Exercises for Combinatorial and Computational Geometry
 Series 3 - Crossing numbers and incidences

deadline 1. 12. 2016

1. Prove that a graph with n vertices that has a drawing in the plane with no three pairwise crossing edges has $O\left(n^{3 / 2}\right)$ edges. You may use the crossing lemma. [2]
2. Let $I_{1 \text { circ }}(n, m)$ be the maximum number of incidences of n points and m unit circles in the plane. Show that $I_{1 \text { circ }}(n, n)=O\left(n^{4 / 3}\right)$.
3. Let $\mathcal{M}=\left\{M_{1}, M_{2}, \ldots, M_{n}\right\}$ be a system of subsets of an n-element set N (that is, $\forall i \in[n] M_{i} \subseteq N$) such that every pair of sets M_{i}, M_{j} has at most one common element. The number of incidences of N and \mathcal{M} is defined as $I(N, \mathcal{M}):=\sum_{i=1}^{n}\left|M_{i}\right|$. Determine whether necessarily $I(N, \mathcal{M})=O\left(n^{4 / 3}\right) .[2]$
4. Find an n-point set in \mathbb{R}^{4} with $\Omega\left(n^{2}\right)$ unit distances.
5. Let P be an n-point set in the plane.
(a) Let $k>1$. Show that there are at most $O\left(n^{2} / k^{3}+n / k\right)$ lines such that each of them contains at least k points of P and the number of incidences of these lines with P is at most $O\left(n^{2} / k^{2}+n\right)$.
(b) Let $\alpha \in(0, \pi)$. Show that P determines at most $O\left(n^{7 / 3}\right)$ triangles with at least one angle of size α. (Hint: split the triangles $A B C$ with angle α at A into two groups according to whether the line $A C$ contains more than $n^{1 / 3}$ points of P.)
