# Exercises for Combinatorial and Computational Geometry 

Series 4 - Duality and polytopes
hint 15. 12. 2016, deadline 22. 12. 2016

1. (a) Let $C \subseteq \mathbb{R}^{d}$ be a convex set. Prove that $C^{*}$ is bounded if and only if 0 lies in the interior of $C$.
(b) Show that for every set $X \subset \mathbb{R}^{d}$, the second dual set $\left(X^{*}\right)^{*}$ is the closure of $\operatorname{conv}(X \cup\{0\})$.
(c) Using the previous parts together with that fact that every $H$-polytope is also a $V$-polytope, prove that every $V$-polytope is also an $H$-polytope. [1]
2. Let $v_{1}, \ldots, v_{n}$ be linearly independent vectors in $\mathbb{R}^{n}$. Let $C$ be the convex hull of the rays $p_{1}, \ldots, p_{n}$ that are determined by the vectors $v_{1}, \ldots, v_{n}$ and start in the origin (that is, $p_{i}=\left\{x \in \mathbb{R}^{n} ; x=\lambda v_{i}, \lambda \geq 0\right\}$ ).
Prove that there is a ray in $C$ that forms an acute angle with every ray $p_{i}$. [3]
3. Consider $n$ line segments in the plane such that each of them is contained in a line passing through the origin, but none of these line segments contains the origin. Show that if every triple of the line segments can be intersected by a common line, then all $n$ line segments can be intersected by a common line. (By intersecting we mean that the line segment and the line have at least one point in common. In particular, a line containing a line segment intersects this line segment.)
4. Prove that every polytope $P \subset \mathbb{R}^{d}$ is an orthogonal projection of some $k$ dimensional regular simplex in $\mathbb{R}^{n}$ for suitable $k, n$. (An orthogonal projection is a mapping $\pi$ from the space $\mathbb{R}^{n}$ to a subspace $M \cong \mathbb{R}^{d}$ embedded in $\mathbb{R}^{n}$ such that for every $x \in \mathbb{R}^{n}$ the vector $\pi(x)-x$ is orthogonal to $M$. A simplex is regular if all its edges have the same length.)
[^0]
[^0]:    web: http://kam.mff.cuni.cz/kvg

