Exercises for Combinatorial and Computational Geometry

Series 5 - Polytopes, arrangements, and Voronoi diagrams
deadline 5. 1. 2017

1. Count the number of k-dimensional faces, for $k=1,2,3$, of a 4 -dimensional cyclic polytope on n vertices.
2. Count the number of 1- and 2-dimensional faces in an arrangement of n planes in general position in \mathbb{R}^{3}.
3. (a) How many cells are there in the arrangement of $\binom{d}{2}$ hyperplanes in \mathbb{R}^{d} with equations $x_{i}=x_{j}$, where $1 \leq i<j \leq d$?
(b) How many cells are there in the arrangement of hyperplanes in \mathbb{R}^{d} with equations $x_{i}+x_{j}=0$ and $x_{i}=x_{j}$, where $1 \leq i<j \leq d$?
4. Show that for $n \geq 2$ the Voronoi diagram of a $2 n$-point set $A_{2 n}:=\{(i, 0,0)$: $i=1,2, \ldots, n\} \cup\{(0, n, j): j=1,2, \ldots, n\}$ in \mathbb{R}^{3} has at least $c n^{2}$ vertices for some positive constant c.
5. Let P be a finite point set in the plane with no three points on a line and no four points on a circle. Define a graph $D T$ (called the Delaunay triangulation) on P as follows: two points a, b are connected by an edge if and only if there exists a circular disk with both a and b on the boundary and no point of P in its interior.

Prove that $D T$ is a plane graph where every inner face is a triangle.

[^0]
[^0]: web: http://kam.mff.cuni.cz/kvg

