Exercises for Combinatorial and Computational Geometry II Series 5 - bonus problems

deadline: 16. 7. 2020

1. (One-dimensional second selection lemma.)

Let $X \subset \mathbb{R}$ be a set of n real numbers, let $\alpha>0$ and let F be a set of $\alpha\binom{n}{2}$ X-intervals. Prove that there is a point common to at least $\Omega\left(\alpha^{2}\binom{n}{2}\right)$ intervals from F.
2. Let X be a set of n points in the plane in general position and let $x \in \mathbb{R}^{2}$ be an arbitrary point. Prove that the number of X-triangles that contain x in their convex hull is at most $n^{3} / 24+O\left(n^{2}\right)$. Hint: count the triangles that do not contain x. [3]
3. a) Let \mathcal{C}_{1} and \mathcal{C}_{2} be families of convex sets in \mathbb{R}^{d} such that $A \cap B \neq \emptyset$ for every $A \in \mathcal{C}_{1}$ and $B \in \mathcal{C}_{2}$. Prove that \mathcal{C}_{1} has non-empty intersection or there exist d hyperplanes that pierce \mathcal{C}_{2}; that is, every $B \in \mathcal{C}_{2}$ has a non-empty intersection with at least one of the d hyperplanes.
b) Find an example of families \mathcal{C}_{1} and \mathcal{C}_{2} in the plane satisfying the same assumptions as in part a), such that \mathcal{C}_{1} has empty intersection and no line pierces \mathcal{C}_{2}.
c) (Colored Helly's theorem, stronger version in the plane.)

Let $\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{3}$ be finite families of convex sets in the plane such that for every choice $C_{i} \in \mathcal{C}_{i}, i \in[3]$, we have $C_{1} \cap C_{2} \cap C_{3} \neq \emptyset$. Prove that there are two different indices $i, j \in[3]$ such that $\bigcap \mathcal{C}_{i} \neq \emptyset$ and $\bigcap \mathcal{C}_{j} \neq \emptyset$ or there exist 4 lines that pierce $\mathcal{C}_{1} \cup \mathcal{C}_{2} \cup \mathcal{C}_{3}$.
4. Find an example of a set X of six points in the plane with a partition $X=X_{1} \cup$ $X_{2} \cup X_{3}$ such that (X_{1}, X_{2}, X_{3}) has same-type transversals, but the intersection of the convex hulls of all the transversals (that is, "rainbow triples") is empty.
5. Let $X_{1}, X_{2}, \ldots, X_{d+1}$ be disjoint finite sets in \mathbb{R}^{d}, assume that their union is in general position, and let $C_{i}=\operatorname{conv}\left(X_{i}\right)$. Prove that the following conditions are all equivalent:
(a) There is no hyperplane intersecting all $C_{1}, C_{2}, \ldots, C_{d+1}$ simultaneously.
(b) For every nonempty $I \subset[d+1]$, the sets $\bigcup_{i \in I} C_{i}$ and $\bigcup_{i \in[d+1] \backslash I} C_{i}$ can be strictly separated by a hyperplane.
(c) $\left(X_{1}, X_{2}, \ldots, X_{d+1}\right)$ has same-type transversals.

