint: count the triangles that do not contain x. [3]