Exercises for Combinatorial and Computational Geometry 2

Series $2-k$-holes, halving lines and graph drawings
deadline 31.3.2023

1. Let X be a finite non-empty set of points in the plane in general position. Prove that the following identities hold for the numbers of k-holes in X :
(a) $\sum_{k=1}^{|X|}(-1)^{k} \cdot \# k$-holes $=-1$,
(b) If $|X| \geq 2$, then

$$
\begin{equation*}
\sum_{k=1}^{|X|}(-1)^{k} \cdot k \cdot \# k \text {-holes }=-\# \text { points inside } \operatorname{conv}(X) \tag{2}
\end{equation*}
$$

Hint: move points continuously along curves into a suitable configuration.
2. Let X be a set of n points in the plane in general position. Prove that the number of 4 -holes is at least quadratic in n.
3. Let P be a finite set of points in the plane that is not necessarily in general position and that contains no 5 -hole. Prove that every convex 5 -gon Q determined by points of P contains at least 1 point of P in the closed "inner" 5 -gon that is determined by the diagonals of Q.
4. For n even, let P be a set of n points in the plane in general position. Furthermore, let $k \leq n / 2$ and let h be a line that does not intersect P and splits the plane into two halfplanes such that one of them contains exactly k points of P. Show that h intersects exactly k halving segments of P.
5. Let P be a set of n points in the plane in general position. A pair of points in P is a k-edge if the line determined by these points separates exactly k points from P in one of the open hyperplanes. Let $E_{k}(P)$ be the number of k-edges in P and furthermore let $\overline{c r}(P)$ be the number of unordered 4 -tuples of points in P in convex position.
Prove the following identity:

$$
\overline{c r}(P)=3\binom{n}{4}-\sum_{k=0}^{\left\lfloor\frac{n-2}{2}\right\rfloor} E_{k}(P) \cdot k \cdot(n-k-2) .
$$

Hint: count in two ways the number of ordered triples $(a, \overline{b c}, d)$ such that a, b, c, d are pairwise different points of P, a lies to the left of the line $\overline{b c}$ and d lies to the right of the line of $\overline{b c}$.
6. Two edges in a graph are independent if they do not share a vertex. In a drawing of a graph we assume that edges have only finitely many points in common, and that every common point of two edges is either their common endpoint or a crossing.
Determine for which values of m and n, in every drawing of the graph $K_{m, n}$ the total number of crossings of independent pairs of edges is odd. Hint: what happens during a continuous deformation of the edges?

