Exercises for Combinatorial and Computational Geometry

Series 2 - Helly-type theorems and the ham sandwich theorem
hints 3.11.2020, deadline 9.11.2020

1. Let C_{1}, \ldots, C_{n} be a collection of at least three convex sets in the plane and let K be the line segment $[0,1] \times\{0\}$. Show that if the intersection of every triple of sets from C_{1}, \ldots, C_{n} contains a translated copy of K, then also the intersection of all the sets C_{1}, \ldots, C_{n} contains a translated copy of K.
2. Let $M \subset \mathbb{R}^{2}$ be a closed polygon with area $S(M)$, not necessarily convex. Prove that there is a point $x \in \mathbb{R}^{2}$ such that every line that contains x divides M into two parts, each with area at least $S(M) / 3$.
3. A collection $\mathcal{C}=\left\{C_{1}, \ldots, C_{n}\right\}$ of convex sets in the plane has (p, q)-property if $n \geq p$ and every p-tuple of sets from \mathcal{C} contains a q-tuple with a nonempty intersection. The piercing number $s(\mathcal{C})$ of the collection \mathcal{C} is the minimum size of a set $X \subset \mathbb{R}^{2}$ such that every $C_{i} \in \mathcal{C}$ contains at least one point from X.
(a) Prove that every finite collection \mathcal{C} of closed axis-parallel rectangles with the (2,2)-property satisfies $s(\mathcal{C})=1$.
(b) Prove that every finite collection \mathcal{C} of closed axis-parallel rectangles with the (4,3)-property satisfies $s(\mathcal{C}) \leq 2$.
4. For $n \geq 4$, let C_{1}, \ldots, C_{n} be a collection of convex sets in the plane. Show that if the intersection of every 4 -tuple of sets from C_{1}, \ldots, C_{n} contains a ray, then the intersection of all the sets C_{1}, \ldots, C_{n} contains a ray. [4, hint]
5. The ham sandwich theorem says that for every collection of disjoint finite sets $A_{1}, \ldots, A_{d} \subset \mathbb{R}^{d}$ there is a hyperplane h such that every open halfspace determined by h contains at most $\left\lfloor\frac{\left|A_{i}\right|}{2}\right\rfloor$ points of every A_{i}.
Let $A_{1}, A_{2}, \ldots, A_{d}$ be disjoint sets in \mathbb{R}^{d} such that every A_{i} contains n points and the points in $\bigcup_{i=1}^{d} A_{i}$ are in general position (that is, no hyperplane contains more than d points from this union). Show that the points from $\bigcup_{i=1}^{d} A_{i}$ can be partitioned into n rainbow d-tuples (that is, sets $\left\{x_{1}, x_{2}, \ldots, x_{d}\right\}$ with $\left.x_{i} \in A_{i}\right)$ such that their convex hulls are disjoint.
If you wish to use a different version of the ham sandwich theorem than the one stated here, prove it first.
