Exercises for Combinatorial and Computational Geometry
 Series 1 - Convex sets

hints 26.10.2022, deadline 9:00 2.11.2022
Please choose a nickname that will be used in the list of scores on the webpage of the exercises. If you have already chosen a nickname, you can just sign your solutions with either your name or your nickname.

1. Find a set $M \subset \mathbb{R}^{2}$ that is a union of two convex sets such that $\mathbb{R}^{2} \backslash M$ consists of five pairwise disjoint connected components.
2. Prove Carathéodory's theorem (you may use Radon's theorem or a part of its proof).
3. Let $M=\left\{x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{d+1}, y_{d+1}\right\}$ be a set of $2 d+2$ points in \mathbb{R}^{d}. Prove that M can be partitioned into two subsets A and B such that each of these subsets contains, for every $i=1,2, \ldots, d+1$, exactly one point from $\left\{x_{i}, y_{i}\right\}$, and the convex hulls of A and B have a nonempty intersection. (You may use the fact that the $(d+1)$-tuple of vectors $x_{i}-y_{i}$ is linearly dependent and then use an approach similar to the proof of Radon's theorem.)
4. Let M be a finite set of at least four points in the plane such that each point is either red or blue. In addition, for every 4 -tuple V of points of M there is a line strictly separating the red points of V from the blue points of V. Prove that there is a line strictly separating all the red points of M from all the blue points of M.
5. Let $X_{1}, X_{2}, \ldots, X_{d+1}$ be finite point sets in \mathbb{R}^{d} such that for every $i \in$ $\{1,2, \ldots, d+1\}$ the origin lies in $\operatorname{conv}\left(X_{i}\right)$. Prove that there exist $d+1$ points $x_{1}, x_{2}, \ldots, x_{d+1}$, with $x_{i} \in X_{i}$, such that $\operatorname{conv}\left(\left\{x_{1}, x_{2}, \ldots, x_{d+1}\right\}\right)$ contains the origin.
[4, hint]
web: https://kam.mff.cuni.cz/~kvgweb/kvg/eng.html
